CN103793056A - Mid-air gesture roaming control method based on distance vector - Google Patents
Mid-air gesture roaming control method based on distance vector Download PDFInfo
- Publication number
- CN103793056A CN103793056A CN201410038474.5A CN201410038474A CN103793056A CN 103793056 A CN103793056 A CN 103793056A CN 201410038474 A CN201410038474 A CN 201410038474A CN 103793056 A CN103793056 A CN 103793056A
- Authority
- CN
- China
- Prior art keywords
- gesture
- image
- gestures
- skin color
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 241000203475 Neopanax arboreus Species 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000013507 mapping Methods 0.000 claims description 17
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 238000012549 training Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000003993 interaction Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- User Interface Of Digital Computer (AREA)
Abstract
本发明公开了一种基于距离向量的空中手势漫游控制方法,包括以下步骤:步骤一:获取和分析处理视频图像序列;步骤二:检测五指张开手势和握拳手势,以初始化控制区域;步骤三:获取感兴趣区域内的肤色信息;步骤四:得到感兴趣区域内人手的运动信息;步骤五:由步骤三和步骤四得到的人手肤色信息和运动信息计算得到每一帧图像中人手的位置坐标信息;步骤六:确定界面中的手势运动方向和运动速率;步骤七:界面中的手势按照步骤六中确定的方向和速率做出相应的响应,实现手势漫游。具有实现了小范围且全界面可达的操作并实现了当前手势和初始位置的距离远的快速手势漫游和当前手势和初始位置的距离近的精确手势漫游等优点。
The invention discloses a distance vector-based air gesture roaming control method, which includes the following steps: Step 1: Acquiring, analyzing and processing video image sequences; Step 2: Detecting five-finger open gestures and fist gestures to initialize the control area; Step 3 : Obtain the skin color information in the region of interest; Step 4: Obtain the motion information of the human hand in the region of interest; Step 5: Calculate the position of the human hand in each frame image from the skin color information and motion information obtained in Step 3 and Step 4 Coordinate information; Step 6: Determine the direction and speed of the gesture in the interface; Step 7: The gesture in the interface responds according to the direction and speed determined in Step 6, realizing gesture roaming. It has the advantages of realizing small-scale and full-interface accessible operations, fast gesture roaming with a long distance between the current gesture and the initial position, and precise gesture roaming with a short distance between the current gesture and the initial position.
Description
技术领域technical field
本发明涉及一种人机交互技术,特别涉及一种基于距离向量的空中手势漫游控制方法。The invention relates to a human-computer interaction technology, in particular to an air gesture roaming control method based on a distance vector.
背景技术Background technique
在日常生活中,手势是一种常用的表达意愿的行为方式,具有较强的表意功能,也是现有人机交互系统的主要交互方式,如鼠标、键盘、遥控器、触摸屏等都是常见的接触式人机交互系统的组成部分。而一些新兴的人机交互系统则通过普通摄像头或者深度摄像头等传感器捕捉用户在传感器捕捉范围中的行为,通过图像处理、机器学习、模式识别等技术,识别、跟踪用户的手势等动作,分析捕捉到的图像序列中用户的行为意图,通过与界面的交互,实现基于手势的非接触式人机交互。In daily life, gesture is a commonly used way of expressing will, with strong ideographic function, and it is also the main interaction mode of existing human-computer interaction systems, such as mouse, keyboard, remote control, touch screen, etc. part of the human-computer interaction system. And some emerging human-computer interaction systems capture the user's behavior in the sensor capture range through ordinary cameras or depth cameras, and use image processing, machine learning, pattern recognition and other technologies to identify and track user gestures and other actions, analyze and capture The gesture-based non-contact human-computer interaction can be realized through the interaction with the interface through the user's behavioral intention in the received image sequence.
手势漫游是将手势运动映射到界面中,用现实中的手的运动控制界面中的手的运动,实现对界面信息的选择、浏览等操作,是基于手势的人机交互系统的一个重要功能。现有常见的映射方式是手势坐标的直接映射,即,将传感器捕捉到的图像序列中的手势的坐标,或者是通过一些先验知识得到传感器捕捉到的图像序列中的“舒适运动区域”中的手势的坐标直接映射为界面中的手势坐标。例如传感器捕捉到的图像序列中每一帧的图像大小为长*宽=640像素*480像素,手势所在的位置为(200,100)像素,界面的大小为长*宽=1280像素*720像素,那么通过坐标的直接映射,界面中的手势坐标为(1280/640*200=400,720/480*100=150)像素。Gesture roaming is to map the gesture movement to the interface, control the hand movement in the interface with the real hand movement, and realize the selection and browsing of interface information. It is an important function of the gesture-based human-computer interaction system. The existing common mapping method is the direct mapping of gesture coordinates, that is, the coordinates of the gesture in the image sequence captured by the sensor, or the "comfortable motion area" in the image sequence captured by the sensor through some prior knowledge The coordinates of the gesture directly map to the gesture coordinates in the interface. For example, the image size of each frame in the image sequence captured by the sensor is length*width=640 pixels*480 pixels, the position of the gesture is (200,100) pixels, and the size of the interface is length*width=1280 pixels*720 pixels, then Through direct mapping of coordinates, the gesture coordinates in the interface are (1280/640*200=400,720/480*100=150) pixels.
种手势坐标的直接映射方法只用到了坐标信息,且在手势漫游过程中当用户希望选择一些距离当前手势所在坐标较远的项目时,手势就需要运动较远的距离,增加了用户的劳累感,在选择一些坐标相近的项目时,往往又因为当前的技术水平制约而达不到足够的精度导致难以选中或误选,因此,降低了基于手势的人机交互系统的易用性,缺乏人性化。This direct mapping method of gesture coordinates only uses coordinate information, and when the user wants to select some items that are far away from the coordinates of the current gesture during gesture roaming, the gesture needs to move a long distance, which increases the fatigue of the user , when selecting some items with similar coordinates, it is often difficult to select or misselect due to the current technical level constraints and cannot achieve sufficient accuracy. Therefore, the ease of use of the gesture-based human-computer interaction system is reduced and the lack of humanity change.
除了坐标映射,一些发明中提到了速度映射的方法。速度映射是一种相对的映射方式,其计算传感器捕捉到的图像序列中手势的运动速度和方向,不关心其具体的位置坐标,根据特定的比例关系,操作界面中的手势按照相应的方向运动一定的距离,距离长短和速度有关。In addition to coordinate mapping, methods of velocity mapping are mentioned in some inventions. Velocity mapping is a relative mapping method, which calculates the movement speed and direction of the gesture in the image sequence captured by the sensor, regardless of its specific position coordinates. According to a specific proportional relationship, the gesture in the operation interface moves in the corresponding direction A certain distance is related to the length of the distance and the speed.
这种手势速度映射方法仅用到了手势运动的相对坐标信息,即传感器捕捉到图像中前后两帧手势绝对坐标的差值。这样在实际操作过程中,尤其是一个刚接触这种系统的新用户无法直观的把握手势的速度和位置,会出现界面中想要漫游到的目的地超过了当前用户手势能够达到的范围。例如,用户使用右手操作,此时其右手已经向右伸展到其能及的最远处,而因为是采用的速度映射,界面中的手势可能在界面的最左边,此时用户必须将手收回来,重新进行操作。这样降低了人机交互系统的易用性,增加了用户熟悉、学习及适应的时间。This gesture speed mapping method only uses the relative coordinate information of the gesture motion, that is, the difference between the absolute coordinates of the gesture in the image captured by the sensor before and after the two frames. In this way, in the actual operation process, especially a new user who is new to this system cannot intuitively grasp the speed and position of the gesture, and the destination that he wants to roam in the interface will exceed the range that the current user gesture can reach. For example, if the user uses his right hand to operate, his right hand has stretched to the right as far as it can reach, and because of the speed mapping adopted, the gestures in the interface may be on the far left of the interface, and the user must retract his hand at this time. Come back and do it again. This reduces the usability of the human-computer interaction system and increases the time for users to get familiar with, learn and adapt.
因此,应该结合这两种映射方式的优点,制定一种新的空中手势漫游的控制方法。Therefore, the advantages of these two mapping methods should be combined to develop a new control method for air gesture roaming.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种基于距离向量的空中手势漫游控制方法。该控制方法解决了手势坐标的直接映射中,选择距离当前手势坐标较远的项目时用户需要运动手势到较远的距离和选择坐标相近的项目时不够精确的问题;该控制方法还解决了手势的速度映射中,想要选择的项目所在的位置已经超出了当前现实中用户的手势能够到达的位置。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a distance vector-based air gesture roaming control method. This control method solves the problem that in the direct mapping of gesture coordinates, when selecting an item that is far from the current gesture coordinates, the user needs to move the gesture to a far distance and is not accurate enough when selecting an item with similar coordinates; In the speed map of , the position of the item you want to select has exceeded the position that the user's gesture can reach in the current reality.
本发明的目的通过下述技术方案实现:一种基于距离向量的空中手势漫游控制方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: a distance vector-based aerial gesture roaming control method, comprising the following steps:
步骤一、获取和分析处理视频图像序列;
步骤二、检测五指张开手势和握拳手势,框定检测到的人手区域为感兴趣区域,并记录下用户开始控制的初始位置,以初始化控制区域;
步骤三、在感兴趣区域内对图像进行肤色分割算法操作,获取感兴趣区域内的肤色信息;
步骤四、在感兴趣区域内对相邻两帧的图像进行差分操作,得到感兴趣区域内人手的运动信息;Step 4, performing a differential operation on the images of two adjacent frames in the region of interest to obtain the motion information of the human hand in the region of interest;
步骤五、由所述步骤三和步骤四得到的人手肤色信息和运动信息计算得到每一帧图像中人手的位置坐标信息;Step 5, calculating the position coordinate information of the hands in each frame of images by the skin color information and motion information of the hands obtained in the
步骤六、确定界面中的手势运动方向和运动速率;Step 6, determine the gesture movement direction and movement speed in the interface;
步骤七、界面中的手势按照步骤六中确定的方向和速率做出相应的响应,使手势漫游。Step 7. The gestures in the interface make corresponding responses according to the direction and speed determined in step 6, so that the gestures roam.
所述步骤二包括以下步骤:Described step two comprises the following steps:
步骤A、利用Adaboost算法训练得到的固定手势检测分类器检测五指张开手势和握拳手势;五指张开手势和握拳手势的分类器分别由正样本集和负样本集训练得到,所述样本集中包含了在不同背景、不同光照条件、不同人的手势样本图片,所述负样本集同样包含了在不同背景、不同光照条件下的图像,但其中不包含手势;Step A, using the fixed gesture detection classifier trained by the Adaboost algorithm to detect five-finger open gestures and fist gestures; the classifiers for five-finger open gestures and fist gestures are respectively trained by a positive sample set and a negative sample set, and the sample set contains Gesture sample pictures of different backgrounds, different lighting conditions, and different people are collected, and the negative sample set also includes images under different backgrounds and different lighting conditions, but gestures are not included;
步骤B、使用Haar-like特征和积分图像对样本图像的特征进行提取计算,每一轮训练得到的弱分类器具有不同的权值,识别率高的弱分类器具有更大的权重,识别率低的弱分类器权重则低,多轮训练后把得到的若干个弱分类器联合起来得到一个识别成功率较高的强分类器,将训练得到的多个强分类器组成一个级联结构的分类器,具有很高的检测成功率;Step B. Use Haar-like features and integral images to extract and calculate the features of the sample image. The weak classifiers obtained in each round of training have different weights. The weak classifiers with high recognition rates have greater weights, and the recognition rate The weight of a low weak classifier is low. After multiple rounds of training, several weak classifiers obtained are combined to obtain a strong classifier with a high recognition success rate, and multiple strong classifiers obtained through training are combined to form a cascade structure. A classifier with a high detection success rate;
步骤C、使用训练得到的分类器对图像中五指张开和握拳两种手势进行检测,在成功找到人手区域后,记录下人手区域所在的矩形位置信息,其左上角为(x0,y0),宽为w,高为h;设定该矩形区域为感兴趣区域,同时得到人手的中心位置点(xc,yc),其中xc=x0+0.5*w,yc=y0+0.5*h,记录人手的中心位置点,作为用户开始控制的初始位置,以确定初始位置点,并初始化圆环控制区域。Step C. Use the trained classifier to detect the five-finger open and fist gestures in the image. After successfully finding the human hand area, record the rectangular position information of the human hand area. The upper left corner is (x 0 , y 0 ), the width is w, and the height is h; set this rectangular area as the region of interest, and at the same time get the center point (x c , y c ) of the human hand, where x c =x 0 +0.5*w, y c =y 0 +0.5*h, record the center position of the human hand as the initial position where the user starts to control, so as to determine the initial position and initialize the ring control area.
所述步骤三包括以下步骤:Described step three comprises the following steps:
步骤Ⅰ、根据肤色样本分析,人手肤色在YCrCb颜色空间具有很好的聚类性,除去亮度Y的影响,肤色的Cr和Cb通道都集中在一小块椭圆区域内,YCrCb颜色空间与RGB颜色空间的转换关系如下:Step Ⅰ. According to the analysis of skin color samples, human skin color has good clustering in YCrCb color space. After removing the influence of brightness Y, the Cr and Cb channels of skin color are concentrated in a small elliptical area. YCrCb color space and RGB color The space conversion relationship is as follows:
Y=0.257R+0.504G+0.098B+16,Y=0.257R+0.504G+0.098B+16,
Cb=-0.148R-0.219G+0.439B+128,Cb=-0.148R-0.219G+0.439B+128,
Cr=0.439R-0.368G-0.071B+128,Cr=0.439R-0.368G-0.071B+128,
根据人手肤色样本集分析,人手肤色Cr、Cb通道的阈值:According to the analysis of the hand skin color sample set, the thresholds of the Cr and Cb channels of the hand skin color are:
Thres(Cb,Cr)={Cb,Cr│95<Cb<139,122<Cr<167},Thres(Cb,Cr)={Cb,Cr│95<Cb<139,122<Cr<167},
其中,Thres(Cb,Cr)表示阈值;Among them, Thres (Cb, Cr) represents the threshold;
步骤Ⅱ、把视频序列中得到的RGB图像先转换为YCrCb颜色空间上的图像,再利用阈值Thres(Cb,Cr)对图像进行肤色分割,得到肤色的二值图像,即:Step Ⅱ, first convert the RGB image obtained in the video sequence into an image in the YCrCb color space, and then use the threshold Thres (Cb, Cr) to perform skin color segmentation on the image to obtain a binary image of skin color, namely:
其中,Thres(Cb,Cr)表示阈值。Wherein, Thres(Cb,Cr) represents the threshold value.
所述步骤四中,对在感兴趣区域内对相邻两帧的图像进行差分操作的操作方法为:设It为当前帧图像,It-1为前一帧图像,计算得到两帧图像的差分结果Idiff=It-It-1,并对差分结果作二值化处理,即:In described step 4, the operation method of carrying out difference operation to the image of two adjacent frames in the region of interest is: let I t be the current frame image, I t-1 be the previous frame image, calculate and obtain two frame images The differential result I diff =I t -I t-1 , and binarize the differential result, namely:
并对差分结果进行图像形态学的处理。And image morphology processing is performed on the difference result.
所述步骤五中,把由步骤三和步骤四中得到的人手肤色信息和运动信息相结合,即取两者并集,在感兴趣区域内得到一个去除背景噪声干扰,描述人手信息的二值图像I,由零阶矩和二一阶矩计算图像I中的目标的质心零阶矩即为图像像素值的总和:In the step five, combine the skin color information and motion information of the hands obtained in steps three and four, that is, take the union of the two, and obtain a binary value that removes background noise interference and describes the hand information in the region of interest. Image I, calculate the center of mass of the target in image I from the zero-order moment and the second-order moment The zeroth moment is simply the sum of the image pixel values:
一阶矩有两个,分别为:There are two first-order moments, namely:
由此可得:Therefore:
得到当前帧人手的位置信息。Get the position information of the human hand in the current frame.
所述步骤六中,确定界面中的手势运动方向和运动速率的方法为:对人手跟踪所得位置结果进行映射,并由所述步骤五得到的当前帧手势的坐标信息(x,y)和所述步骤二得到的初始中心位置点(xc,yc)的距离大小,根据距离和速率的比例关系,确定界面中手势的移动速率;同时,根据初始位置和当前手势所在位置的向量方向确定界面中手势的移动方向。In the sixth step, the method for determining the direction and speed of the gesture movement in the interface is: map the position result obtained by the tracking of the human hand, and obtain the coordinate information (x, y) of the gesture in the current frame obtained by the step five and the obtained According to the distance between the initial center point (x c , y c ) obtained in the
本发明的工作原理:本发明根据用户进行控制的初始位置,将用户的操作限制在如图1所示的圆环中,在图1中,1指代的点代表传感器捕捉到图像序列中用户开始操作时手势的初始位置坐标,这个在用户完成一次操作中是不会改变的。图1中、4指代的点代表当前用户手势所在的位置。用户手势在图1中2指代的圆形内的运动时视为用户本身手势的抖动等不稳定因素造成的运动,系统不进行响应。当用户手势在图1中3指代的圆形外时,系统不进行响应。用户手势在图1中,3指代的圆形和2指代的圆形构成的圆环内运动时,视为有效操作。当用户手势处于此圆环中时,界面中的手势便开始移动,发生移动的方向为此时手势在圆环中的位置,即图1中4指代的点的坐标和手势初始位置,即图1中1指代的点的坐标构成的向量方向,方向从1指代的点指向4指代的点。移动的速率和当前手势在圆环中的位置,即图1中4指代的点,距初始位置,即图1中1指代的点的距离有关。The working principle of the present invention: according to the initial position of the user's control, the present invention limits the user's operation to the circle shown in Figure 1. In Figure 1, the point indicated by 1 represents the user in the image sequence captured by the sensor. The initial position coordinates of the gesture at the beginning of the operation, which will not change when the user completes an operation. The point indicated by 4 in FIG. 1 represents the position where the current user gesture is located. When the user's gesture moves within the circle indicated by 2 in Figure 1, it is regarded as a movement caused by unstable factors such as shaking of the user's own gesture, and the system does not respond. When the user's gesture is outside the circle indicated by 3 in Figure 1, the system does not respond. In Figure 1, when the user gesture moves within the circle formed by the circle indicated by 3 and the circle indicated by 2, it is considered as a valid operation. When the user's gesture is in this circle, the gesture in the interface starts to move, and the direction of movement is the position of the gesture in the circle at this time, that is, the coordinates of the point indicated by 4 in Figure 1 and the initial position of the gesture, that is The vector direction formed by the coordinates of the point indicated by 1 in Figure 1 is directed from the point indicated by 1 to the point indicated by 4. The speed of movement is related to the position of the current gesture in the circle, that is, the point indicated by 4 in Figure 1, and the distance from the initial position, that is, the point indicated by 1 in Figure 1.
当前手势位置和初始位置之间的距离与界面中手势的运动速率的对应关系如图2所示,在图2中,横坐标代表当前手势在圆环中的位置距初始位置的距离,R1为图1中2指代的圆形的半径,R2为图1中3指代的圆形半径。纵坐标是比例。规定一个速率V0,代表单位时间内界面中手势移动的像素个数。纵坐标表示界面中手势的运动速率和V0的比值,最大为Pmax,Pmax>1,最小值为Pmin,Pmin≥0。当距离小于R1,即手势在图1中2指代的圆形内时,比例为0,即移动速率为0,表现出的效果为系统不响应。当距离大于R2时,即手势在图1中3指代的圆形外时,比例也为0,即移动速率为0,表现出的效果为系统不响应。当距离大于R1小于R2时,即手势在图1中3指代的圆形和2指代的圆形构成的圆环中,假设此时的距离为RX,则比例为:这样,用户手势只要保持在圆环中的位置,界面中的手势就会按照一定的方向和速率持续移动,用户改变手势在圆环中的位置就可以改变界面中手势的运动方向和运动速率。The corresponding relationship between the distance between the current gesture position and the initial position and the movement rate of the gesture in the interface is shown in Figure 2. In Figure 2, the abscissa represents the distance between the position of the current gesture in the circle and the initial position, and R1 is The radius of the circle indicated by 2 in Fig. 1, R2 is the radius of the circle indicated by 3 in Fig. 1 . The ordinate is the scale. A rate V0 is specified, which represents the number of pixels moved by gestures in the interface per unit time. The ordinate indicates the ratio of the motion rate of the gesture in the interface to V0, the maximum is Pmax, Pmax>1, and the minimum is Pmin, Pmin≥0. When the distance is less than R1, that is, when the gesture is within the circle indicated by 2 in Figure 1, the ratio is 0, that is, the movement rate is 0, and the effect shown is that the system does not respond. When the distance is greater than R2, that is, when the gesture is outside the circle indicated by 3 in Figure 1, the ratio is also 0, that is, the moving rate is 0, and the effect shown is that the system does not respond. When the distance is greater than R1 and less than R2, that is, the gesture is in the circle formed by the circle indicated by 3 and the circle indicated by 2 in Figure 1, assuming that the distance at this time is RX, the ratio is: In this way, as long as the user's gesture remains in the ring, the gesture in the interface will continue to move in a certain direction and speed, and the user can change the direction and speed of the gesture in the interface by changing the position of the gesture in the ring.
通过这种手势漫游控制方法,用距离来调节速率,用向量来控制方向,当希望选择的项目位置距当前手势位置较远时,用户可以将手势移动到圆环中距初始位置较远的位置上实现快速低精度的移动,当选择距离当前手势较近的项目时,用户可以讲手势移动到圆环中距离初始位置较近的位置上实现慢速高精度移动。这样就解决了坐标的直接映射过程中出现的问题。在本方法中,界面中的手势是不停移动的,用户操作改变的是界面中手势移动的方向和速率。因此可以在一个小范围内实现界面中任意距离的漫游和控制。避免了速度映射中会出现的问题。Through this gesture roaming control method, the distance is used to adjust the speed, and the vector is used to control the direction. When the position of the desired item is far from the current gesture position, the user can move the gesture to a position farther from the initial position in the ring When selecting an item that is closer to the current gesture, the user can move the gesture to a position in the ring that is closer to the initial position to achieve slow and high-precision movement. This solves the problems that arise during the direct mapping of coordinates. In this method, the gestures in the interface are constantly moving, and the user operation changes the direction and speed of the gestures in the interface. Therefore, roaming and control of any distance in the interface can be realized within a small range. Avoids problems that can occur in velocity mapping.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
1、解决了坐标直接映射过程中选择距离当前手势位置较远的项目时需要用户相应地移动手势较远,而选择坐标相近的项目时不够精确的问题。使用户可以通过改变当前手势和初始位置的距离,实现当前手势和初始位置的距离远的快速手势漫游和当前手势和初始位置的距离近的精确手势漫游。1. Solved the problem that when selecting an item far from the current gesture position in the process of coordinate direct mapping, the user needs to move the gesture correspondingly far away, and the problem of not being accurate enough when selecting an item with similar coordinates. By changing the distance between the current gesture and the initial position, the user can realize rapid gesture roaming with a long distance between the current gesture and the initial position and precise gesture roaming with a short distance between the current gesture and the initial position.
2、解决了速度映射过程中用户希望选择的项目超出了用户当前手势可达范围的问题。让界面中的手势自动运动,用户控制其运动方向和速率,实现小范围且全界面可达的操作2. Solved the problem that the item that the user wants to select during the speed mapping process is beyond the reachable range of the user's current gesture. Let the gestures in the interface move automatically, and the user controls the direction and speed of its movement to achieve small-scale and fully accessible operations on the interface
3、提供了一种基于距离向量的空中手势漫游控制方法中,与当前手势位置和初始位置距离成比例的速率控制方式。3. Provide a speed control mode proportional to the distance between the current gesture position and the initial position in the air gesture roaming control method based on the distance vector.
附图说明Description of drawings
图1是本发明所述的基于距离向量的空中手势漫游控制方法的示意图;图中,1为初始位置点,2为系统不进行响应的圆形范围,3指代的圆形范围和2指代的圆形范围构成的圆环范围为系统响应范围,4为当前手势位置。Fig. 1 is the schematic diagram of the air gesture roaming control method based on the distance vector according to the present invention; among the figure, 1 is the initial position point, 2 is the circular range that the system does not respond to, 3 refers to the circular range and 2 refers to The ring range formed by the circular range of the generation is the system response range, and 4 is the current gesture position.
图2是本发明所述的基于距离向量的空中手势漫游控制方法中,当前手势位置和初始位置之间的距离与界面中手势的运动速率的对应关系图;横坐标是当前手势位置和初始位置之间的距离,纵坐标是界面中手势的运动速率和系统规定速率的比例值。Fig. 2 is in the air gesture roaming control method based on the distance vector according to the present invention, the distance between the current gesture position and the initial position and the corresponding relationship diagram of the motion rate of the gesture in the interface; the abscissa is the current gesture position and the initial position The distance between , and the ordinate is the proportional value between the motion rate of the gesture in the interface and the system-specified rate.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
如图1所示,1为初始位置点,2为系统不进行响应的圆形范围,3指代的圆形范围和2指代的圆形范围构成的圆环范围为系统响应范围,4为当前手势位置,一种基于距离向量的空中手势漫游控制方法,包括以下步骤:As shown in Figure 1, 1 is the initial position point, 2 is the circular range where the system does not respond, the circular range formed by the circular range indicated by 3 and the circular range indicated by 2 is the system response range, and 4 is the system response range. Current gesture position, a kind of air gesture roaming control method based on distance vector, comprises the following steps:
步骤一、通过普通摄像头或深度摄像头等设备作为前端传感器,对传感器捕捉到的图像序列进行处理分析;
步骤二、利用Adaboost算法训练得到的固定手势检测分类器能对五指张开和握拳两种手势进行检测;两种手势的分类器分别是由不同的样本集训练得到,其正样本集中包含了在不同背景、不同光照条件、不同人的手势样本图片,而负样本同样包含了在不同背景、不同光照条件下的图像,但其中不包含手势;使用Haar-like特征和积分图像对样本图像的特征进行提取计算。每一轮训练得到的弱分类器具有不同的权值,识别率高的弱分类器具有更大的权重,识别率低的弱分类器权重则低;多轮训练后把得到的若干个弱分类器联合起来得到一个识别成功率较高的强分类器;将训练得到的多个强分类器组成一个级联结构的分类器,具有很高的检测成功率;使用训练得到的分类器对图像中五指张开和握拳两种手势进行检测,在成功找到人手区域后,记录下人手区域所在的矩形位置信息,其左上角为(x0,y0),宽为w,高为h;设定该矩形区域为感兴趣区域,同时可以得到人手的中心位置点(xc,yc),其中xc=x0+0.5*w,yc=y0+0.5*h;记录下此人手的中心位置点,作为用户开始控制的初始位置,以此可以确定图1中初始位置1的位置,并初始化图1中的整个圆环控制区域;
步骤三、在感兴趣的区域内对图像进行肤色分割算法操作。通过肤色样本分析可知,人手肤色在YCrCb颜色空间具有很好的聚类性,除去亮度Y的影响,肤色的Cr和Cb通道都集中在一小块椭圆区域内。YCrCb颜色空间与RGB颜色空间的转换关系如下:Step 3: Perform skin color segmentation algorithm operation on the image in the region of interest. According to the analysis of skin color samples, human skin color has good clustering in the YCrCb color space. After removing the influence of brightness Y, the Cr and Cb channels of skin color are concentrated in a small elliptical area. The conversion relationship between YCrCb color space and RGB color space is as follows:
Y=0.257R+0.504G+0.098B+16,Y=0.257R+0.504G+0.098B+16,
Cb=-0.148R-0.219G+0.439B+128,Cb=-0.148R-0.219G+0.439B+128,
Cr=0.439R-0.368G-0.071B+128,Cr=0.439R-0.368G-0.071B+128,
由人手肤色样本集分析可知,人手肤色Cr、Cb通道的阈值:According to the analysis of the human skin color sample set, the threshold values of the Cr and Cb channels of the human skin color are:
Thres(Cb,Cr)={Cb,Cr│95<Cb<139,122<Cr<167},Thres(Cb,Cr)={Cb,Cr│95<Cb<139,122<Cr<167},
把视频序列中得到的RGB图像先转换为YCrCb颜色空间上的图像,再利用阈值Thres(Cb,Cr)对图像进行肤色分割,得到肤色的二值图像,即:First convert the RGB image obtained in the video sequence into an image in the YCrCb color space, and then use the threshold Thres (Cb, Cr) to perform skin color segmentation on the image to obtain a binary image of skin color, namely:
其中,Thres(Cb,Cr)表示阈值;Among them, Thres(Cb,Cr) represents the threshold;
步骤四、在感兴趣区域内对相邻两帧的图像进行差分操作。设It为当前帧图像,It-1为前一帧图像,计算得到两帧图像的差分结果Idiff=It-It-1,并对差分结果作二值化处理,即:Step 4: Perform a differential operation on the images of two adjacent frames in the region of interest. Let I t be the current frame image, I t-1 be the previous frame image, calculate the difference result I diff =I t -I t-1 of the two frames of images, and perform binarization processing on the difference result, namely:
为得到更加清晰确实的运动轮廓信息,填补其轮廓内部空洞,可以对差分结果进行图像形态学的处理,主要是膨胀和腐蚀,进一步地去除图像噪声的干扰;In order to obtain clearer and more accurate motion contour information and fill the internal cavity of the contour, image morphology processing can be performed on the difference result, mainly dilation and erosion, to further remove the interference of image noise;
步骤五:把由步骤三和步骤四中得到的人手肤色信息和运动信息相结合,即取两者并集,在感兴趣区域内得到一个去除背景噪声干扰,描述人手信息的二值图像I。由零阶矩和二一阶矩计算图像I中的目标的质心 Step 5: Combine the hand skin color information and motion information obtained in
零阶矩即为图像像素值的总和:The zeroth moment is simply the sum of the image pixel values:
一阶矩有两个,分别为There are two first-order moments, which are
由此可得:Therefore:
最后得到当前帧人手的位置信息(x,y);Finally, the position information (x, y) of the current frame is obtained;
步骤六:根据图1所示的控制方式对人手跟踪所得位置结果进行映射。由步骤五得到的当前帧手势的坐标信息(x,y)和步骤二得到的初始中心位置点(xc,yc)的距离大小,根据图2所示的距离和速率比例关系,确定界面中手势的移动速率。同时,根据初始位置和当前手势所在位置的向量方向确定界面中手势的移动方向;Step 6: According to the control method shown in Figure 1, map the position results obtained by the human hand tracking. From the coordinate information (x, y) of the current frame gesture obtained in step 5 and the distance between the initial center point (x c , y c ) obtained in
步骤七:界面中的手势按照步骤六中映射得到的移动速率和移动方向,做出相应的响应,实现手势漫游。Step 7: The gestures in the interface make corresponding responses according to the moving rate and moving direction mapped in step 6 to realize gesture roaming.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410038474.5A CN103793056A (en) | 2014-01-26 | 2014-01-26 | Mid-air gesture roaming control method based on distance vector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410038474.5A CN103793056A (en) | 2014-01-26 | 2014-01-26 | Mid-air gesture roaming control method based on distance vector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103793056A true CN103793056A (en) | 2014-05-14 |
Family
ID=50668814
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410038474.5A Pending CN103793056A (en) | 2014-01-26 | 2014-01-26 | Mid-air gesture roaming control method based on distance vector |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103793056A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104123570A (en) * | 2014-07-22 | 2014-10-29 | 西安交通大学 | Shared weak classifier combination based hand classifier and training and detection method |
| CN105306914A (en) * | 2014-06-26 | 2016-02-03 | 原相科技(槟城)有限公司 | Color image sensor and method of operation thereof |
| CN105955450A (en) * | 2016-04-15 | 2016-09-21 | 范长英 | Natural interaction system based on computer virtual interface |
| CN109474850A (en) * | 2018-11-29 | 2019-03-15 | 北京字节跳动网络技术有限公司 | Move pixel special video effect adding method, device, terminal device and storage medium |
| CN110069137A (en) * | 2019-04-30 | 2019-07-30 | 徐州重型机械有限公司 | Gestural control method, control device and control system |
| CN111226226A (en) * | 2018-06-29 | 2020-06-02 | 杭州眼云智家科技有限公司 | Motion-based object detection method, object detection device and electronic equipment |
| CN112116598A (en) * | 2020-08-04 | 2020-12-22 | 北京农业信息技术研究中心 | Flower type identification method and system |
| CN112686231A (en) * | 2021-03-15 | 2021-04-20 | 南昌虚拟现实研究院股份有限公司 | Dynamic gesture recognition method and device, readable storage medium and computer equipment |
| CN113138663A (en) * | 2021-03-29 | 2021-07-20 | 北京小米移动软件有限公司 | Device adjustment method, device adjustment apparatus, electronic device, and storage medium |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090284469A1 (en) * | 2008-05-16 | 2009-11-19 | Tatung Company | Video based apparatus and method for controlling the cursor |
| CN101901052A (en) * | 2010-05-24 | 2010-12-01 | 华南理工大学 | The method of target control with mutual reference of both hands |
| CN102662464A (en) * | 2012-03-26 | 2012-09-12 | 华南理工大学 | Gesture control method of gesture roaming control system |
| CN102707802A (en) * | 2012-05-09 | 2012-10-03 | 华南理工大学 | Method for controlling speed of mapping of gesture movement to interface |
| CN102799875A (en) * | 2012-07-25 | 2012-11-28 | 华南理工大学 | Tracing method of arbitrary hand-shaped human hand |
-
2014
- 2014-01-26 CN CN201410038474.5A patent/CN103793056A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090284469A1 (en) * | 2008-05-16 | 2009-11-19 | Tatung Company | Video based apparatus and method for controlling the cursor |
| CN101901052A (en) * | 2010-05-24 | 2010-12-01 | 华南理工大学 | The method of target control with mutual reference of both hands |
| CN102662464A (en) * | 2012-03-26 | 2012-09-12 | 华南理工大学 | Gesture control method of gesture roaming control system |
| CN102707802A (en) * | 2012-05-09 | 2012-10-03 | 华南理工大学 | Method for controlling speed of mapping of gesture movement to interface |
| CN102799875A (en) * | 2012-07-25 | 2012-11-28 | 华南理工大学 | Tracing method of arbitrary hand-shaped human hand |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105306914A (en) * | 2014-06-26 | 2016-02-03 | 原相科技(槟城)有限公司 | Color image sensor and method of operation thereof |
| CN105306914B (en) * | 2014-06-26 | 2018-08-31 | 原相科技股份有限公司 | Color image sensor and method of operating the same |
| CN104123570B (en) * | 2014-07-22 | 2018-06-05 | 西安交通大学 | Human hand grader and training and detection method based on the combination of shared Weak Classifier |
| CN104123570A (en) * | 2014-07-22 | 2014-10-29 | 西安交通大学 | Shared weak classifier combination based hand classifier and training and detection method |
| CN105955450A (en) * | 2016-04-15 | 2016-09-21 | 范长英 | Natural interaction system based on computer virtual interface |
| CN111226226A (en) * | 2018-06-29 | 2020-06-02 | 杭州眼云智家科技有限公司 | Motion-based object detection method, object detection device and electronic equipment |
| CN109474850A (en) * | 2018-11-29 | 2019-03-15 | 北京字节跳动网络技术有限公司 | Move pixel special video effect adding method, device, terminal device and storage medium |
| CN110069137A (en) * | 2019-04-30 | 2019-07-30 | 徐州重型机械有限公司 | Gestural control method, control device and control system |
| CN110069137B (en) * | 2019-04-30 | 2022-07-08 | 徐州重型机械有限公司 | Gesture control method, control device and control system |
| CN112116598A (en) * | 2020-08-04 | 2020-12-22 | 北京农业信息技术研究中心 | Flower type identification method and system |
| CN112686231A (en) * | 2021-03-15 | 2021-04-20 | 南昌虚拟现实研究院股份有限公司 | Dynamic gesture recognition method and device, readable storage medium and computer equipment |
| CN112686231B (en) * | 2021-03-15 | 2021-06-01 | 南昌虚拟现实研究院股份有限公司 | Dynamic gesture recognition method and device, readable storage medium and computer equipment |
| CN113138663A (en) * | 2021-03-29 | 2021-07-20 | 北京小米移动软件有限公司 | Device adjustment method, device adjustment apparatus, electronic device, and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103793056A (en) | Mid-air gesture roaming control method based on distance vector | |
| JP6079832B2 (en) | Human computer interaction system, hand-to-hand pointing point positioning method, and finger gesture determination method | |
| Jin et al. | A mobile application of American sign language translation via image processing algorithms | |
| CN103389799B (en) | A kind of opponent's fingertip motions track carries out the method for following the tracks of | |
| CN105739702B (en) | A multi-pose fingertip tracking method for natural human-computer interaction | |
| CN101901052B (en) | Target control method based on mutual reference of both hands | |
| CN102402289B (en) | Mouse recognition method for gesture based on machine vision | |
| CN102831404B (en) | Gesture detecting method and system | |
| CN103488294B (en) | A kind of Non-contact gesture based on user's interaction habits controls to map method of adjustment | |
| CN103353935A (en) | 3D dynamic gesture identification method for intelligent home system | |
| CN110221699B (en) | An eye movement behavior recognition method for front camera video source | |
| CN103530892B (en) | A kind of both hands tracking based on Kinect sensor and device | |
| CN103971102A (en) | Static gesture recognition method based on finger contour and decision-making trees | |
| CN103150019A (en) | Handwriting input system and method | |
| WO2020211447A1 (en) | Gesture trajectory recognition method, based on hand speed and trajectory distribution, for following robot | |
| CN105912126B (en) | A kind of gesture motion is mapped to the adaptive adjusting gain method at interface | |
| CN104268514A (en) | Gesture detection method based on multi-feature fusion | |
| CN104484645A (en) | Human-computer interaction-oriented '1' gesture-recognition method and system | |
| CN106095104A (en) | Continuous gesture path dividing method based on target model information and system | |
| CN108846356B (en) | Palm tracking and positioning method based on real-time gesture recognition | |
| She et al. | A real-time hand gesture recognition approach based on motion features of feature points | |
| Elakkiya et al. | Intelligent system for human computer interface using hand gesture recognition | |
| CN102073878B (en) | Non-wearable finger pointing gesture visual identification method | |
| Półrola et al. | Real-time hand pose estimation using classifiers | |
| CN107169449A (en) | Chinese sign language interpretation method based on depth transducer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140514 |
|
| WD01 | Invention patent application deemed withdrawn after publication |