CN103442052A - Device and method for remote monitoring farmland crop growth information - Google Patents
Device and method for remote monitoring farmland crop growth information Download PDFInfo
- Publication number
- CN103442052A CN103442052A CN201310371487XA CN201310371487A CN103442052A CN 103442052 A CN103442052 A CN 103442052A CN 201310371487X A CN201310371487X A CN 201310371487XA CN 201310371487 A CN201310371487 A CN 201310371487A CN 103442052 A CN103442052 A CN 103442052A
- Authority
- CN
- China
- Prior art keywords
- data
- monitoring
- module
- crop growth
- growth information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 143
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000012806 monitoring device Methods 0.000 claims abstract description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 11
- 238000005516 engineering process Methods 0.000 claims description 34
- 238000007726 management method Methods 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 20
- 238000013523 data management Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 3
- 238000013211 curve analysis Methods 0.000 claims description 2
- 239000002689 soil Substances 0.000 abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000012272 crop production Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 244000037666 field crops Species 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本发明公开了一种农田作物生长信息远程监测装置,包括:N个作物生长信息监测节点、至少一个智慧农业网关、远程监测服务平台和若干个监测终端。其中作物生长信息监测节点离散地部署在农田中,构成信息无线传感网络;智慧农业网关部署于农田中,作物生长信息监测节点与智慧农业网关双向无线连接;远程监测服务平台部署于监控中心,智慧农业网关与远程监测服务平台双向无线连接,若干个监测终端通过Web浏览器访问监测服务平台。本发明还提供一种农田作物生长信息多路径并行远程接入方法。本发明满足多个农田场景下作物、大气、土壤信息并行、快速、可靠、实时传输,实现了农田信息低成本、连续、实时远程监测。
The invention discloses a remote monitoring device for crop growth information in farmland, comprising: N crop growth information monitoring nodes, at least one intelligent agricultural gateway, a remote monitoring service platform and several monitoring terminals. Among them, the crop growth information monitoring nodes are deployed discretely in the farmland to form a wireless information sensor network; the smart agricultural gateway is deployed in the farmland, and the crop growth information monitoring node is connected to the smart agricultural gateway in two-way wireless connection; the remote monitoring service platform is deployed in the monitoring center, The smart agricultural gateway is connected to the remote monitoring service platform in two-way wireless way, and several monitoring terminals access the monitoring service platform through a web browser. The invention also provides a method for multi-path parallel remote access to farmland crop growth information. The invention satisfies the parallel, fast, reliable and real-time transmission of crop, atmosphere and soil information in multiple farmland scenarios, and realizes low-cost, continuous and real-time remote monitoring of farmland information.
Description
技术领域 technical field
本发明涉及物联网技术,尤其涉及基于物联网技术的农田作物生长信息远程监测,属于农业物联网领域。 The invention relates to the Internet of Things technology, in particular to remote monitoring of farmland crop growth information based on the Internet of Things technology, and belongs to the field of the Agricultural Internet of Things.
背景技术 Background technique
农田作物生长状况、生态环境以及土壤信息的获取与传输是监控中心获取农田信息,精确管理作物生产的关键,对于发展优质、高产、高效、生态、安全的农业生产尤为重要。然而,以“破坏性取样与化学分析”为特征的传统测试手段不仅费时费力,而且时效性差,常导致生产中普遍过量施肥(特别是氮肥)或肥料施用不足(如部分微量元素),造成生产成本上升、环境污染和土地可持续生产能力下降。 The acquisition and transmission of farmland crop growth status, ecological environment and soil information is the key for the monitoring center to obtain farmland information and accurately manage crop production. It is especially important for the development of high-quality, high-yield, efficient, ecological and safe agricultural production. However, the traditional testing method characterized by "destructive sampling and chemical analysis" is not only time-consuming and laborious, but also has poor timeliness, which often leads to excessive fertilization (especially nitrogen fertilizer) or insufficient fertilizer application (such as some trace elements) in production, resulting in production Rising costs, environmental pollution and reduced land sustainable productivity.
目前,基于传感器技术的单点采样方式虽具有精细探测农田信息的能力,但存在监测范围小、监测指标单一、监测时间不连续等缺点,无法为田间作物精确管理提供实时信息;基于传感器技术的有线网络采样方式虽然具备大规模监测能力,但需要在农田铺设大量的线路,尤其在采样点多而分散的情况下,线路铺设成本高,可靠性低;而且农田一般远离监测中心,架设通信线路成本高、维护难度大,使得数据低成本、可靠地远程传输成为瓶颈。 At present, although the single-point sampling method based on sensor technology has the ability to accurately detect farmland information, it has shortcomings such as small monitoring range, single monitoring index, and discontinuous monitoring time, which cannot provide real-time information for accurate management of field crops; Although the wired network sampling method has large-scale monitoring capabilities, it needs to lay a large number of lines in the farmland. Especially in the case of many and scattered sampling points, the cost of laying lines is high and the reliability is low; High cost and difficult maintenance make the low-cost and reliable remote transmission of data a bottleneck.
因此,必须要瞄准现代农业科技前沿,围绕农田信息获取技术发展的瓶颈,大力推进农业信息化、智能化技术,集成先进传感器技术和物联网等高新技术,实现农业生产管理过程中对作物、环境、土壤的实时监测,快速获取作物生长状况、生态环境以及水肥状况,为作物生产全程管理提供丰富的实时数据资源与决策支持,促进作物生产管理向数字化和智慧化方向发展。 Therefore, it is necessary to aim at the frontier of modern agricultural science and technology, focus on the bottleneck of farmland information acquisition technology development, vigorously promote agricultural informatization and intelligent technology, integrate advanced sensor technology and Internet of Things and other high-tech, and realize crops and environment in the process of agricultural production management. , Real-time monitoring of soil, quickly obtain crop growth status, ecological environment, water and fertilizer status, provide rich real-time data resources and decision support for the whole process of crop production management, and promote the development of crop production management in the direction of digitalization and intelligence.
发明内容 Contents of the invention
本发明所要解决的技术问题是针对背景技术的缺陷,提供一种基于物联网技术的农田作物生长信息远程监测装置及其方法。该装置能够在农田开放环境下长期、连续、实时、远程监测作物氮含量、氮积累量、叶面积指数、生物量等生长指标,作物冠层温度、湿度、CO2浓度、光照强度等生态环境信息,以及农田土壤含水率、土壤温度等信息;诊断作物长势状况,精确运筹水肥供给。 The technical problem to be solved by the present invention is to provide a remote monitoring device and method for farmland crop growth information based on the Internet of Things technology in view of the defects of the background technology. The device can monitor crop nitrogen content, nitrogen accumulation, leaf area index, biomass and other growth indicators in a long-term, continuous, real-time, and remote manner in an open farmland environment, as well as ecological environment information such as crop canopy temperature, humidity, CO2 concentration, and light intensity. , as well as farmland soil moisture content, soil temperature and other information; diagnose crop growth status, and accurately plan water and fertilizer supply.
本发明为了解决上述问题采用以下技术方案: The present invention adopts the following technical solutions in order to solve the above problems:
一种基于物联网技术的农田作物生长信息远程监测装置,包括:N个作物生长信息监测节点、至少1个网关装置、远程监测服务平台和若干个监测终端;其中,所述N个作物生长信息监测节点离散地部署在农田中,构成信息无线传感网络;所述网关装置部署于农田中,作物生长信息监测节点以单跳方式或者多跳方式与网关装置双向无线连接;所述远程监测服务平台部署于监控中心,网关装置以以太网模式或者GPRS模式与远程监测服务平台双向无线连接;所述若干个监测终端通过Web浏览器访问监测服务平台,N为大于等于1的自然数。 A remote monitoring device for farmland crop growth information based on Internet of Things technology, comprising: N crop growth information monitoring nodes, at least one gateway device, a remote monitoring service platform, and several monitoring terminals; wherein, the N crop growth information The monitoring nodes are discretely deployed in the farmland to form an information wireless sensor network; the gateway device is deployed in the farmland, and the crop growth information monitoring node is connected to the gateway device bidirectionally wirelessly in a single-hop or multi-hop manner; the remote monitoring service The platform is deployed in the monitoring center, and the gateway device is two-way wirelessly connected to the remote monitoring service platform in Ethernet mode or GPRS mode; the several monitoring terminals access the monitoring service platform through a web browser, and N is a natural number greater than or equal to 1.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述远程监测平台包括服务器、通信模块、数据模块和应用模块;其中,通信模块与数据模块、应用模块依次相连;通信模块、数据模块、应用模块与服务器相连,并运行于服务器环境下。 Further, in the remote monitoring device for farmland crop growth information based on Internet of Things technology of the present invention, the remote monitoring platform includes a server, a communication module, a data module, and an application module; wherein, the communication module is connected to the data module and the application module in sequence; the communication module The modules, data modules and application modules are connected to the server and run in the server environment.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述通信模块包括通信单元和处理单元;其中通信单元通过Socket接口与服务器特定的端点绑定,连接网关装置,远程接收不同农区的网关装置发来的数据;所述处理单元对接收到的数据进行协议解析、异常值判断,并通过ADO.NET接口,将数据传至数据模块。 Further, in the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the communication module includes a communication unit and a processing unit; wherein the communication unit is bound to a server-specific endpoint through a Socket interface, connected to a gateway device, and remotely received Data sent by gateway devices in different agricultural areas; the processing unit performs protocol analysis and abnormal value judgment on the received data, and transmits the data to the data module through the ADO.NET interface.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述数据模块包括监测数据单元、实时监测数据单元、监测类型单元、节点信息单元、用户账户信息单元;其中: Further, in the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the data module includes a monitoring data unit, a real-time monitoring data unit, a monitoring type unit, a node information unit, and a user account information unit; wherein:
监测数据单元用于存放田间无线传感器网络发送至服务器的所有数据; The monitoring data unit is used to store all data sent to the server by the field wireless sensor network;
实时监测数据单元用于存放田间无线传感器网络最近一次采集数据; The real-time monitoring data unit is used to store the latest data collected by the field wireless sensor network;
监测类型单元用于记录作物生长信息监测节点的监测类型以及各种监测类型的数值范围; The monitoring type unit is used to record the monitoring types of crop growth information monitoring nodes and the value ranges of various monitoring types;
节点信息单元用于记录田间作物生长信息监测节点的标识信息、位置信息、部署时间; The node information unit is used to record the identification information, location information, and deployment time of field crop growth information monitoring nodes;
用户账户信息单元用于记录用户登录平台所需的账号和密码信息。 The user account information unit is used to record the account number and password information required by the user to log in to the platform.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述应用模块采用B/S结构的模式设计,包括:作物生长信息监测节点部署单元、实时监控单元、设备管理单元、数据管理单元、后台管理单元;其中: Further, in the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the application module adopts a B/S structure mode design, including: a crop growth information monitoring node deployment unit, a real-time monitoring unit, an equipment management unit, Data management unit, background management unit; where:
作物生长信息监测节点部署单元用来部署田间无线传感网络节点,并以空间地图方式显示; The crop growth information monitoring node deployment unit is used to deploy field wireless sensor network nodes and display them in a spatial map;
实时监控单元用于显示田间无线传感网络采集的各种数据; The real-time monitoring unit is used to display various data collected by the field wireless sensor network;
设备管理单元用于服务器发送控制命令,对田间作物生长信息监测节点进行启动、休眠控制,同时还提供输入接口,对作物生长信息监测节点的信息、采集频率进行设置; The equipment management unit is used for the server to send control commands to start and sleep control the crop growth information monitoring nodes in the field, and also provide input interfaces to set the information and collection frequency of the crop growth information monitoring nodes;
数据管理单元用于提供远程监测平台存储数据的查询、导出和分析; The data management unit is used to provide query, export and analysis of data stored in the remote monitoring platform;
后台管理单元用于设置基础参数,包括基本设置、用户信息管理、设备管理。 The background management unit is used to set basic parameters, including basic settings, user information management, and device management.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述数据管理单元采用GridView控件动态绑定数据源实现数据查询;采用Chart Controls控件动态绑定数据源实现数据的曲线分析。 Further, in the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the data management unit uses the GridView control to dynamically bind the data source to realize data query; uses the Chart Controls control to dynamically bind the data source to realize data curve analysis .
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述网关装置为智慧农业网关,包括协调器模块、远程接入模块、管理控制模块和用于供电的电源模块;其中: Further, the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the gateway device is a smart agricultural gateway, including a coordinator module, a remote access module, a management control module and a power supply module for power supply; wherein :
协调器模块,用于采用Zigbee技术建立并管理作物生长信息无线采集网络;包括第一微处理器、数据存储器、无线ZigBee模块和第一吸盘天线; The coordinator module is used to adopt Zigbee technology to establish and manage the wireless collection network of crop growth information; including a first microprocessor, a data memory, a wireless ZigBee module and a first sucker antenna;
远程接入模块,用于管理远程接入,实现农田开放环境下作物生长信息收集与传输;包括第二微处理器、GPRS模块、以太网模块、第二吸盘天线; The remote access module is used to manage remote access and realize the collection and transmission of crop growth information in the open environment of the farmland; including the second microprocessor, GPRS module, Ethernet module, and the second sucker antenna;
其中:所述第一微处理器通过串行SPI接口分别连接无线ZigBee模块和数据存储器;所述第一吸盘天线与无线ZigBee模块相连;所述第一微处理器通过无线ZigBee模块收集作物生长信息监测节点的数据,然后将收集的数据存放至数据存储器,并同时提交给第二微处理器;所述第二微处理器通过UART接口与GPRS模块串接;所述GPRS模块连接第二吸盘天线;所述第二微处理器通过串行SPI接口与以太网模块连接;所述以太网模块连接RJ45接口;第二微处理器将第一微处理器提交的数据通过GPRS模块或以太网模块发送至远程服务器; Wherein: described first microprocessor connects wireless ZigBee module and data memory respectively by serial SPI interface; Described first sucker antenna links to each other with wireless ZigBee module; Described first microprocessor collects crop growth information by wireless ZigBee module The data of the monitoring node is then stored in the data memory and submitted to the second microprocessor at the same time; the second microprocessor is connected in series with the GPRS module through the UART interface; the GPRS module is connected to the second sucker antenna ; The second microprocessor is connected with the Ethernet module through the serial SPI interface; the Ethernet module is connected with the RJ45 interface; the second microprocessor sends the data submitted by the first microprocessor through the GPRS module or the Ethernet module to the remote server;
管理控制模块,用于当环境温度高于预设温度值时,降低环境温度;包括温度传感器、电流驱动模块、继电器、风扇;其中,所述温度传感器与第一微处理器、电流驱动模块、继电器线圈依次连接;所述继电器常开触点连接风扇开关;当农田环境温度超过第一微处理器预设温度值时,由第一微处理器输出相应信号,经电流驱动模块放大后驱动继电器,打开风扇开关,降低环境温度,保证网关可靠工作。 The management control module is used to reduce the ambient temperature when the ambient temperature is higher than the preset temperature value; it includes a temperature sensor, a current drive module, a relay, and a fan; wherein, the temperature sensor is connected with the first microprocessor, the current drive module, The relay coils are connected sequentially; the normally open contact of the relay is connected to the fan switch; when the ambient temperature of the farmland exceeds the preset temperature value of the first microprocessor, the first microprocessor outputs a corresponding signal, which is amplified by the current drive module to drive the relay , turn on the fan switch, reduce the ambient temperature, and ensure the reliable operation of the gateway.
进一步的,本发明的基于物联网技术的农田作物生长信息远程监测装置,所述作物生长信息监测节点为多光谱作物生长传感器。 Further, in the remote monitoring device for farmland crop growth information based on the Internet of Things technology of the present invention, the crop growth information monitoring node is a multi-spectral crop growth sensor.
本发明还提出一种基于物联网技术的农田作物生长信息多路径并行远程接入方法,采用如下步骤: The present invention also proposes a multi-path parallel remote access method for farmland crop growth information based on Internet of Things technology, which adopts the following steps:
步骤1),将作物生长信息监测节点以单跳或多跳方式自组织采集网络,并在网关装置的控制下上传采集数据; Step 1), the crop growth information monitoring node self-organizes the collection network in a single-hop or multi-hop manner, and uploads the collected data under the control of the gateway device;
步骤2),远程监测平台实例化Socket类并绑定服务器端口,开启异步线程循环监听该端口; Step 2), the remote monitoring platform instantiates the Socket class and binds the server port, and starts an asynchronous thread to monitor the port in a loop;
步骤3),当远程监测平台接收到网关装置发送数据请求后,与网关装置建立连接,并创建新Socket实例负责接收网关装置传回的数据,或者向网关装置发送操作命令; Step 3), when the remote monitoring platform receives the data request sent by the gateway device, it establishes a connection with the gateway device, and creates a new Socket instance to receive the data returned by the gateway device, or send an operation command to the gateway device;
步骤4),与步骤3)同时,远程监测平台开启新线程继续监听其他网关装置的连接请求;当有其他网关装置发送数据请求时,远程监测平台以多路径并行模式工作,在新线程上建立连接,开始接收数据; Step 4), at the same time as step 3), the remote monitoring platform starts a new thread and continues to monitor the connection requests of other gateway devices; when other gateway devices send data requests, the remote monitoring platform works in multi-path parallel mode and establishes a new thread on the new thread. Connect and start receiving data;
步骤5),并行工作的各条路径数据接收完成后,存储于数据库,断开相应线程上的连接,释放关联资源; Step 5), after receiving the data of each path of parallel work, store it in the database, disconnect the connection on the corresponding thread, and release the associated resources;
步骤6),重复步骤3)、步骤4)、步骤5),实时远程监测。 Step 6), repeat step 3), step 4), step 5), real-time remote monitoring.
本发明采用以上技术方案,与现有技术相比的有益效果是: The present invention adopts the above technical scheme, and compared with the prior art, the beneficial effects are:
1、本发明的一种基于物联网技术的农田作物生长信息远程监测系统,以无线传感器网络形式多点、协同采集作物生长信息、生态环境信息、土壤信息,以无线通信方式远程传输至监测平台,监测终端可以通过Web浏览器实时访问农田作物、大气、土壤信息,下载所需数据,并能对智慧农业网关进行远程控制,配置分布在田间的作物生长信息监测节点。实现了农田信息低成本、高可靠、实时远程监测。 1. A remote monitoring system for farmland crop growth information based on the Internet of Things technology of the present invention uses multiple points in the form of a wireless sensor network to collaboratively collect crop growth information, ecological environment information, and soil information, and remotely transmits it to the monitoring platform by means of wireless communication , the monitoring terminal can access farmland crops, atmosphere, and soil information in real time through a web browser, download the required data, and remotely control the smart agricultural gateway to configure crop growth information monitoring nodes distributed in the field. Low cost, high reliability, and real-time remote monitoring of farmland information are realized.
2、本发明的一种基于物联网技术的农田作物生长信息多路径并行远程接入方法,克服了监测平台远程等待连接 “假死”现象以及不能同时连接、处理、接收多个智慧农业网关的问题。 2. A multi-path parallel remote access method for farmland crop growth information based on the Internet of Things technology of the present invention overcomes the "fake death" phenomenon of remote waiting for connection on the monitoring platform and the problem that multiple smart agricultural gateways cannot be connected, processed, and received at the same time .
附图说明 Description of drawings
图1是基于物联网技术的农田作物生长信息远程监测装置结构示意图。 Figure 1 is a schematic diagram of the structure of a remote monitoring device for crop growth information based on the Internet of Things technology.
图2是远程监测平台多路径并行接入流程图。 Fig. 2 is a flow chart of multi-path parallel access of the remote monitoring platform.
图3为本发明一种用于大田作物生长信息监测的无线传感网络网关结构示意图。 Fig. 3 is a structural schematic diagram of a wireless sensor network gateway for monitoring field crop growth information according to the present invention.
图4为本发明一种用于大田作物生长信息监测的无线传感网络网关传输策略流程图。 Fig. 4 is a flowchart of a wireless sensor network gateway transmission strategy for field crop growth information monitoring according to the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明的技术方案做进一步的详细说明: Below in conjunction with accompanying drawing, technical scheme of the present invention is described in further detail:
如图1所示,一种基于物联网技术的农田作物生长信息远程监测装置,包括:N个作物生长信息监测节点(N≧1)、至少1个智慧农业网关、远程监测服务平台和若干个监测终端。N个作物生长信息监测节点离散地部署在农田中,构成信息无线传感网络。智慧农业网关部署于农田中,作物生长信息监测节点以单跳方式或者多跳方式与智慧农业网关Zigbee780MHz频段双向无线连接。智慧农业网关以以太网模式或者GPRS模式与远程监测服务平台双向无线连接。 As shown in Figure 1, a remote monitoring device for farmland crop growth information based on Internet of Things technology includes: N crop growth information monitoring nodes (N≧1), at least one smart agricultural gateway, remote monitoring service platform and several Monitoring terminal. N crop growth information monitoring nodes are deployed discretely in the farmland to form an information wireless sensor network. The smart agricultural gateway is deployed in the farmland, and the crop growth information monitoring node is connected to the smart agricultural gateway Zigbee 780MHz frequency band two-way wirelessly in a single-hop or multi-hop manner. The intelligent agricultural gateway is connected wirelessly with the remote monitoring service platform in Ethernet mode or GPRS mode.
远程监测平台包括服务器、通信模块、数据模块和应用模块。通信模块与数据模块、应用模块依次相连;通信模块、数据模块、应用模块与服务器相连,并运行于服务器环境下。 The remote monitoring platform includes server, communication module, data module and application module. The communication module is connected to the data module and the application module in turn; the communication module, the data module and the application module are connected to the server and run in the server environment.
通信模块包括通信单元和处理单元,通信单元通过Socket接口与服务器特定的端点绑定,连接智慧农业网关,远程接收不同农区智慧农业网关发来的数据;处理单元对接收到的数据进行协议解析、异常值判断,并通过ADO.NET接口,将数据传至数据模块。 The communication module includes a communication unit and a processing unit. The communication unit is bound to a server-specific endpoint through the Socket interface, connected to the smart agricultural gateway, and remotely receives data sent by the smart agricultural gateway in different agricultural areas; the processing unit performs protocol analysis on the received data , Abnormal value judgment, and through the ADO.NET interface, the data is transmitted to the data module.
数据模块包括监测数据单元、实时监测数据单元、监测类型单元、节点信息单元、用户账户信息单元等,监测数据单元用于存放田间无线传感器网络发送至服务器的所有数据;实时监测数据单元用于存放无线田间无线传感器网络最近一次采集数据;监测类型单元用于记录作物生长信息监测节点的监测类型以及各种监测类型的数值范围;节点信息单元用于记录田间作物生长信息监测节点的标识信息(MAC地址)、位置信息、部署时间等;用户账户信息单元用于记录用户登录平台所需的账号和密码信息。 The data module includes monitoring data unit, real-time monitoring data unit, monitoring type unit, node information unit, user account information unit, etc. The monitoring data unit is used to store all the data sent to the server by the field wireless sensor network; the real-time monitoring data unit is used to store The latest data collected by the wireless field wireless sensor network; the monitoring type unit is used to record the monitoring type of the crop growth information monitoring node and the value range of various monitoring types; the node information unit is used to record the identification information of the field crop growth information monitoring node (MAC Address), location information, deployment time, etc.; the user account information unit is used to record the account and password information required by the user to log in to the platform.
应用模块采用B/S结构的模式设计,包括:作物生长信息监测节点部署单元、实时监控单元、设备管理单元、数据管理单元、后台管理单元,作物生长信息监测节点部署单元用来部署田间无线传感网络节点,并以空间地图方式显示;实时监控单元用于显示田间无线传感网络采集的各种数据;设备管理单元用于服务器发送控制命令,对田间作物生长信息监测节点进行启动、休眠控制,同时还提供输入接口,对采集终端的信息、采集频率等进行设置;数据管理单元用于提供远程监测平台存储数据的查询、导出和分析;后台管理单元用于设置一些基础参数,包括基本设置、用户信息管理、设备管理等。多个监测终端通过Web浏览器实时访问远程监测平台。 The application module adopts the mode design of B/S structure, including: crop growth information monitoring node deployment unit, real-time monitoring unit, equipment management unit, data management unit, background management unit, crop growth information monitoring node deployment unit is used to deploy field wireless transmission The sensor network nodes are displayed in the form of a spatial map; the real-time monitoring unit is used to display various data collected by the wireless sensor network in the field; the equipment management unit is used for the server to send control commands to start and sleep control the field crop growth information monitoring nodes At the same time, it also provides an input interface to set the information and collection frequency of the collection terminal; the data management unit is used to provide query, export and analysis of the data stored in the remote monitoring platform; the background management unit is used to set some basic parameters, including basic settings , user information management, device management, etc. Multiple monitoring terminals access the remote monitoring platform in real time through a web browser.
本申请中所采用的作物生长信息监测节点是在申请人申请的“ 一种田间作物生长信息无损快速检测装置及检测方法(公开号:CN102768186A)和“一种作物-大气-土壤信息无线采集终端及采集方法”(公开号:CN103035112A)中公开的一种多光谱作物生长传感器,该传感器包括上行光光谱传感器、下行光光谱传感器、固定支架、活动支撑杆、四芯屏蔽传输导线。通过检测作物生长指标敏感波段处的太阳光谱辐射信息和作物冠层反射光谱信息,耦合作物生长指标光谱监测模型,其主要按一定时序协同采集作物生理信息,并通过Zigbee780MHz频段自组织无线传感器网络,实现了作物叶层氮含量、叶层氮积累量、叶面积指数和叶干重等生长信息实时、无损、在线获取。 The crop growth information monitoring node used in this application is "a non-destructive and rapid detection device and detection method for field crop growth information (public number: CN102768186A)" and "a wireless collection terminal for crop-atmosphere-soil information" applied by the applicant. A multi-spectral crop growth sensor disclosed in "(publication number: CN103035112A), the sensor includes an uplink optical spectrum sensor, a downlink optical spectrum sensor, a fixed bracket, a movable support rod, and a four-core shielded transmission wire. By detecting the crop The solar spectral radiation information in the sensitive band of the growth index and the reflectance spectrum information of the crop canopy are coupled with the crop growth index spectral monitoring model, which mainly collects the physiological information of the crop in a certain time sequence, and through the self-organized wireless sensor network in the Zigbee780MHz frequency band, the crop canopy is realized. Growth information such as leaf nitrogen content, leaf nitrogen accumulation, leaf area index, and leaf dry weight can be obtained in real time, non-destructively, and online.
参照图2,远程监测平台实例化Socket类并绑定指定的端口,开启异步线程循环监听此端口,主线程可以继续执行自己的操作而不需要一直等待智慧农业网关的连接请求;当智慧农业网关需要发送数据时,向监测平台发送连接请求,监测平台收到连接请求后同智慧农业网关建立连接,创建一个新的Socket实例负责接收数据,同时,远程监测平台开启新线程继续监听其他智慧农业网关的连接请求;当有其他智慧农业网关发送数据请求时,远程监测平台以多路径并行模式工作,在新线程上建立连接,开始接收数据。智慧农业网关连接成功后开始向监测平台发送数据,监测平台接收数据并做相应处理操作,同时监测平台可以向智慧农业网关发送数据进行通信,在未断开此连接之前,监测平台和智慧农业网关可以进行多次接收与发送操作相互通信;相关操作处理完成,监测平台断开连接,释放关联的资源。 Referring to Figure 2, the remote monitoring platform instantiates the Socket class and binds the specified port, and starts an asynchronous thread to monitor this port in a loop. The main thread can continue to perform its own operations without waiting for the connection request of the smart agricultural gateway; when the smart agricultural gateway When data needs to be sent, a connection request is sent to the monitoring platform. After receiving the connection request, the monitoring platform establishes a connection with the smart agricultural gateway and creates a new Socket instance to receive data. At the same time, the remote monitoring platform opens a new thread to continue monitoring other smart agricultural gateways connection request; when other smart agricultural gateways send data requests, the remote monitoring platform works in multi-path parallel mode, establishes a connection on a new thread, and starts receiving data. After the smart agricultural gateway is successfully connected, it starts to send data to the monitoring platform. The monitoring platform receives the data and performs corresponding processing operations. At the same time, the monitoring platform can send data to the smart agricultural gateway for communication. Before the connection is disconnected, the monitoring platform and the smart agricultural gateway Multiple receiving and sending operations can be performed to communicate with each other; after the related operations are processed, the monitoring platform is disconnected and the associated resources are released.
本发明还提供一种基于物联网技术的农田作物生长信息多路径并行远程接入方法,采用如下步骤: The present invention also provides a multi-path parallel remote access method for farmland crop growth information based on Internet of Things technology, which adopts the following steps:
步骤1),将作物生长信息监测节点以单跳或多跳方式自组织采集网络,并在智慧农业网关的控制下上传采集数据; Step 1), the crop growth information monitoring node self-organizes the collection network in a single-hop or multi-hop manner, and uploads the collected data under the control of the smart agriculture gateway;
步骤2),远程监测平台实例化Socket类并绑定服务器端口,开启异步线程循环监听该端口; Step 2), the remote monitoring platform instantiates the Socket class and binds the server port, and starts an asynchronous thread to monitor the port in a loop;
步骤3),当远程监测平台接收到智慧农业网关发送数据请求后,与智慧农业网关建立连接,并创建新Socket实例负责接收智慧农业网关传回的数据,也可以向智慧农业网关发送操作命令; Step 3), when the remote monitoring platform receives the data request sent by the smart agricultural gateway, it establishes a connection with the smart agricultural gateway, and creates a new Socket instance to receive the data returned by the smart agricultural gateway, and can also send operation commands to the smart agricultural gateway;
步骤4),与步骤3)同时,远程监测平台开启新线程继续监听其他智慧农业网关的连接请求;当有其他智慧农业网关发送数据请求时,远程监测平台以多路径并行模式工作,在新线程上建立连接,开始接收数据。 Step 4), at the same time as step 3), the remote monitoring platform opens a new thread to continue to monitor the connection requests of other smart agricultural gateways; when other smart agricultural gateways send data requests, the remote monitoring platform works in multi-path parallel mode, and in the new thread Establish a connection and start receiving data.
步骤5),并行工作的各条路径数据接收完成后,存储于数据库,断开相应线程上的连接,释放关联资源; Step 5), after receiving the data of each path of parallel work, store it in the database, disconnect the connection on the corresponding thread, and release the associated resources;
步骤6),重复步骤3)、步骤4)、步骤5)。 Step 6), repeat step 3), step 4), step 5).
如图3所示,一种用于大田作物生长信息监测的无线传感网络网关装置,包括协调器模块、远程接入模块、管理控制模块和电源模块;协调器模块连接管理控制模块,协调器模块串接远程接入模块,电源模块分别连接协调器模块、远程接入模块和管理控制模块。其中,协调器模块包括微处理器1、数据存储器、无线ZigBee模块和吸盘天线1;微处理器1通过串行SPI接口分别连接无线ZigBee模块和数据存储器,吸盘天线1与无线ZigBee模块相连,微处理器1用于运行无线ZigBee模块驱动、Zigbee协议、收集多光谱作物生长传感器节点数据,并将收集的数据存放至数据存储器,同时提交给微处理器2;远程接入模块包括微处理器2、GPRS模块、以太网模块和RJ45接口;微处理器2通过UART接口与GPRS模块串接,GPRS模块连接吸盘天线2,微处理器2通过串行SPI接口与以太网模块连接,以太网模块连接RJ45接口,微处理器2用于判断远程接入方式、运行GPRS模块驱动、TCP协议、将MUC1提交的数据发至服务器;微处理器1通过UART接口串接微处理器2;管理控制模块包括温度传感器、微处理器1、电流驱动模块、继电器、风扇;温度传感器与微处理器1、电流驱动模块、继电器线圈依次连接,继电器常开触点连接风扇开关,当农田环境温度过高,超过微处理器1预设温度值,微处理器1输出相应信号,经电流驱动模块放大后驱动继电器,打开风扇开关,降低环境温度,保证网关可靠工作。 As shown in Figure 3, a wireless sensor network gateway device for field crop growth information monitoring includes a coordinator module, a remote access module, a management control module and a power supply module; the coordinator module is connected to the management control module, and the coordinator The modules are connected in series with the remote access module, and the power supply module is respectively connected with the coordinator module, the remote access module and the management control module. Wherein, the coordinator module includes microprocessor 1, data memory, wireless ZigBee module and sucker antenna 1; Processor 1 is used to run the wireless ZigBee module driver, Zigbee protocol, collect multi-spectral crop growth sensor node data, store the collected data in the data memory, and submit it to the microprocessor 2 at the same time; the remote access module includes the microprocessor 2 , GPRS module, Ethernet module and RJ45 interface; microprocessor 2 is connected in series with GPRS module through UART interface, GPRS module is connected with sucker antenna 2, microprocessor 2 is connected with Ethernet module through serial SPI interface, and Ethernet module is connected RJ45 interface, microprocessor 2 is used to judge the remote access mode, run GPRS module driver, TCP protocol, and send the data submitted by MUC1 to the server; microprocessor 1 is serially connected to microprocessor 2 through UART interface; management control module includes Temperature sensor, microprocessor 1, current drive module, relay, and fan; the temperature sensor is connected to microprocessor 1, current drive module, and relay coil in sequence, and the normally open contact of the relay is connected to the fan switch. When the ambient temperature of the farmland is too high and exceeds The microprocessor 1 presets the temperature value, and the microprocessor 1 outputs a corresponding signal, which is amplified by the current drive module to drive the relay, turn on the fan switch, reduce the ambient temperature, and ensure the reliable operation of the gateway.
参考图4,一种用于大田作物生长信息监测的无线传感网络网关装置传输方法,采用如下步骤: Referring to Fig. 4, a transmission method of a wireless sensor network gateway device for field crop growth information monitoring, the following steps are adopted:
(1)网关启动,进行远程接入方式判断,确定数据上传方式。若确认为GPRS连接,网关配置GPRS参数;若确认为以太网连接,网关配置以太网参数; (1) The gateway starts, judges the remote access mode, and determines the data upload mode. If it is confirmed as a GPRS connection, the gateway configures GPRS parameters; if it is confirmed as an Ethernet connection, the gateway configures Ethernet parameters;
(2) 建立ZigBee网络、传输网络信标; (2) Establish a ZigBee network and transmit network beacons;
(3)网关启动作物生长信息无线传感器网络路由算法,准备接收多光谱作物生长传感器节点数据; (3) The gateway starts the crop growth information wireless sensor network routing algorithm, ready to receive multi-spectral crop growth sensor node data;
(4)监听多光谱作物生长传感器节点,判断是否收集到节点数据,如果收集到节点数据,对数据异常进行判断,如果没有收集到数据,继续监听多光谱作物生长传感器节点; (4) Monitor the multi-spectral crop growth sensor node and judge whether the node data is collected. If the node data is collected, judge the data abnormality. If no data is collected, continue to monitor the multi-spectral crop growth sensor node;
(5)若数据正常,则存储于数据存储器中,并通过GPRS或者以太网模式上传数据至远程服务器。 (5) If the data is normal, store it in the data memory, and upload the data to the remote server through GPRS or Ethernet mode.
参考图4,一种用于大田作物生长信息监测的无线传感网络网关装置传输方法,其路由算法采用功率动态管理机制降低多光谱作物生长传感器节点功耗,提高作物生长信息无线采集网络生存周期,包括如下步骤: Referring to Figure 4, a wireless sensor network gateway device transmission method for field crop growth information monitoring, its routing algorithm uses a power dynamic management mechanism to reduce the power consumption of multi-spectral crop growth sensor nodes, and improve the wireless collection network life cycle of crop growth information , including the following steps:
(1)作物生长信息无线传感器网络中各个多光谱作物生长传感器节点以单跳形成连续发送N帧(N≦4)采集数据至网关; (1) Each multi-spectral crop growth sensor node in the crop growth information wireless sensor network continuously sends N frames (N≦4) to collect data to the gateway in a single hop;
(2)网关监听各个多光谱作生长传感器节点信号强度,依据MAX-MIN原则(即寻求信号强度极大值的原则),筛选出1个工作节点,其余节点进入深度休眠状态; (2) The gateway monitors the signal strength of each multi-spectral growth sensor node, and selects one working node according to the MAX-MIN principle (that is, the principle of seeking the maximum value of signal strength), and the rest of the nodes enter a deep sleep state;
(3)工作节点在每个工作周期,定时向网关发送采集数据;网关收集到工作节点的数据,与上一个周期数据进行差值,若差值结果没有超过网关设定的阈值,网关灰色预测深度休眠节点采集数据; (3) The working node regularly sends collected data to the gateway in each working cycle; the gateway collects the data of the working node, and performs a difference with the data of the previous cycle. If the difference result does not exceed the threshold set by the gateway, the gateway gray prediction Deep sleep nodes collect data;
(4)若差值结果超过网关设定的阈值,则网关向作物生长信息无线采集网络休眠节点发出激活命令,各节点采集作物生长信息发送至网关;同时,根据各节点信号强度,用MAX-MIN原则,转换工作节点,其余节点进入深度休眠状态; (4) If the difference result exceeds the threshold set by the gateway, the gateway sends an activation command to the dormant nodes of the crop growth information wireless collection network, and each node collects crop growth information and sends it to the gateway; at the same time, according to the signal strength of each node, use MAX- MIN principle, switch the working node, and the rest of the nodes enter the deep sleep state;
(5)重复步骤(3)-(4),直至遍历作物生长信息无线采集网络中所有多光谱作物生传感器节点。 (5) Repeat steps (3)-(4) until all multispectral crop sensor nodes in the crop growth information wireless collection network are traversed.
参考图4,一种用于大田作物生长信息监测的无线传感网络网关装置传输方法,其网关灰色预测深度休眠节点采集数据,包括如下步骤: Referring to Fig. 4, a wireless sensor network gateway device transmission method for field crop growth information monitoring, the gateway gray prediction deep dormant node collects data, including the following steps:
(1)根据多光谱作物生长传感器节点初始发送的N帧(N≦4)采集数据,构建一阶累加灰序列; (1) Collect data according to the N frames (N≦4) initially sent by the multispectral crop growth sensor node, and construct a first-order cumulative gray sequence;
(2)构建累加灰序列的紧邻均值生成序列; (2) Construct the adjacent mean generation sequence of the accumulated gray sequence;
(3)构建一阶单变量灰色模型GM(1,1),用最小二乘法进行参数估计得到模型参数的求解; (3) Construct the first-order univariate gray model GM(1,1), and use the least square method to estimate the parameters to obtain the solution of the model parameters;
(4)求解原始序列的灰色模型,求得深度休眠节点预测数据。 (4) Solve the gray model of the original sequence to obtain the prediction data of deep dormant nodes.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310371487.XA CN103442052B (en) | 2013-08-22 | 2013-08-22 | Device and method for remote monitoring farmland crop growth information |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310371487.XA CN103442052B (en) | 2013-08-22 | 2013-08-22 | Device and method for remote monitoring farmland crop growth information |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103442052A true CN103442052A (en) | 2013-12-11 |
| CN103442052B CN103442052B (en) | 2017-04-12 |
Family
ID=49695717
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310371487.XA Active CN103442052B (en) | 2013-08-22 | 2013-08-22 | Device and method for remote monitoring farmland crop growth information |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103442052B (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103869780A (en) * | 2014-03-13 | 2014-06-18 | 河南洛士达科技有限公司 | Smart agriculture greenhouse terminal information processing system |
| CN104503340A (en) * | 2014-12-01 | 2015-04-08 | 成都蓝宇科维科技有限公司 | Online monitoring system for environmental pollution monitoring |
| CN105093992A (en) * | 2015-09-01 | 2015-11-25 | 徐州工业职业技术学院 | Intelligent and efficient facility agriculture growth monitoring system |
| CN105117967A (en) * | 2015-08-05 | 2015-12-02 | 成都点石创想科技有限公司 | Intelligent soil humidity supervision method used for organic crop planting management |
| CN105843147A (en) * | 2016-05-20 | 2016-08-10 | 北京云洋数据科技有限公司 | Smart agriculture monitoring and management system |
| CN105847409A (en) * | 2016-05-06 | 2016-08-10 | 中国科学院合肥物质科学研究院 | Agricultural machinery remote work Web real-time monitoring method based on SignalR technology |
| CN106226115A (en) * | 2016-10-09 | 2016-12-14 | 中国农业大学 | A kind of collecting soil sample method and device |
| CN106447518A (en) * | 2016-12-02 | 2017-02-22 | 上海巽晔计算机科技有限公司 | Ecological agriculture monitoring system |
| CN106500775A (en) * | 2016-12-29 | 2017-03-15 | 深圳万智联合科技有限公司 | A kind of effective monitoring of crop growth system |
| CN107025162A (en) * | 2016-02-01 | 2017-08-08 | 财团法人资讯工业策进会 | Adjust the system and method for data collection frequencies |
| CN107255976A (en) * | 2017-07-24 | 2017-10-17 | 欧思星通科技(北京)有限公司 | The wisdom farm supervisory systems serviced based on " internet+Big Dipper+GIS " |
| CN107567004A (en) * | 2017-09-13 | 2018-01-09 | 深圳市益鑫智能科技有限公司 | A kind of crop growth situation intelligent monitor system |
| CN110290225A (en) * | 2019-07-30 | 2019-09-27 | 中电科华北网络信息安全有限公司 | A kind of industrialized agriculture things-internet gateway and working method |
| CN110763268A (en) * | 2019-09-23 | 2020-02-07 | 苏州三亩良铺农业科技有限公司 | Intelligent farmland management system based on Internet of things |
| CN110995707A (en) * | 2019-12-05 | 2020-04-10 | 北京师范大学 | System and method for visualizing sensor network node data |
| CN111640290A (en) * | 2020-05-29 | 2020-09-08 | 珠江水利委员会珠江水利科学研究院 | Novel agricultural condition information data transmission method and system |
| CN113608965A (en) * | 2021-08-09 | 2021-11-05 | 安徽创新软件集团有限公司 | Multithreading data monitoring method based on Internet of things technology |
| CN114095893A (en) * | 2021-10-19 | 2022-02-25 | 浙江工业大学 | Distributed digital agricultural park environment perception system |
| CN118010099A (en) * | 2024-02-04 | 2024-05-10 | 华南农业大学 | System and method for evaluating field crop environment |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101442556A (en) * | 2008-12-25 | 2009-05-27 | 北京交通大学 | Wireless sensor network server system based on IPv6 |
| CN101968649A (en) * | 2010-10-18 | 2011-02-09 | 淮阴工学院 | Network type control system for live pig culturing environment and intelligent environment factor control method |
| CN103035112A (en) * | 2012-12-19 | 2013-04-10 | 南京农业大学 | Wireless acquisition terminal for crop-atmosphere-soil information and acquisition method |
-
2013
- 2013-08-22 CN CN201310371487.XA patent/CN103442052B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101442556A (en) * | 2008-12-25 | 2009-05-27 | 北京交通大学 | Wireless sensor network server system based on IPv6 |
| CN101968649A (en) * | 2010-10-18 | 2011-02-09 | 淮阴工学院 | Network type control system for live pig culturing environment and intelligent environment factor control method |
| CN103035112A (en) * | 2012-12-19 | 2013-04-10 | 南京农业大学 | Wireless acquisition terminal for crop-atmosphere-soil information and acquisition method |
Non-Patent Citations (2)
| Title |
|---|
| 张泽武 等: "《环境智能传感系统研制》", 《无线互联科技》 * |
| 黄芬 等: "《基于模型和WebGIS数字农作支持系统的设计与实现》", 《南京农业大学学报》 * |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103869780A (en) * | 2014-03-13 | 2014-06-18 | 河南洛士达科技有限公司 | Smart agriculture greenhouse terminal information processing system |
| CN104503340B (en) * | 2014-12-01 | 2017-05-10 | 成都蓝宇科维科技有限公司 | Online monitoring system for environmental pollution monitoring |
| CN104503340A (en) * | 2014-12-01 | 2015-04-08 | 成都蓝宇科维科技有限公司 | Online monitoring system for environmental pollution monitoring |
| CN105117967A (en) * | 2015-08-05 | 2015-12-02 | 成都点石创想科技有限公司 | Intelligent soil humidity supervision method used for organic crop planting management |
| CN105093992A (en) * | 2015-09-01 | 2015-11-25 | 徐州工业职业技术学院 | Intelligent and efficient facility agriculture growth monitoring system |
| CN107025162A (en) * | 2016-02-01 | 2017-08-08 | 财团法人资讯工业策进会 | Adjust the system and method for data collection frequencies |
| CN105847409A (en) * | 2016-05-06 | 2016-08-10 | 中国科学院合肥物质科学研究院 | Agricultural machinery remote work Web real-time monitoring method based on SignalR technology |
| CN105847409B (en) * | 2016-05-06 | 2019-05-14 | 中国科学院合肥物质科学研究院 | A kind of agricultural machinery remote job Web method of real-time based on SignalR technology |
| CN105843147A (en) * | 2016-05-20 | 2016-08-10 | 北京云洋数据科技有限公司 | Smart agriculture monitoring and management system |
| CN105843147B (en) * | 2016-05-20 | 2018-05-11 | 北京云洋数据科技有限公司 | A kind of wisdom Agricultural Monitoring management system |
| CN106226115A (en) * | 2016-10-09 | 2016-12-14 | 中国农业大学 | A kind of collecting soil sample method and device |
| CN106447518A (en) * | 2016-12-02 | 2017-02-22 | 上海巽晔计算机科技有限公司 | Ecological agriculture monitoring system |
| CN106500775A (en) * | 2016-12-29 | 2017-03-15 | 深圳万智联合科技有限公司 | A kind of effective monitoring of crop growth system |
| CN107255976A (en) * | 2017-07-24 | 2017-10-17 | 欧思星通科技(北京)有限公司 | The wisdom farm supervisory systems serviced based on " internet+Big Dipper+GIS " |
| CN107567004A (en) * | 2017-09-13 | 2018-01-09 | 深圳市益鑫智能科技有限公司 | A kind of crop growth situation intelligent monitor system |
| CN107567004B (en) * | 2017-09-13 | 2019-07-16 | 南通御福源药业有限公司 | A kind of crop growth situation intelligent monitor system |
| CN110290225A (en) * | 2019-07-30 | 2019-09-27 | 中电科华北网络信息安全有限公司 | A kind of industrialized agriculture things-internet gateway and working method |
| CN110763268A (en) * | 2019-09-23 | 2020-02-07 | 苏州三亩良铺农业科技有限公司 | Intelligent farmland management system based on Internet of things |
| CN110995707A (en) * | 2019-12-05 | 2020-04-10 | 北京师范大学 | System and method for visualizing sensor network node data |
| CN111640290A (en) * | 2020-05-29 | 2020-09-08 | 珠江水利委员会珠江水利科学研究院 | Novel agricultural condition information data transmission method and system |
| CN113608965A (en) * | 2021-08-09 | 2021-11-05 | 安徽创新软件集团有限公司 | Multithreading data monitoring method based on Internet of things technology |
| CN113608965B (en) * | 2021-08-09 | 2024-07-19 | 安徽创新软件集团有限公司 | Multithreading data monitoring method based on Internet of things technology |
| CN114095893A (en) * | 2021-10-19 | 2022-02-25 | 浙江工业大学 | Distributed digital agricultural park environment perception system |
| CN118010099A (en) * | 2024-02-04 | 2024-05-10 | 华南农业大学 | System and method for evaluating field crop environment |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103442052B (en) | 2017-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103442052B (en) | Device and method for remote monitoring farmland crop growth information | |
| CN102307222B (en) | Intelligent greenhouse demonstration measurement and control system based on Internet of things technology | |
| CN202261821U (en) | A wireless sensor network system for agricultural environment monitoring | |
| CN209605863U (en) | Agricultural Environmental Monitoring system | |
| CN105843147B (en) | A kind of wisdom Agricultural Monitoring management system | |
| CN202663440U (en) | 3G wireless Internet of Things-based intelligent greenhouse information push system | |
| CN101969613A (en) | Wireless sensor network-based greenhouse group control system and control method thereof | |
| CN102098801A (en) | Method for acquiring wireless sensor network data of farmland ecological environment information | |
| CN104360705A (en) | Temperature-self-adaptation greenhouse illumination intelligent control system and control method | |
| CN102664949A (en) | Projected agriculture environment monitoring pre-alarm system with distributed heterogeneous wireless sensor networks | |
| CN103076783B (en) | A kind of greenhouse group control system | |
| CN106131770A (en) | A kind of data fusion method of the wireless sensor network for greenhouse | |
| Ding et al. | Environment monitoring and early warning system of facility agriculture based on heterogeneous wireless networks | |
| CN103209194A (en) | Soil moisture content detection device based on mode of Internet of things and detection method thereof | |
| CN110913359A (en) | Multi-fusion agricultural environment online monitoring system based on LoRa technology and WiFi technology | |
| CN106982243A (en) | Internet of Things greenhouse based on Wireless MESH sensor network technique | |
| CN204331419U (en) | A kind of plant factor's automatic monitored control system based on Internet of Things | |
| CN106371383A (en) | Greenhouse remote monitoring system and method | |
| CN104656710A (en) | Internet-of-things agricultural greenhouse digital control system | |
| CN202562513U (en) | Soil moisture monitoring device based on Internet of Things mode | |
| CN103391644B (en) | For wireless sense network gateway apparatus and the method for the monitoring of field crop growth information | |
| CN106170020A (en) | A kind of Intelligent agricultural monitoring system based on Internet of Things | |
| CN201837878U (en) | Greenhouse group wireless sensor network control system | |
| CN204925782U (en) | Warmhouse booth intelligence control system based on internet of things | |
| CN106303925A (en) | A kind of intelligent agricultural system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |