CN114279303B - Device and method for detecting verticality of double-sided micro-cylindrical lens array - Google Patents
Device and method for detecting verticality of double-sided micro-cylindrical lens array Download PDFInfo
- Publication number
- CN114279303B CN114279303B CN202111632964.4A CN202111632964A CN114279303B CN 114279303 B CN114279303 B CN 114279303B CN 202111632964 A CN202111632964 A CN 202111632964A CN 114279303 B CN114279303 B CN 114279303B
- Authority
- CN
- China
- Prior art keywords
- axis
- lens array
- double
- cylindrical lens
- small ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000012360 testing method Methods 0.000 claims abstract description 56
- 238000013519 translation Methods 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 9
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims description 26
- 238000012876 topography Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Eyeglasses (AREA)
Abstract
本发明公开了一种双面微柱面透镜阵列垂直度的检测装置和方法,该装置包括双面微柱面透镜阵列(101),第一小球(102),第二小球(103),绕Z轴的旋转台(105),沿X轴和Y轴的二维平移台(104),Z轴方向高度接触测量设备(106)和计算机(107)。第一小球(102),第二小球(103)为两个相同的小球,通过两个小球的定位和对测试数据的拟合处理,实现精确调整双面微柱面透镜阵列与运动轴的关系。通过对上下柱面轮廓数据的测试和数据处理,计算出两个柱面的母线方向,进而实现对双面微柱面透镜阵列垂直度的精确检测。
The invention discloses a device and method for detecting the perpendicularity of a double-sided micro-cylindrical lens array. The device comprises a double-sided micro-cylindrical lens array (101), a first small ball (102), and a second small ball (103). , a rotating stage (105) around the Z-axis, a two-dimensional translation stage (104) along the X-axis and Y-axis, and the Z-axis direction height contacts the measuring device (106) and the computer (107). The first small ball (102) and the second small ball (103) are two identical small balls. Through the positioning of the two small balls and the fitting processing of the test data, precise adjustment of the double-sided microcylindrical lens array and the The relationship of the axes of motion. Through the testing and data processing of the profile data of the upper and lower cylinders, the busbar directions of the two cylinders are calculated, thereby realizing the accurate detection of the perpendicularity of the double-sided micro-cylindrical lens array.
Description
技术领域technical field
本发明属于光学元件检测领域,具体涉及一种双面微柱面透镜阵列垂直度的检测装置和方法。The invention belongs to the field of optical element detection, and in particular relates to a device and method for detecting the verticality of a double-sided microcylindrical lens array.
背景技术Background technique
微透镜柱面阵列是指直径为几十到几百微米的子柱面镜在基板上整齐排列组成。微透镜柱面阵列由于单元尺寸小、集成度高等特点,被广泛用于激光阵列扫描、光束匀化、光束整形中等系统中。在实际使用中,由于空间的限制及装配问题,通常设计为双面微透镜柱面阵列,即上下面均为微透镜柱面阵列,且上下面微透镜柱面阵列的母线垂直。由于在光路中两个方向配合使用,因此对两面的垂直度要求高。由于两面的结构不在一个面上,双面垂直度的高精度检测困难。The microlens cylindrical array refers to the orderly arrangement of sub-cylindrical mirrors with diameters of tens to hundreds of microns on the substrate. Microlens cylindrical arrays are widely used in laser array scanning, beam homogenization, beam shaping and other systems due to their small unit size and high integration. In practical use, due to space constraints and assembly problems, it is usually designed as a double-sided microlens cylindrical array, that is, the upper and lower sides are both microlens cylindrical arrays, and the busbars of the upper and lower microlens cylindrical arrays are vertical. Since the two directions are used together in the optical path, the verticality of the two sides is required to be high. Since the structures on the two sides are not on the same side, high-precision detection of the squareness of the two sides is difficult.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提出了一种双面微柱面透镜阵列垂直度的检测装置和方法,实现了对双面微柱面透镜阵列垂直度的高精度检测。In order to solve the above technical problems, the present invention provides a device and method for detecting the verticality of a double-sided micro-cylindrical lens array, which realizes high-precision detection of the verticality of a double-sided micro-cylindrical lens array.
为了实现上述目的,本发明提出了一种双面微柱面透镜阵列垂直度的检测装置,该装置包括:双面微柱面透镜阵列101,第一小球102,第二小球103,沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105,Z轴方向高度接触测量设备106,计算机107。其中,XYZ坐标系为沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105和Z轴方向高度接触测量设备106的坐标系。其中,双面微柱面透镜阵列101放在绕Z轴的旋转台105上,绕Z轴的旋转台105放在沿X轴和Y轴的二维平移台104上,双面微柱面透镜阵列101位于Z轴方向高度接触测量设备106下方。其中,Z轴方向高度接触测量设备106能沿Z轴运动,并精确测量高度信息。双面微柱面透镜阵列101的上表面为微柱面透镜阵列,下表面也是微柱面透镜阵列。其中,计算机107与沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105和Z轴方向高度接触测量设备106相连,用于发出控制信号及获取被测物体的形貌信息。其中,第一小球102和第二小球103大小相同,已知曲率半径R,面形精度高,底部切除1/5球体。In order to achieve the above purpose, the present invention proposes a device for detecting the perpendicularity of a double-sided microcylindrical lens array. The device includes: a double-sided
另外,本发明提供了提出了一种双面微柱面透镜阵列垂直度的检测方法,使用上述的装置,该方法包括如下步骤:In addition, the present invention provides a method for detecting the verticality of a double-sided microcylindrical lens array, using the above-mentioned device, and the method includes the following steps:
步骤(1)、将双面微柱面透镜阵列101放在绕Z轴的旋转台105上,调整使得双面微柱面透镜阵列101的端面ABCD与X轴平行;Step (1), placing the double-sided
步骤(2)、测试双面微柱面透镜阵列101的上表面某一个柱面区域形貌,并做柱面拟合,获得双面微柱面透镜阵列101的上表面的母线方向向量,方向向量(a1,b1,c1);Step (2), test the top surface of the double-sided
步骤(3)、将双面微柱面透镜阵列101绕Y轴转180度后放在绕Z轴的旋转台105上,调整使得双面微柱面透镜阵列101的端面ABCD与X轴平行;Step (3), rotate the double-sided
步骤(4)、测试双面微柱面透镜阵列101的下表面某一个柱面区域形貌,并做柱面拟合,获得双面微柱面透镜阵列101的下表面的母线方向,方向向量(a2,b2,c2);Step (4): Test the topography of a certain cylindrical area on the lower surface of the double-sided
步骤(5)、计算双面微柱面透镜阵列101的上表面柱面的母线方向与下表面柱面的母线方向的夹角θ,如下式所示,Step (5): Calculate the angle θ between the generatrix direction of the upper surface cylinder and the generatrix direction of the lower surface cylinder of the double-sided
进一步地,将双面微柱面透镜阵列101放在绕Z轴的旋转台105上,调整使得双面微柱面透镜阵列101的端面ABCD与X轴平行时,采用的方法如下:Further, when the double-sided
(11)、将双面微柱面透镜阵列101放在绕Z轴的旋转台105上,双面微柱面透镜阵列(101)的端面ABCD与X轴大致垂直,第一小球102放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切,第二小球103放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切;(11) Place the double-sided
(12)、测试第一小球102的顶部区域的形貌,并做球面拟合得到第一小球102的球心坐标,计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试第一小球102顶部区域,获得数据点(x1i,y1i,z1i),i=1,2,…,N1,N1为测试点总数,用最小二乘法做球面拟合,使得拟合残差ε1最小,获得第一小球102的球心的坐标(x10,y10,z10),R为小球的曲率半径,如下式所示,(12), test the shape of the top area of the first
(13)、测试第二小球103的顶部区域的形貌,并拟合得到第二小球103的球心坐标,计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试第二小球103顶部区域,获得数据点(x2j,y2j,z2j),j=1,2,…,N2,N2为测试点总数,用最小二乘法做球面拟合,使得拟合残差ε2最小,获得第二小球103的球心的坐标(x20,y20,z20),R为小球的曲率半径,如下式所示,(13), test the topography of the second
(14)、计算得到第一小球102的球心与第二小球103的球心连线与X轴的夹角为α,计算方法如下式,(14) The angle between the line connecting the center of the
(15)、计算机107控制绕Z轴的旋转台105旋转-α,使得第一小球102的球心与第二小球103的球心连线与X轴平行,即双面微柱面透镜阵列101的端面ABCD与X轴平行。(15) The computer 107 controls the rotary table 105 around the Z axis to rotate -α, so that the line connecting the center of the
进一步地,获得双面微柱面透镜阵列101的上表面柱面的母线方向时,采用的方法如下:计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试双面微柱面透镜阵列101的上表面某一个柱面区域,获得数据点(x3k,y3k,z3k),k=1,2,…,N3,N3为测试点总数,用最小二乘算法做柱面拟合,使得拟合残差ε3最小,获得曲率半径为R3,柱面母线过点(x30,y30,z30),柱面母线的方向向量(a1,b1,c1),如下式所示:Further, when obtaining the generatrix direction of the upper surface cylinder of the double-sided
其中,a1 2+b1 2+c1 2=1。where a 1 2 +b 1 2 +c 1 2 =1.
进一步地,将双面微柱面透镜阵列101绕Y轴转180度后放在绕Z轴的旋转台105上,调整使得双面微柱面透镜阵列101的端面ABCD与X轴平时,采用的方法如下:Further, the double-sided
(31)、将双面微柱面透镜阵列101绕Y轴转180度后放在绕Z轴的旋转台105上,双面微柱面透镜阵列101的端面ABCD与X轴大致垂直,第一小球102放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切,第二小球103放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切;(31) Rotate the double-sided
(32)、测试第一小球102的顶部区域的形貌,并做球面拟合得到第一小球102的球心坐标,计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试第一小球102顶部区域,获得数据点(x4l,y4l,z4l),l=1,2,…,N4,N4为测试点总数,用最小二乘法做球面拟合,使得拟合残差ε4最小,获得第一小球102的球心的坐标(x40,y40,z40),R为小球的曲率半径,如下式所示。(32), test the shape of the top area of the first
(33)、测试第二小球103的顶部区域的形貌,并拟合得到第二小球103的球心坐标计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试第二小球103顶部区域,获得数据点(x5m,y5m,z5m),j=1,2,…,N5,N5为测试点总数,用最小二乘法做球面拟合,使得拟合残差ε5最小,获得第二小球103的球心的坐标(x50,y50,z50),为小球的曲率半径,如下式所示:(33), test the morphology of the top area of the second
(34)、计算得到第一小球102的球心与第二小球103的球心连线与X轴的夹角为β,计算方法如下式,(34) The angle between the line connecting the center of the
(35)、计算机107控制绕Z轴的旋转台105旋转-β,使得第一小球102的球心与第二小球103的球心连线与X轴平行,即双面微柱面透镜阵列101的端面ABCE与X轴平行。(35), the computer 107 controls the rotary table 105 around the Z axis to rotate -β, so that the line connecting the center of the
进一步地,获得双面微柱面透镜阵列101的下表面柱面的母线方向时,采用的方法如下:计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试双面微柱面透镜阵列101的上表面某一个柱面区域,获得数据点(x6n,y6n,z6n),n=1,2,…,N6,N6为测试点总数,用最小二乘算法做柱面拟合,使得拟合残差ε6最小,获得曲率半径为R6,柱面母线过点(x60,y60,z60),柱面母线的方向向量(a2,b2,c2),如下式所示:Further, when obtaining the generatrix direction of the lower surface cylinder of the double-sided
其中,a2 2+b2 2+c2 2=1。where a 2 2 +b 2 2 +c 2 2 =1.
本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:
(1)本发明在测试双面微柱面透镜阵列的上下面时,以双面微柱面透镜阵列的端面作为基准,使得双面微柱面透镜阵列垂直度的检测方法变得可行。(1) When testing the upper and lower surfaces of the double-sided micro-cylindrical lens array, the present invention uses the end face of the double-sided micro-cylindrical lens array as a benchmark, so that the method for detecting the perpendicularity of the double-sided micro-cylindrical lens array becomes feasible.
(2)本发明中的小球的使用,可以快速精确的将双面微柱面透镜阵列的端面与X轴调平行,从而使得双面微柱面透镜阵列垂直度的检测更为精确。(2) The use of the small ball in the present invention can quickly and accurately align the end face of the double-sided micro-cylindrical lens array with the X axis, thereby making the detection of the perpendicularity of the double-sided micro-cylindrical lens array more accurate.
(3)本发明通过对测试的数据进行分析处理,调整双面微柱面透镜阵列的位置,从而降低双面微柱面透镜阵列测量时的安装要求,实现快速测试。(3) The present invention adjusts the position of the double-sided micro-cylindrical lens array by analyzing and processing the test data, thereby reducing the installation requirements during the measurement of the double-sided micro-cylindrical lens array and realizing fast testing.
附图说明Description of drawings
图1为本发明的双面微柱面透镜阵列垂直度的检测装置的示意图;1 is a schematic diagram of a device for detecting the verticality of a double-sided microcylindrical lens array according to the present invention;
图2为本发明的双面微柱面透镜阵列三维示意图;2 is a three-dimensional schematic diagram of a double-sided micro-cylindrical lens array of the present invention;
图3为本发明的小球的前视图;Fig. 3 is the front view of the pellet of the present invention;
图4为本发明的测试双面微柱面透镜阵列上表面时小球安装的示意图;4 is a schematic view of the installation of small balls when testing the upper surface of the double-sided micro-cylindrical lens array of the present invention;
图5为本发明的测试双面微柱面透镜阵列上表面时小球安装的右示图;Fig. 5 is the right diagram of the ball installation when testing the upper surface of the double-sided micro-cylindrical lens array of the present invention;
图6为本发明的测试双面微柱面透镜阵列下表面时小球安装的示意图;6 is a schematic diagram of the installation of small balls when testing the lower surface of the double-sided micro-cylindrical lens array of the present invention;
图7为本发明的测试双面微柱面透镜阵列下表面时小球安装的右示图;Fig. 7 is the right diagram of the ball installation when testing the lower surface of the double-sided micro-cylindrical lens array of the present invention;
图中,101为双面微柱面透镜阵列,102为第一小球,103为第二小球,104为沿X轴和Y轴的二维平移台,105为绕Z轴的旋转台,106为Z轴方向高度接触测量设备,107为计算机。In the figure, 101 is a double-sided micro-cylindrical lens array, 102 is a first ball, 103 is a second ball, 104 is a two-dimensional translation stage along the X and Y axes, 105 is a rotation stage around the Z axis, 106 is a height contact measuring device in the Z-axis direction, and 107 is a computer.
具体实施方式Detailed ways
下面结合附图以及具体实施例进一步说明本发明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
图1为本发明的一种双面微柱面透镜阵列垂直度的检测装置的示意图,包括双面微柱面透镜阵列101,第一小球102,第二小球103,沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105,Z轴方向高度接触测量设备106和计算机107。其中,XYZ坐标系为沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105和Z轴方向高度接触测量设备106的坐标系。其中,双面微柱面透镜阵列101放在绕Z轴的旋转台105上,绕Z轴的旋转台105放在沿X轴和Y轴的二维平移台104上,双面微柱面透镜阵列101位于Z轴方向高度接触测量设备106下方。其中,Z轴方向高度接触测量设备106能沿Z轴运动,并精确测量高度信息。双面微柱面透镜阵列101的结构示意图如图1所示,上表面为微柱面透镜阵列,下表面也是微柱面透镜阵列。其中,计算机107与沿X轴和Y轴的二维平移台104,绕Z轴的旋转台105和Z轴方向高度接触测量设备106相连,用于发出控制信号及获取被测物体的形貌信息。其中,第一小球102和第二小球103大小相同,已知曲率半径R,面形精度高,底部切除1/5球体,其示意图如图3所示。1 is a schematic diagram of a device for detecting the perpendicularity of a double-sided micro-cylindrical lens array according to the present invention, including a double-sided
本发明的采用所述的装置对双面微柱面透镜阵列垂直度的检测方法,包含以下几个步骤:The method for detecting the verticality of a double-sided microcylindrical lens array using the device of the present invention includes the following steps:
步骤(1)、获得双面微柱面透镜阵列101的上表面柱面的母线方向。具体步骤如下所示:In step (1), the generatrix direction of the cylinder on the upper surface of the double-sided
步骤(11)、放置双面微柱面透镜阵列101、小球102和小球103。将双面微柱面透镜阵列101放在绕Z轴的旋转台105,双面微柱面透镜阵列101的端面ABCD与X轴大致垂直。小球102放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切,小球103放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCE相切,如图4所示,右视图如图5所示。Step (11): Place the double-sided
步骤(12)、测试小球102的顶部区域的形貌,并做球面拟合得到小球102的球心坐标。计算机106控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试小球102顶部区域,获得数据点(x1i,y1i,z1i),i=1,2,…,N1,N1为测试点总数。用最小二乘法做球面拟合,使得拟合残差ε1最小,获得小球102的球心的坐标(x10,y10,z10),R为小球的曲率半径,如下式所示,Step (12): Test the topography of the
步骤(13)、测试小球103的顶部区域的形貌,并拟合得到小球103的球心坐标。计算机106控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试小球103顶部区域,获得数据点(x2j,y2j,z2j),j=1,2,…,N2,N2为测试点总数。用最小二乘法做球面拟合,使得拟合残差ε2最小,获得小球103的球心的坐标(x20,y20,z20),R为小球的曲率半径,如下式所示,Step (13): Test the topography of the
步骤(14)、计算得到小球102的球心与小球103的球心连线与X轴的夹角为α,计算方法如下式,In step (14), the angle between the line connecting the center of the
步骤(15)、计算机106控制绕Z轴的旋转台105旋转-α,使得小球102的球心与小球103的球心连线与X轴平行,即双面微柱面透镜阵列101的端面ABCE与X轴平行。In step (15), the
步骤(16)、测试双面微柱面透镜阵列101的上表面某一个柱面区域形貌,并做柱面拟合得到柱面的母线方向向量。计算机107控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试双面微柱面透镜阵列101的上表面某一个柱面区域,获得数据点(x3k,y3k,z3k),k=1,2,…,N3,N3为测试点总数。用最小二乘算法做柱面拟合,使得拟合残差ε3最小,获得曲率半径为R3,柱面母线过点(x30,y30,z30),柱面母线的方向向量(a1,b1,c1),如下式所示,Step (16): Test the topography of a certain cylindrical area on the upper surface of the double-sided
其中,a1 2+b1 2+c1 2=1。where a 1 2 +b 1 2 +c 1 2 =1.
步骤(2)、获得双面微柱面透镜阵列101的下表面柱面的母线方向。具体步骤如下所示:In step (2), the generatrix direction of the lower surface cylinder of the double-sided
步骤(21)、将双面微柱面透镜阵列101绕Y轴转180度后放在绕Z轴的旋转台105上,双面微柱面透镜阵列101的端面ABCD与X轴大致垂直。小球102放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCD相切,小球103放在绕Z轴的旋转台105上,且与双面微柱面透镜阵列101的端面ABCE相切,如图6所示,右视图如图7所示。Step (21): Rotate the double-sided
步骤(22)、测试小球102的顶部区域的形貌,并做球面拟合得到小球102的球心坐标。计算机106控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试小球102顶部区域,获得数据点(x4l,y4l,z4l),l=1,2,…,N4,N4为测试点总数。用最小二乘法做球面拟合,使得拟合残差ε4最小,获得小球102的球心的坐标(x40,y40,z40),R为小球的曲率半径,如下式所示,Step (22): Test the topography of the
步骤(23)、测试小球103的顶部区域的形貌,并拟合得到小球103的球心坐标计算机106控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试小球103顶部区域,获得数据点(x5m,y5m,z5m),j=1,2,…,N5,N5为测试点总数。用最小二乘法做球面拟合,使得拟合残差ε5最小,获得小球103的球心的坐标(x50,y50,z50),R为小球的曲率半径,如下式所示,Step (23), test the morphology of the top area of the
步骤(24)、计算得到小球102的球心与小球103的球心连线与X轴的夹角为β,计算方法如下式,In step (24), it is calculated that the angle between the line connecting the center of the
步骤(25)、计算机107控制绕Z轴的旋转台105旋转-β,使得小球102的球心与小球103的球心连线与X轴平行,即双面微柱面透镜阵列101的端面ABCE与X轴平行。In step (25), the computer 107 controls the rotation of the rotary table 105 around the Z axis by -β, so that the line connecting the center of the
步骤(26)、测试双面微柱面透镜阵列101的下表面某一个柱面区域形貌,并做柱面拟合得到双面微柱面透镜阵列101下表面柱面的母线方向向量。计算机106控制沿X轴和Y轴的二维平移台104和Z轴方向高度接触测量设备106,测试双面微柱面透镜阵列101的上表面某一个柱面区域,获得数据点(x6n,y6n,z6n),n=1,2,…,N6,N6为测试点总数。用最小二乘算法做柱面拟合,使得拟合残差ε6最小,获得曲率半径为R6,柱面母线过点(x60,y60,z60),柱面母线的方向向量(a2,b2,c2),如下式所,Step (26): Test the topography of a certain cylindrical area on the lower surface of the double-sided
其中,a2 2+b2 2+c2 2=1。where a 2 2 +b 2 2 +c 2 2 =1.
步骤(3)、计算双面微柱面透镜阵列101的上表面柱面的母线方向与下表面柱面的母线方向的夹角θ,如下式所示,Step (3): Calculate the angle θ between the generatrix direction of the upper surface cylinder and the generatrix direction of the lower surface cylinder of the double-sided
本发明未详细阐述部分属于本领域技术人员的公知技术。Parts not described in detail in the present invention belong to the well-known technologies of those skilled in the art.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不限于此,任何熟悉该技术的人在本发明所揭露的技术范围内所作的变换或者替换都应涵盖在本发明所包含的范围内,因此,本发明的保护范围应以权利要求书的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this, and any transformation or replacement made by anyone familiar with the technology within the technical scope disclosed by the present invention shall be covered by the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111632964.4A CN114279303B (en) | 2021-12-28 | 2021-12-28 | Device and method for detecting verticality of double-sided micro-cylindrical lens array |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111632964.4A CN114279303B (en) | 2021-12-28 | 2021-12-28 | Device and method for detecting verticality of double-sided micro-cylindrical lens array |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114279303A CN114279303A (en) | 2022-04-05 |
| CN114279303B true CN114279303B (en) | 2022-10-21 |
Family
ID=80877538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111632964.4A Active CN114279303B (en) | 2021-12-28 | 2021-12-28 | Device and method for detecting verticality of double-sided micro-cylindrical lens array |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114279303B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117606327B (en) * | 2024-01-24 | 2024-04-05 | 天津工业大学 | An aircraft engine blade surface detection device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6288382B1 (en) * | 1998-12-17 | 2001-09-11 | Takaoka Electric Mfg. Co., Ltd. | Micro-scanning multislit confocal image acquisition apparatus |
| JP2007065126A (en) * | 2005-08-30 | 2007-03-15 | Hitachi Maxell Ltd | Microlens array substrate and method for manufacturing microlens array substrate |
| JP2007190742A (en) * | 2006-01-18 | 2007-08-02 | Seiko Epson Corp | Electro-optical device and image printing device |
| WO2009085003A1 (en) * | 2007-12-27 | 2009-07-09 | Rolling Optics Ab | Synthetic integral image device |
| CN201555989U (en) * | 2009-11-13 | 2010-08-18 | 安徽华东光电技术研究所 | Beam shaping and homogenizing device in laser projection system |
| CN108562226A (en) * | 2017-12-27 | 2018-09-21 | 歌尔股份有限公司 | Establishment of coordinate system device and method |
| CN111258080A (en) * | 2020-02-21 | 2020-06-09 | 浙江大学 | Zero-order diffraction optical system for inhibiting spatial light modulator based on double plano-convex cylindrical lenses |
| CN113048935A (en) * | 2021-02-20 | 2021-06-29 | 西安交通大学深圳研究院 | Numerical control turntable geometric error measuring method based on ultra-precise three-coordinate measuring machine |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4261591B2 (en) * | 2007-03-30 | 2009-04-30 | アドバンスド・マスク・インスペクション・テクノロジー株式会社 | Illumination optical apparatus and sample inspection apparatus |
-
2021
- 2021-12-28 CN CN202111632964.4A patent/CN114279303B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6288382B1 (en) * | 1998-12-17 | 2001-09-11 | Takaoka Electric Mfg. Co., Ltd. | Micro-scanning multislit confocal image acquisition apparatus |
| JP2007065126A (en) * | 2005-08-30 | 2007-03-15 | Hitachi Maxell Ltd | Microlens array substrate and method for manufacturing microlens array substrate |
| JP2007190742A (en) * | 2006-01-18 | 2007-08-02 | Seiko Epson Corp | Electro-optical device and image printing device |
| WO2009085003A1 (en) * | 2007-12-27 | 2009-07-09 | Rolling Optics Ab | Synthetic integral image device |
| CN201555989U (en) * | 2009-11-13 | 2010-08-18 | 安徽华东光电技术研究所 | Beam shaping and homogenizing device in laser projection system |
| CN108562226A (en) * | 2017-12-27 | 2018-09-21 | 歌尔股份有限公司 | Establishment of coordinate system device and method |
| CN111258080A (en) * | 2020-02-21 | 2020-06-09 | 浙江大学 | Zero-order diffraction optical system for inhibiting spatial light modulator based on double plano-convex cylindrical lenses |
| CN113048935A (en) * | 2021-02-20 | 2021-06-29 | 西安交通大学深圳研究院 | Numerical control turntable geometric error measuring method based on ultra-precise three-coordinate measuring machine |
Non-Patent Citations (2)
| Title |
|---|
| A NEW FABRICATION PROCESS FOR MICRO OPTICAL ELEMENTS;Junji Ohara.et al.;《MEMS》;20070125;第279-282页 * |
| 基于DMD的动态红外场景投影光学系统设计;贾辛等;《红外与激光工程》;20080831;第37卷(第4期);第692-696页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114279303A (en) | 2022-04-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108267095B (en) | Method and device for bilateral dislocation differential confocal detection of free-form surface topography | |
| CN111982019B (en) | High-precision detection method of blade cross-section profile based on wire structured light sensor | |
| CN110926364B (en) | Leaf detection method based on line structured light | |
| CN111360586A (en) | Laser light emitting direction calibration method based on standard ball | |
| CN104677280B (en) | Swing arm type contourgraph rotating shaft space state calibration method | |
| CN108362221B (en) | Nano-precision detection method and device for free-form surface morphology | |
| CN108253906A (en) | A kind of axle housing circularity cylindricity detection device axis of workpiece location error compensation method | |
| CN110926365B (en) | A calibration method for detection objects based on line structured light | |
| CN101334267A (en) | Method and Device for Vector Coordinate Transformation Calibration and Error Correction of Digital Video Measuring Probe | |
| CN102425996A (en) | Optical three-dimensional measuring equipment precision integration detection method and detection apparatus thereof | |
| CN105444673A (en) | Device and method for determining center of optical element according to rotating translation absolute detection method | |
| CN112013797A (en) | Method for calibrating spatial revolution axis based on cylinder and line structured light and application thereof | |
| CN111272103B (en) | Method for measuring spherical center and curvature radius of large-caliber spherical optical element | |
| JP5600045B2 (en) | CMM calibration method | |
| CN114279303B (en) | Device and method for detecting verticality of double-sided micro-cylindrical lens array | |
| CN111649671B (en) | Multi-axis vision measurement system and calibration method for rotation axis position of pitching table | |
| CN107727118B (en) | Calibration method of attitude measurement system of GNC subsystem equipment in large aircraft | |
| CN107588929B (en) | Calibration method and calibrator for spherical screen projection/tracking system | |
| CN115503022A (en) | Robot measurement configuration determining method based on multi-station measurement | |
| CN114018174B (en) | Complex curved surface contour measuring system | |
| CN111649670B (en) | Method for calibrating center coordinate of rotation axis of swing table | |
| CN114459343A (en) | Method and system for jointly measuring form and position tolerance of workpiece by multiple detection devices | |
| CN114252243B (en) | A detection device and method for microcylindrical lens array | |
| CN107991684B (en) | GNC subsystem equipment attitude measurement system in large aircraft | |
| CN118225000A (en) | A calibration method for aero-engine blade profile measurement system based on sphere center feature point transformation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |