CN103370004B - Cardiac decompensation detection using multiple sensors - Google Patents
Cardiac decompensation detection using multiple sensors Download PDFInfo
- Publication number
- CN103370004B CN103370004B CN201180067668.2A CN201180067668A CN103370004B CN 103370004 B CN103370004 B CN 103370004B CN 201180067668 A CN201180067668 A CN 201180067668A CN 103370004 B CN103370004 B CN 103370004B
- Authority
- CN
- China
- Prior art keywords
- data
- physiological
- impedance
- function
- medical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Abstract
Description
优先权要求priority claim
本申请根据35U.S.C.§119(e)要求Thakur等于2010年12月15日提交的美国临时专利申请序号61/423,127的题为“使用多个传感器的心脏代偿失调检测”的优先权权益,将其通过引用结合在本文中。This application claims priority benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Serial No. 61/423,127, filed December 15, 2010, by Thakur et al., entitled "Cardiac Decompensation Detection Using Multiple Sensors," It is incorporated herein by reference.
背景技术Background technique
心律管理装置可以包括植入式或其它移动式装置,如起搏器、心脏复律-除颤器、心脏再同步治疗(CRT)装置,或可以监控一个或多个生理参数,或者提供起搏、除颤或心脏再同步治疗中的一种或组合的装置,或者可以监控一个或多个生理参数又提供治疗的装置。在一个实施例中,这种装置可以配置为与多个植入式或外部电极一起使用,如检测或治疗心脏的、呼吸的或其它病况。诸如使用电极获得的信息可用于提供诊断或预测即将发生的疾病状态,或者开启或调节治疗。Cardiac rhythm management devices may include implantable or other ambulatory devices such as pacemakers, cardioverter-defibrillators, cardiac resynchronization therapy (CRT) devices, or may monitor one or more physiological parameters, or provide pacing , defibrillation, or cardiac resynchronization therapy, or a device that can monitor one or more physiological parameters and provide therapy. In one embodiment, such a device may be configured for use with implantable or external electrodes, such as to detect or treat cardiac, respiratory or other conditions. Information such as obtained using the electrodes can be used to provide a diagnosis or predict an impending disease state, or to initiate or adjust therapy.
对可以指示心力衰竭(“HF”,有时称为充血性心力衰竭,“CHF”)的生理状况的早期检测,诸如在患者经历与这种心力衰竭相关的心脏代偿失调之前,可以帮助指示可以预防心脏代偿失调发生的治疗。Zhao等,在美国专利公开号2010/0004712,题为“用于基于导抗矢量的独立信息内容检测心力衰竭的植入式医疗装置所使用的系统和方法(SYSTEMS ANDMETHODS FOR USE BY AN IMPLANTABLE MEDICAL DEVICE FOR DETECTING HEART FAILUREBASED ON THE INDEPENDENT INFORMATION CONTENT OF IMMITANCE VECTORS)”中提到基于多个导抗矢量的独立信息内容检测心力衰竭,并且基于独立信息内容的量控制函数。(见Zhao等,在第[0008]段。)Early detection of physiological conditions that can be indicative of heart failure ("HF", sometimes called congestive heart failure, "CHF"), such as before a patient experiences cardiac decompensation associated with such heart failure, can help indicate possible Treatment to prevent the occurrence of cardiac decompensation. Zhao et al., in U.S. Patent Publication No. 2010/0004712, entitled "SYSTEMS AND METHODS FOR USE BY AN IMPLANTABLE MEDICAL DEVICE FOR DETECTING HEART FAILUREBASED ON THE INDEPENDENT INFORMATION CONTENT OF IMMITANCE VECTORS)" mentions the detection of heart failure based on the independent information content of multiple impedance vectors, and the volume control function based on the independent information content. (See Zhao et al., at paragraph [0008].)
精确和有效的体位检测可以帮助将重要信息提供给临床医生或心律管理装置,例如,以确保精确说明一个或多个生理参数,或者确定治疗。Maile等,在题为“从心脏的机械振动确定患者体位”(DETERMINING A PATIENT’S POSTURE FROM MECHANICAL VIBRATIONSOF THE HEART)的美国专利号7,559,901中提到通过监控心音确定患者体位。(见Maile等,在“摘要”处。)Accurate and efficient postural detection can help provide important information to a clinician or cardiac rhythm management device, for example, to ensure accurate interpretation of one or more physiological parameters, or to determine therapy. Maile et al., in U.S. Patent No. 7,559,901 entitled "DETERMINING A PATIENT'S POSTURE FROM MECHANICAL VIBRATIONSOF THE HEART", mention determining the patient's position by monitoring heart sounds. (See Maile et al., at "Abstract.")
概述overview
心脏的各种电的或机械的功能可以提供各种各样的生理参数,其可以指示病症例如心力衰竭、心律失常(纤维性颤动、心动过速、心动过缓)、缺血等的发作。这些生理参数可以包括,例如,心音(例如,S3振幅)、肺附近的DC阻抗、心率、呼吸率、重量或心内压力。生理参数的另外实例可以包括,但不限于,激素水平、血球计数、神经活动、肌肉活动或任何其它生理参数。这些参数中的至少一些可以指示病症的发作或变化,其可以用于提供需要治疗(或治疗调整)的警报,如心脏除颤、起搏改变等。然而,难以在仅若干用于这些参数的测量指示病症的发作时确定事件是否正在开始。Various electrical or mechanical functions of the heart can provide a variety of physiological parameters that can indicate the onset of conditions such as heart failure, cardiac arrhythmias (fibrillation, tachycardia, bradycardia), ischemia, and the like. These physiological parameters may include, for example, heart sounds (eg, S3 amplitude), DC impedance near the lungs, heart rate, respiration rate, weight, or intracardiac pressure. Additional examples of physiological parameters may include, but are not limited to, hormone levels, blood counts, nerve activity, muscle activity, or any other physiological parameter. At least some of these parameters may be indicative of an onset or change in a condition, which may be used to provide an alert that therapy (or therapy adjustment) is required, such as defibrillation, pacing changes, and the like. However, it is difficult to determine whether an event is starting when only a few measurements for these parameters indicate the onset of a disorder.
除其它事情外,本文描述系统、方法、机器可读介质或其它技术,其可以涉及获得生理数据、将生理数据排序成一个或多个数据群集或建立基线、获得附加测试数据并将测试数据与数据群集或基线比较以确定心脏代偿失调的指征。Among other things, this document describes systems, methods, machine-readable media, or other techniques that may involve obtaining physiological data, sorting physiological data into one or more data clusters or establishing a baseline, obtaining additional test data, and comparing the test data to Data clustering or baseline comparison to identify indications of cardiac decompensation.
所述技术可以涉及在第一时间窗获得生理数据以建立基线,其可以包括两个或多个离散组,其中一个或多个组可以对应于患者体位。可以获得附加生理数据并且与所述组相比以提供该患者的体位状态。The technique may involve obtaining physiological data over a first time window to establish a baseline, which may include two or more discrete groups, where one or more groups may correspond to patient positions. Additional physiological data can be obtained and compared to the group to provide the patient's postural status.
本文中描述和图解的技术可以针对诊断患者在心力衰竭之前的心脏代偿失调的风险。同样,提出了一些体位检测技术。本文描述和图解的技术可以同样地或者备选地用于在肺水肿、胸膜水肿或外周性水肿中的一种或多种之中进行确定或区分。The techniques described and illustrated herein can be directed towards diagnosing a patient at risk for cardiac decompensation prior to heart failure. Likewise, some posture detection techniques are proposed. The techniques described and illustrated herein may likewise or alternatively be used to determine or differentiate among one or more of pulmonary edema, pleural edema, or peripheral edema.
本技术可以提供一个或多个心脏代偿失调指标,其可以提供提高的特异性,如相对于只使用原始阻抗数据来预测心脏代偿失调的其它方式。阻抗数据可以响应于患者中的正常神经激素或昼夜节奏变化而调制。因此,可能难以辨别阻抗数据的趋势。同样,患者流体水平的全身变化可以立刻影响全部测量的阻抗矢量,其可以混淆仅基于用于确定积液的原始胸阻抗 数据的代偿失调检测。相反,除其它事情外,本技术可以包括比较至少两个阻抗矢量,如在一个或多个时间窗期间,其可以包括至少一个体位改变。在这样一种方法中,可以将由于全身流体水平变化所致的影响最小化。这可以帮助提供心力衰竭代偿失调风险增加的更好的指征。The present technique may provide one or more indicators of cardiac decompensation, which may provide improved specificity, such as relative to other ways of predicting cardiac decompensation using only raw impedance data. Impedance data can be modulated in response to normal neurohormonal or circadian rhythm changes in the patient. Therefore, it may be difficult to discern trends in impedance data. Also, systemic changes in patient fluid levels can affect the overall measured impedance vector at once, which can confound decompensation detection based solely on the raw thoracic impedance data used to determine the effusion. Rather, the present technique may include, among other things, comparing at least two impedance vectors, which may include at least one body position change, such as during one or more time windows. In such an approach, effects due to changes in systemic fluid levels can be minimized. This could help provide a better indication of an increased risk of heart failure decompensation.
本发明人已确认,除其它事情外,要解决的问题可以包括提供对患者即将发生心脏代偿失调风险的更敏感或更特异的预先通知。在实施例中,本主题可以提供对于这个问题的解决方案,例如通过获得生理数据,形成第一生理数据和第二生理数据的函数,识别生理数据的一个或多个趋势,并使用所述趋势信息提供对患者的心脏代偿失调风险的预先通知。The inventors have identified that, among other things, the problem to be solved may include providing more sensitive or specific advance notification of a patient's impending risk of cardiac decompensation. In embodiments, the subject matter can provide a solution to this problem, for example, by obtaining physiological data, forming a function of the first physiological data and the second physiological data, identifying one or more trends in the physiological data, and using the The information provides advance notice of the patient's risk of cardiac decompensation.
本发明人已确认,除其它事情外,另一个要解决的问题可以包括,提供患者的体位状态,例如使用供可植入心律管理装置随时可用的生理数据—如,不需要专用的3-轴加速度计、倾斜开关或用于检测患者方位或体位的其它传感器。在实施例中,本主题可以提供对于这个问题的解决方案,例如通过使用一个或多个胸阻抗测量建立体位判别比较度量,获得胸阻抗测试数据,并通过将胸阻抗测试数据与体位判别比较度量进行比较而提供体位状态。The inventors have identified that, among other things, another problem to be solved may include providing the patient's postural status, for example using physiological data readily available to an implantable cardiac rhythm management device—e.g., without the need for a dedicated 3-axis Accelerometers, tilt switches, or other sensors to detect patient orientation or position. In embodiments, the subject matter can provide a solution to this problem, for example, by using one or more chest impedance measurements to establish a postural discriminant comparison metric, obtaining chest impedance test data, and by comparing the chest impedance test data with the postural discriminant comparison metric Postural status is provided for comparison.
本概述旨在提供本专利申请的主题的概述。它不意欲提供本发明的排它性或穷尽的解释。包括详述以提供关于本专利申请的进一步信息。This summary is intended to provide an overview of the subject matter of this patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The Detailed Description is included to provide further information about this patent application.
本发明涉及以下的实施方案:The present invention relates to the following embodiments:
1.一种医疗装置,所述医疗装置包括:1. A medical device comprising:
处理器,所述处理器包括:a processor, the processor comprising:
第一数据输入,所述第一数据输入被配置为从第一生理传感器接收第一生理数据,所述第一生理数据对应于在第一时间窗期间的多个实例;和a first data input configured to receive first physiological data from a first physiological sensor, the first physiological data corresponding to a plurality of instances during a first time window; and
第二数据输入,所述第二数据输入被配置为从第二生理传感器接收第二生理数据,所述第二生理数据对应于在相同的第一时间窗期间的多个实例;和a second data input configured to receive second physiological data from a second physiological sensor, the second physiological data corresponding to a plurality of instances during the same first time window; and
包括指令的处理器可读介质,所述指令当由所述处理器执行时,将所述医疗装置配置为:A processor-readable medium comprising instructions that, when executed by the processor, configure the medical device to:
形成所述第一生理数据对所述第二生理数据的函数;forming a function of said first physiological data on said second physiological data;
使用所述函数形成至少两个数据群集;forming at least two data clusters using the function;
确定所述数据群集中的至少一个的定量属性;determining a quantitative attribute of at least one of the data clusters;
使用所述定量属性以提供心力衰竭代偿失调指标。The quantitative attributes are used to provide an index of heart failure decompensation.
2.实施方案1的医疗装置,其中所述第一数据输入被配置为接收第一生理数据,所述第一生理数据包括使用限定第一胸阻抗矢量的第一电极配置获得的第一胸阻抗数据;和2. The medical device of embodiment 1, wherein the first data input is configured to receive first physiological data comprising a first chest impedance obtained using a first electrode configuration defining a first chest impedance vector data; and
其中所述第二数据输入被配置为接收第二生理数据,所述第二生理数据包括使用限定不同的第二胸阻抗矢量的不同的第二电极配置获得的第二胸阻抗数据。Wherein the second data input is configured to receive second physiological data comprising second chest impedance data obtained using a different second electrode configuration defining a different second chest impedance vector.
3.实施方案1或2中任一项的医疗装置,其中所述第一数据输入被配置为接收第一生理数据,所述第一生理数据包括使用定位于心脏的心室中或附近的第一电极,和至少不同的第二电极而获得的第一胸阻抗数据。3. The medical device of any one of embodiments 1 or 2, wherein the first data input is configured to receive first physiological data comprising using a first first electrode, and at least a different second electrode to obtain the first chest impedance data.
4.实施方案1-3中任一项的医疗装置,其中所述第一数据输入或所述第二数据输入中的至少一个被配置为耦合到加速度计以获得所述第一生理数据或所述第二生理数据。4. The medical device of any one of embodiments 1-3, wherein at least one of the first data input or the second data input is configured to be coupled to an accelerometer to obtain the first physiological data or the The second physiological data.
5.实施方案1-4中任一项的医疗装置,其中所述处理器可读介质包括指令,当所述指令由所述处理器执行时,配置所述医疗装置以使用体位信息形成所述至少两个数据群集。5. The medical device of any one of embodiments 1-4, wherein the processor-readable medium includes instructions that, when executed by the processor, configure the medical device to use body position information to form the At least two data clusters.
6.实施方案1-5中任一项的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以使用体位信息来确定所述第一和第二生理数据以用于形成所述函数。6. The medical device of any one of embodiments 1-5, wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to use body position information to determine the second The first and second physiological data are used to form the function.
7.实施方案6的医疗装置,其中所述第一数据输入被配置为从第一生理传感器接收第一生理数据,所述第一生理数据对应于在第一时间窗期间的多个实例,包括至少一个患者体位变化。7. The medical device of embodiment 6, wherein the first data input is configured to receive first physiological data from a first physiological sensor, the first physiological data corresponding to a plurality of instances during a first time window, comprising At least one patient position change.
8.实施方案1-7中任一项的医疗装置,其中所述处理器可读介质包括指令,当所述指令由所述处理器执行时,配置所述医疗装置以使用时刻信息来确定所述第一和第二生理数据以用于形成所述函数。8. The medical device of any one of embodiments 1-7, wherein the processor-readable medium includes instructions that, when executed by the processor, configure the medical device to use time-of-day information to determine the The first and second physiological data are used to form the function.
9.根据实施方案8的医疗装置,其中所述第一数据输入被配置为从第一生理传感器接收第一生理数据,所述第一生理数据对应于在第一时间窗期间的多个实例,所述第一时间窗包括其中预期发生患者体位变化的时间 间隔。9. The medical device of embodiment 8, wherein the first data input is configured to receive first physiological data from a first physiological sensor, the first physiological data corresponding to a plurality of instances during a first time window, The first time window includes a time interval in which a change in patient position is expected to occur.
10.实施方案1-9中任一项的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以确定所述数据群集中的至少一个的定量属性,所述定量属性包括下列中的至少一个:10. The medical device of any one of embodiments 1-9, wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to determine at least A quantitative attribute comprising at least one of the following:
所述函数的部分的展开;expansion of parts of said function;
所述函数的部分的范围;the scope of the portion of the function;
至少部分地由所述函数的部分限定的面积;an area defined at least in part by a portion of said function;
所述函数的部分的位置或形心;the location or centroid of the portion of the function;
所述函数的至少两个不同部分的位置或形心之间的距离;或the distance between the positions or centroids of at least two different parts of said function; or
使用所述函数的至少两个不同部分形成的不同的第二函数。A different second function is formed using at least two different parts of the function.
11.实施方案10的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以将基线距离与所述函数的至少两个不同部分的位置或形心之间的距离比较。11. The medical device of embodiment 10, wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to compare the baseline distance with the at least two different parts of the function Distance comparison between locations or centroids.
12.实施方案1-11中任一项的医疗装置,其中所述处理器包括第三数据输入,所述第三数据输入被配置为从至少第三生理传感器接收附加生理数据,所述附加生理数据对应于在相同的第一时间窗期间的多个实例;并且12. The medical device of any one of embodiments 1-11, wherein the processor includes a third data input configured to receive additional physiological data from at least a third physiological sensor, the additional physiological the data correspond to multiple instances during the same first time window; and
其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以使用所述第一生理数据、所述第二生理数据和所述附加生理数据形成多维函数。wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to form a multidimensional function using the first physiological data, the second physiological data, and the additional physiological data .
13.实施方案12的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以确定所述数据群集中的至少一个的定量属性,包括使用所述多维函数的部分确定体积。13. The medical device of embodiment 12, wherein said processor-readable medium comprises instructions that, when executed by a processor, configure said medical device to determine a quantitative attribute of at least one of said data clusters, comprising The volume is determined using parts of the multidimensional function.
14.实施方案1-13中任一项的医疗装置,其中所述第一数据输入被配置为从所述第一生理传感器接收第三生理数据,所述第三生理数据对应于在第二时间窗期间的多个实例;并且14. The medical device of any one of embodiments 1-13, wherein the first data input is configured to receive third physiological data from the first physiological sensor, the third physiological data corresponding to multiple instances during the window; and
其中所述第二数据输入被配置为从所述第二生理传感器接收第四生理数据,所述第四生理数据对应于在相同的第二时间窗期间的多个实例;并且wherein the second data input is configured to receive fourth physiological data from the second physiological sensor, the fourth physiological data corresponding to a plurality of instances during the same second time window; and
其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配 置所述医疗装置以便wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to
形成所述第三生理数据对所述第四生理数据的第二函数;forming a second function of said third physiological data on said fourth physiological data;
使用所述第二函数形成至少两个附加数据群集;forming at least two additional data clusters using the second function;
确定所述附加数据群集中的至少一个的测试定量属性;和determining a test quantitative attribute of at least one of the additional data clusters; and
使用所述测试定量属性以提供心力衰竭代偿失调指标。The quantitative properties of the test are used to provide an index of heart failure decompensation.
15.实施方案14的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以将所述定量属性和所述测试定量属性趋势化以提供心力衰竭代偿失调指标。15. The medical device of embodiment 14, wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to trend the quantitative attribute and the test quantitative attribute to Provides indicators of decompensation in heart failure.
16.实施方案1-15中任一项的医疗装置,其中所述处理器可读介质包括指令,当所述指令由处理器执行时,配置所述医疗装置以使用时刻信息形成所述至少两个数据群集。16. The medical device of any one of embodiments 1-15, wherein the processor-readable medium includes instructions that, when executed by a processor, configure the medical device to use time-of-day information to form the at least two data clusters.
17.一种系统,所述系统包括:17. A system comprising:
可植入医疗装置,其包括:Implantable medical devices, including:
第一生理传感器,所述第一生理传感器被配置为接收对应于第一时间窗期间的多个实例的第一生理数据;a first physiological sensor configured to receive first physiological data corresponding to a plurality of instances during a first time window;
第二生理传感器,所述第二生理传感器被配置为接收对应于相同的第一时间窗期间的多个实例的第二生理数据;和a second physiological sensor configured to receive second physiological data corresponding to multiple instances during the same first time window; and
处理器电路,所述处理器电路被配置为:a processor circuit configured to:
接收所述第一和第二生理数据;receiving said first and second physiological data;
形成所述第一生理数据对所述第二生理数据的函数;forming a function of said first physiological data on said second physiological data;
使用所述函数形成至少两个不同的数据群集;forming at least two distinct data clusters using the function;
确定所述数据群集中的至少一个的定量属性;和determining a quantitative attribute of at least one of the data clusters; and
使用所述定量属性提供心力衰竭代偿失调指标。An index of heart failure decompensation is provided using the quantitative attributes.
18.实施方案17的系统,所述系统包括阻抗测量电路,所述阻抗测量电路被配置为使用所述第一生理传感器以接收至少第一阻抗信号和使用所述第二生理传感器以接收至少第二阻抗信号,其中所述第一生理传感器包括第一电极并且所述第二生理传感器包括不同的第二电极。18. The system of embodiment 17, comprising an impedance measurement circuit configured to use the first physiological sensor to receive at least a first impedance signal and to use the second physiological sensor to receive at least a first impedance signal. Two impedance signals, wherein the first physiological sensor includes a first electrode and the second physiological sensor includes a second, different electrode.
19.实施方案17或18中任一项的系统,所述系统包括存储电路,所述存储电路被配置为存储多个定量属性。19. The system of any one of embodiments 17 or 18, the system comprising a storage circuit configured to store a plurality of quantitative attributes.
20.一种医疗装置,所述医疗装置包括:20. A medical device comprising:
处理器,所述处理器包括:a processor, the processor comprising:
第一数据输入,所述第一数据输入被配置为接收来自第一胸阻抗矢量的第一胸阻抗数据,所述第一胸阻抗数据对应于第一时间窗期间的多个实例;a first data input configured to receive first chest impedance data from a first chest impedance vector, the first chest impedance data corresponding to a plurality of instances during a first time window;
第二数据输入,所述第二数据输入被配置为接收来自第二胸阻抗矢量的第二胸阻抗数据,所述第二胸阻抗数据对应于相同的第一时间窗期间的多个实例;a second data input configured to receive second chest impedance data from a second chest impedance vector, the second chest impedance data corresponding to a plurality of instances during the same first time window;
第三数据输入,所述第三数据输入被配置为接收来自至少两个胸阻抗矢量的测试胸阻抗数据;和a third data input configured to receive test chest impedance data from at least two chest impedance vectors; and
包括指令的处理器可读介质,所述指令当由处理器执行时,将所述医疗装置配置为:A processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to:
形成所述第一胸阻抗数据对所述第二胸阻抗数据的第一函数;forming a first function of said first chest impedance data on said second chest impedance data;
使用所述第一函数形成第一对数据群集;forming a first pair of data clusters using the first function;
使用所述第一对数据群集确定第一定量属性;determining a first quantitative attribute using the first pair of data clusters;
使用所述测试胸阻抗数据形成第二函数;forming a second function using the test chest impedance data;
使用所述第二函数形成第二对数据群集;forming a second pair of data clusters using the second function;
使用所述第二对数据群集确定第二定量属性;和determining a second quantitative attribute using the second pair of data clusters; and
使用所述第一和第二定量属性的比较提供心力衰竭代偿失调指标。A comparison of the first and second quantitative attributes is used to provide an index of heart failure decompensation.
附图说明Description of drawings
在不一定是按比例绘制的附图中,在不同的视图中,相同的数字可以描述相同的组件。具有不同的字母后缀的相同数字可以代表相同组件的不同实例。通过举例的方式,但不以限制的方式,附图一般说明本文中所讨论的各种实施方案。In the drawings, which are not necessarily to scale, like numerals may depict like components in the different views. The same number with a different letter suffix may represent different instances of the same component. By way of example, and not by way of limitation, the drawings generally illustrate various embodiments discussed herein.
图1一般地图解系统的一部分的实施例,该系统可以包括可植入或移动式医疗装置,和一个或多个可植入导联或其它电极,例如可以被配置为至少部分地与心脏组织关联定位。Figure 1 generally illustrates an embodiment of a portion of a system, which may include an implantable or ambulatory medical device, and one or more implantable leads or other electrodes, such as may be configured to at least partially communicate with cardiac tissue Associate targeting.
图2A一般地图解可以在数天时间期间监控或记录的胸阻抗数据的图示的实施例。Figure 2A generally illustrates an example of a graphical representation of chest impedance data that may be monitored or recorded over a period of days.
图2B一般地图解可以在数天时间期间监控或记录的胸阻抗数据的图示的实施例。Figure 2B generally illustrates an example of a graphical representation of chest impedance data that may be monitored or recorded over a period of days.
图3一般地图解可以在数天时间期间获得的胸阻抗数据和体位数据的图示。Figure 3 generally illustrates a graphical representation of chest impedance data and body position data that may be obtained over a period of several days.
图4A一般地图解可以将来自第一阻抗矢量的第一胸阻抗数据对来自第二阻抗矢量的第二胸阻抗数据作图的函数的图示。4A generally illustrates a graph of a function that may plot first chest impedance data from a first impedance vector against second chest impedance data from a second impedance vector.
图4B一般地图解可以包括函数的一个或数个定量属性如形心(centroid)位置、展开(spread)或范围的函数的图示。FIG. 4B generally illustrates a graph of a function that may include one or several quantitative properties of the function, such as centroid location, spread, or extent.
图4C一般地图解数值积分方法的图示,所述方法可用于计算一个或多个数据群集的面积。FIG. 4C generally illustrates a diagram of a numerical integration method that can be used to calculate the area of one or more data clusters.
图4D一般地图解可以例如通过发现数据的范围并绘制矩形用于计算一个或多个数据群集的面积的方法的图示。FIG. 4D generally illustrates a diagram of a method that may be used to calculate the area of one or more data clusters, for example, by finding the extent of the data and drawing rectangles.
图5一般地图解在数天时间期间的胸阻抗数据和体位数据的第二图示。Figure 5 generally illustrates a second plot of chest impedance data and body position data over a period of days.
图6一般地图解包括函数的数个定量属性的第二函数的图示。FIG. 6 illustrates generally a graph of a second function including several quantitative properties of the function.
图7一般地图解可以包括使用数据群集属性提供心力衰竭代偿失调指标的实施例。Figure 7 generally illustrates an embodiment that may include the use of data cluster attributes to provide heart failure decompensation indicators.
图8一般地图解实施例,其可以包括使用不同的生理数据的相应第一和第二函数确定第一和第二属性,获得第一时间窗期间的第一和第二生理数据,将所述第一和第二属性趋势化,并使用所述趋势提供心力衰竭代偿失调指标。FIG. 8 generally illustrates an embodiment, which may include determining first and second attributes using respective first and second functions of different physiological data, obtaining first and second physiological data during a first time window, converting the The first and second attributes are trended and the trends are used to provide an index of heart failure decompensation.
图9一般地图解实施例,其可以包括获得体位辨别度量,获得胸阻抗测试数据,将胸阻抗测试数据与体位判别度量比较,并提供体位状态。9 generally illustrates an embodiment, which may include obtaining a postural discriminative metric, obtaining thoracic impedance test data, comparing the thoracic impedance test data to the postural discriminative metric, and providing a postural status.
图10一般地图解实施例,其可以包括形成第一生理数据对第二生理数据的函数并使用生理测试数据和函数的比较提供体位状态。FIG. 10 generally illustrates an embodiment that may include forming a function of first physiological data versus second physiological data and providing a postural state using a comparison of the physiological test data and the function.
图11一般地图解实施例,其可以包括使用第一生理数据对第二生理数据的第一函数确定第一定量属性,使用第三生理数据对第四生理数据的第二函数确定第二定量属性,并使用第一和第二定量属性的比较确定体位状态。11 generally illustrates an embodiment that may include determining a first quantitative attribute using a first function of first physiological data on second physiological data and determining a second quantitative attribute using a second function of third physiological data on fourth physiological data. attribute, and the postural state is determined using a comparison of the first and second quantitative attributes.
发明详述Detailed description of the invention
生理数据诸如胸阻抗数据可以在第一时间窗期间获得以建立基线,或可以用于形成一个或多个数据群集。可以得到附加生理数据,如在稍后的时间窗期间获得的胸阻抗测试数据,并且将其与基线或数据群集比较以确定心力衰竭恶化的指征。在一个实施例中,可以监控一个或多个数据群集的定量属性并将其用于提供心力衰竭恶化的指征。Physiological data such as chest impedance data may be obtained during the first time window to establish a baseline, or may be used to form one or more data clusters. Additional physiological data, such as chest impedance test data obtained during a later time window, can be obtained and compared to a baseline or data cluster to determine indications of worsening heart failure. In one embodiment, quantitative properties of one or more data clusters may be monitored and used to provide an indication of worsening heart failure.
图1一般地图解系统100的实施例,其可以包括可植入或其它移动式医疗装置,如心律管理(CRM)装置102。在实施例中,CRM装置102可以包括可植入电子单元105。在实施例中,可以将电子单元105电连接和物理连接到可植入导联系统110。FIG. 1 generally illustrates an embodiment of a system 100 , which may include an implantable or other ambulatory medical device, such as a cardiac rhythm management (CRM) device 102 . In an embodiment, the CRM device 102 may include an implantable electronics unit 105 . In an embodiment, electronics unit 105 may be electrically and physically connected to implantable lead system 110 .
可以将可植入导联系统110的部分插入到患者胸部中,包括进入到患者心脏107中。可植入导联系统110可以包括一个或多个电极,其可以被配置为感测心脏的电心脏活动,以将电刺激递送到心脏,或感测患者胸阻抗。在实施例中,可植入导联系统110可以包括一个或多个传感器,将其配置为感测一个或多个其它生理参数,如心腔室压力或温度。CRM装置102的电子单元105的壳体101(或连接头)的导电部可以任选地充当电极,诸如“金属罐(can)”电极。Portions of implantable lead system 110 may be inserted into the patient's chest, including into the patient's heart 107 . Implantable lead system 110 may include one or more electrodes that may be configured to sense electrical cardiac activity of the heart, to deliver electrical stimulation to the heart, or to sense patient thoracic impedance. In an embodiment, implantable lead system 110 may include one or more sensors configured to sense one or more other physiological parameters, such as cardiac chamber pressure or temperature. The conductive portion of the housing 101 (or connector) of the electronics unit 105 of the CRM device 102 may optionally act as an electrode, such as a "can" electrode.
例如,通信电路可以包括在壳体101(或连接头)内,如用于促进所述电子单元105和外部通信装置诸如便携式或床旁通信站、患者携带的或患者佩戴的通信站或外部编程器之间的通信。通信电路还可以促进与一个或多个植入的、移动的、外部的、皮肤的或皮下的生理的或非生理的传感器、患者输入装置或信息系统的单向或双向通信。For example, communication circuitry may be included within housing 101 (or a connector), such as for facilitating communication between the electronics unit 105 and an external communication device such as a portable or bedside communication station, patient-carried or patient-worn communication station, or external programming. communication between devices. Communication circuitry may also facilitate one-way or two-way communication with one or more implanted, mobile, external, cutaneous or subcutaneous physiological or non-physiological sensors, patient input devices, or information systems.
CRM装置102可以包括运动检测器104,其可用于感测患者身体活动或一个或多个呼吸或心脏相关的病况。在实施例中,可以将运动检测器104配置成感测活动水平或与呼吸努力有关的胸壁运动。在实施例中,运动检测器104可以包括单轴或多轴(例如,三轴)加速度计,其可位于壳体101之中或之上。加速度计可以用于提供有用信息,包括有关患者体位的信息,呼吸信息包括例如关于罗音或咳嗽,心脏信息包括例如,S1-S4心音、杂音或其它声音信息。The CRM device 102 may include a motion detector 104 that may be used to sense patient physical activity or one or more respiratory or cardiac related conditions. In an embodiment, motion detector 104 may be configured to sense activity level or chest wall motion related to breathing effort. In an embodiment, motion detector 104 may include a single-axis or multi-axis (eg, three-axis) accelerometer, which may be located in or on housing 101 . Accelerometers can be used to provide useful information including information about the patient's position, respiratory information including, for example, about crackles or coughs, cardiac information including, for example, S1-S4 heart sounds, murmurs, or other sound information.
可以将处理器电路108包括例如在壳体101内。在实施例中,处理器 电路108可以包括多个数据输入,将其配置为从一个或多个生理传感器获得生理数据。例如,可以将处理器电路108配置为从可植入导联系统110,例如通过连接到第一数据输入的阻抗测量电路接收信息。在实施例中,第一和第二数据输入可以被配置为分别从第一和第二生理传感器接收信息。在实施例中,数据输入可以被配置为接收使用限定胸阻抗矢量的电极配置测量的胸阻抗数据。可以将第三或第四数据输入配置为从第一和第二生理传感器接收信息。Processor circuitry 108 may be included within housing 101, for example. In an embodiment, the processor circuit 108 may include a plurality of data inputs configured to obtain physiological data from one or more physiological sensors. For example, processor circuit 108 may be configured to receive information from implantable lead system 110, eg, through an impedance measurement circuit connected to the first data input. In an embodiment, the first and second data inputs may be configured to receive information from the first and second physiological sensors, respectively. In an embodiment, the data input may be configured to receive chest impedance data measured using an electrode configuration defining a chest impedance vector. The third or fourth data input may be configured to receive information from the first and second physiological sensors.
使用一个或多个接收到的生理参数如阻抗值,处理器电路108可以形成函数。该函数可用作可以确定多个数据群集的基础。使用该函数,处理器电路108可以确定至少一个与一个或多个数据群集相关的定量属性。在实施例中,可以配置处理器电路108以确定心脏代偿失调指标或体位状态,如使用一个或多个定量属性。可以配置该处理器电路108以趋势化或另外监控一个或多个数据群集的定量属性,如使用存储电路。Using one or more received physiological parameters, such as impedance values, processor circuit 108 may form a function. This function can be used as a basis on which multiple data clusters can be determined. Using the function, processor circuit 108 may determine at least one quantitative attribute associated with one or more data clusters. In an embodiment, the processor circuit 108 may be configured to determine an index of cardiac decompensation or a postural state, such as using one or more quantitative attributes. The processor circuit 108 may be configured to trend or otherwise monitor quantitative properties of one or more data clusters, such as using memory circuits.
在实施例中,处理器电路108可以被配置为接收阻抗相关的信息,如使用可植入导联系统110以接收电压水平。描述获得阻抗相关信息的系统和方法进一步描述在Belalcazar,美国专利第7,640,056号题为“使用提供负灵敏度区的电极配置监测受试者中的流体(MONITORING FLUID IN A SUBJECT USING AN ELECTRODE CONFIGURATIONPROVIDING NEGATIVE SENSITIVITY REGIONS)”,将其通过引用并入本文。In an embodiment, the processor circuit 108 may be configured to receive impedance-related information, such as using the implantable lead system 110 to receive voltage levels. Systems and methods describing obtaining impedance-related information are further described in Belalcazar, U.S. Patent No. 7,640,056 entitled "MONITORING FLUID IN A SUBJECT USING AN ELECTRODE CONFIGURATION PROVIDING NEGATIVE SENSITIVITY REGIONS )", which is incorporated herein by reference.
在实施例中,处理器可读介质可以包括,例如在壳体101内。处理器可读介质可以包括指令,当该指令由处理器执行时,配置CRM装置102以接收数据、处理数据、解释数据或提供数据,例如使用处理器电路108。例如,处理器可读介质可以包括指令,当该指令由处理器执行时,配置CRM装置102以使用通过至处理器电路108的多个数据输入接收到的阻抗信息形成函数。In an embodiment, a processor readable medium may be included, eg, within housing 101 . The processor-readable medium may include instructions that, when executed by a processor, configure the CRM device 102 to receive data, process data, interpret data, or provide data, such as using processor circuitry 108 . For example, a processor-readable medium may include instructions that, when executed by a processor, configure the CRM device 102 to form a function using impedance information received through a plurality of data inputs to the processor circuit 108 .
存储电路可以包括在诸如壳体101内,用于存储多个值,包括数据趋势信息。在实施例中,数据群集的定量属性如包括沿y轴的范围、沿x轴的展开、面积或体积等可以存储在存储电路中。在实施例中,存储电路可以包括基于直方图的存储机制,以便于在延长时期期间存储定量属性。在实施例中,该存储电路可以在CRM装置102的外部,或可以通过通信电路可通信地耦合到CRM装置102。Storage circuitry may be included, such as within housing 101, for storing a number of values, including data trend information. In an embodiment, quantitative attributes of the data clusters, including extent along the y-axis, spread along the x-axis, area or volume, etc., may be stored in memory circuitry. In an embodiment, the storage circuitry may include a histogram-based storage mechanism to facilitate storage of quantitative attributes over extended periods of time. In embodiments, the storage circuitry may be external to the CRM device 102, or may be communicatively coupled to the CRM device 102 via communications circuitry.
CRM装置102的可植入导联系统110和电子单元105可以结合一个或多个胸阻抗或类似信号传感器,所述信号传感器可以用于,例如,获得关于患者的呼吸波形的信息或其它呼吸相关信息。在Hartley等,美国专利第6,076,015号题为“使用经胸阻抗的速率适应性心律管理装置(RATE ADAPTIVE CARDIAC RHYTHM MANAGEMENT DEVICE USING TRANSTHORACICIMPEDANCE)”中描述了通过测量经胸阻抗而监测肺潮气量的方法的说明性实例,在此将其通过引用并入本文。在Hatlestad等,美国专利第7,603,170号题为“使用胸直流阻抗校准呼吸量的阻抗监测(CALIBRATION OF IMPEDANCE MONITORING OF RESPIRATORY VOLUMESUSING THORACIC D.C.IMPEDANCE)”描述了可以检测呼吸信号和测量呼吸量的系统的说明性实例,在此将其通过引用并入本文。The implantable lead system 110 and electronics unit 105 of the CRM device 102 may incorporate one or more thoracic impedance or similar signal sensors that may be used, for example, to obtain information about the patient's respiratory waveform or other respiratory correlations. information. Hartley et al., U.S. Patent No. 6,076,015 entitled "RATE ADAPTIVE CARDIAC RHYTHM MANAGEMENT DEVICE USING TRANSTHORACIC IMPEDANCE" describe methods for monitoring lung tidal volumes by measuring transthoracic impedance. Illustrative example, which is hereby incorporated by reference. In Hatlestad et al., U.S. Patent No. 7,603,170 entitled "CALIBRATION OF IMPEDANCE MONITORING OF RESPIRATORY VOLUMESUSING THORACIC D.C. IMPEDANCE" describes an illustrative example of a system that can detect respiratory signals and measure respiratory volume. example, which is hereby incorporated by reference.
在实施例中,胸阻抗信号传感器可以包括,例如,一个或多个心内电极111-118,例如可被定位在心脏107的一个或多个腔室中。心内电极111-118可以耦合到阻抗驱动/感测电路106,例如,可以定位在脉冲发生器105的壳体内。In an embodiment, the thoracic impedance signal sensor may include, for example, one or more intracardiac electrodes 111 - 118 , such as may be positioned in one or more chambers of the heart 107 . Intracardiac electrodes 111 - 118 may be coupled to impedance drive/sensing circuitry 106 and may be positioned within the housing of pulse generator 105 , for example.
在实施例中,阻抗驱动/感测电路106可以被配置为产生流过组织的电流,如在阻抗驱动电极131和电子单元105的壳体101上的金属盒电极之间。相对于金属盒电极的阻抗感测电极114处的电压可以随着患者的胸阻抗变化而变化。可以用阻抗感测电路106检测阻抗感测电极114和金属盒电极之间形成的电压信号。阻抗感测或驱动电极的其它定位或组合也是可能的。在表1中列出了一些实例,并且在下面讨论。In an embodiment, the impedance driving/sensing circuit 106 may be configured to generate a current flow through tissue, such as between the impedance driving electrode 131 and a metal box electrode on the housing 101 of the electronics unit 105 . The voltage at the impedance sensing electrodes 114 relative to the metal box electrodes may vary as the patient's chest impedance varies. The voltage signal developed between the impedance sensing electrode 114 and the metal box electrode may be detected by the impedance sensing circuit 106 . Other positioning or combinations of impedance sensing or driving electrodes are also possible. Some examples are listed in Table 1 and discussed below.
可植入导联系统110可以包括一个或多个心脏起搏/感测电极113-117,例如可被定位在一个或多个心脏腔室之内、之上或周围,例如,用于感测来自患者心脏107的一个或多个电信号。心内感测和起搏电极113-117,如示于图1中的那些,可用于感测或起搏一个或多个心脏的腔室,诸如左心室(LV)、右心室(RV)、左心房(LA)或右心房(RA)。可植入导联系统110可以包括一个或多个除颤电极111、112,诸如用于将除颤或心脏复律电击递送到心脏或用于感测来自心脏107的一个或多个固有电信号。Implantable lead system 110 may include one or more cardiac pacing/sensing electrodes 113-117, such as may be positioned in, on, or around one or more heart chambers, e.g., for sensing One or more electrical signals from the patient's heart 107. Intracardiac sensing and pacing electrodes 113-117, such as those shown in FIG. Left atrium (LA) or right atrium (RA). The implantable lead system 110 may include one or more defibrillation electrodes 111, 112, such as for delivering a defibrillation or cardioversion shock to the heart or for sensing one or more intrinsic electrical signals from the heart 107 .
图2A和图2B一般地图解诸如可以使用可植入导联系统110获取的阻 抗数据的实施例。在图2A的实施例中,图200图解诸如可以使用右心房(RA)电极如右心房阻抗感测电极114和金属盒电极测量的胸阻抗数据的实例。在实施例中,RA-Can电极配置可以指示第一阻抗矢量。在图2B的实施例中,图220图解例如可以使用右心室(RV)电极如右心室感测电极115和金属盒电极测量的胸阻抗数据的实例。RV-Can电极配置可以指示第二阻抗矢量。2A and 2B illustrate generally embodiments of impedance data such as may be acquired using implantable lead system 110. In the embodiment of FIG. 2A , graph 200 illustrates an example of chest impedance data such as may be measured using right atrial (RA) electrodes, such as RA impedance sensing electrodes 114 and metal box electrodes. In an embodiment, the RA-Can electrode configuration may indicate a first impedance vector. In the embodiment of FIG. 2B , graph 220 illustrates an example of chest impedance data that may be measured, for example, using right ventricle (RV) electrodes such as RV sense electrodes 115 and metal box electrodes. The RV-Can electrode configuration can indicate a second impedance vector.
可以在特定时刻瞬间从患者获得胸阻抗数据,或可以在一段时期期间记录并监控胸阻抗,如在一天、数天或更长的时期期间。在图2A和图2B的实施例中,图200和图220中所示的数据可以表示胸阻抗数据,例如可以在约14天的时期期间从患者获得。在实施例中,对于每个被监控的阻抗矢量,可以以每天约72个样本或每20分钟1个样本的取样率获得胸阻抗数据。测得的阻抗数据的每个峰到峰周期可以代表约一个24小时周期,取决于患者的活动和生理参数。例如,由峰203和峰204限定的时间周期可以代表一个24小时周期。可以在与下图240中表示的数据相同的14天周期期间获得图200中表示的数据,使得RA-Can阻抗测量的峰值在时间上与RV-Can阻抗测量的峰值相一致(例如,峰203发生在大约与峰223相同的时刻,例如在相同的取样时间间隔内,并且峰204发生在大约与峰224相同的时刻)。Thoracic impedance data may be obtained instantaneously from the patient at a particular moment, or may be recorded and monitored over a period of time, such as over a day, days, or a longer period of time. In the embodiment of FIGS. 2A and 2B , the data shown in graphs 200 and 220 may represent thoracic impedance data, such as may be obtained from a patient over a period of about 14 days. In an embodiment, chest impedance data may be obtained at a sampling rate of approximately 72 samples per day, or 1 sample every 20 minutes, for each monitored impedance vector. Each peak-to-peak period of measured impedance data can represent approximately one 24-hour period, depending on the patient's activity and physiological parameters. For example, the time period defined by peak 203 and peak 204 may represent a 24 hour period. The data represented in graph 200 can be obtained during the same 14-day period as the data represented in graph 240 below, such that the peak of the RA-Can impedance measurement coincides in time with the peak of the RV-Can impedance measurement (e.g., peak 203 occurs at about the same time as peak 223, eg, within the same sampling time interval, and peak 204 occurs at about the same time as peak 224).
在一个实施例中,图2A和2B中用涂黑的圆圈表示的数据点可以代表阻抗测量,如当患者处于侧卧位或平卧位时可以获得。图2A和图2B中由空心圆表示的数据点可以表示阻抗测量,如当患者处于直立姿势时可以得到。虽然可以基于时刻(time of day)大体地推断体位,但是使用图2A和2B中表示的阻抗信息可获得更精确的体位检测机制,如下所解释的那样。有用的趋势信息,如用于提供心力衰竭代偿失调的指征,也可以使用图2A和图2B的阻抗信息得到。In one embodiment, the data points represented by the blackened circles in FIGS. 2A and 2B may represent impedance measurements, such as may be obtained while the patient is in a lateral or supine position. Data points represented by open circles in FIGS. 2A and 2B may represent impedance measurements, such as may be obtained when the patient is in an upright position. While body position can be roughly inferred based on time of day, a more precise body position detection mechanism can be obtained using the impedance information represented in Figures 2A and 2B, as explained below. Useful trend information, such as that used to provide an indication of decompensation in heart failure, can also be obtained using the impedance information in Figures 2A and 2B.
图3一般地图解图300的实施例,其在公共轴线上图示记录的来自RA-Can和RV-Can阻抗矢量的阻抗的实施例,诸如在包括约四天的时期期间。图300包括来自体位传感器如运动检测器104的倾角数据。在图3的实施例中,0度倾角可以代表侧卧、仰卧或平卧的患者位置或体位,并且90度倾角可以代表直立的或站立的患者位置或体位。FIG. 3 generally illustrates an embodiment of a graph 300 illustrating on a common axis an embodiment of recorded impedance from RA-Can and RV-Can impedance vectors, such as during a period comprising about four days. Graph 300 includes inclination data from a body position sensor, such as motion detector 104 . In the embodiment of FIG. 3 , a 0 degree inclination may represent a lateral, supine or supine patient position or position, and a 90 degree inclination may represent an upright or standing patient position or position.
图3一般地图解可以预期的胸阻抗波动的实例,例如由于患者的移动、神经激素调制或影响患者的其它因素。一般地,胸阻抗随时间的变化同样反映在多于一个的测量到的胸阻抗矢量中。在图3的实施例中,可以看出,从一个样本到下一个样本的RA-Can阻抗矢量331的幅度变化大约以与时间上对应的样本的RV-Can阻抗矢量332相同的幅度而变化。例如,RA-Can阻抗矢量331从t2之前的样本到t2之后的样本的阻抗变化是Δ2A,或约2欧姆。RV-Can阻抗矢量332从t2之前的样本到t2之后的样本的阻抗变化是Δ2V,其是约2欧姆。因此,Δ2A约等于Δ2V,并且两个阻抗矢量的幅度被调节大致相同的量。类似地,RA-Can阻抗矢量331从t4之前的样本到t4之后的样本的阻抗变化是Δ4A,并且对于RV-Can阻抗矢量332是Δ4V,其中Δ4A约等于Δ4V。换言之,虽然RA-Can和RV-Can阻抗矢量预期在整个给定的时段内变化,例如响应于正常昼夜节奏变化而变化,但是两个矢量的幅度可以预期变化大致相同的量。即,一般地,(│RA-Cant–RA-Cant-1│)≈(│RV-Cant–RV-Cant-1│)。FIG. 3 generally illustrates examples of fluctuations in thoracic impedance that may be expected, for example, due to patient movement, neurohormonal modulation, or other factors affecting the patient. Typically, changes in thoracic impedance over time are also reflected in more than one measured thoracic impedance vector. In the example of Figure 3, it can be seen that the magnitude of the RA-Can impedance vector 331 from one sample to the next varies by approximately the same magnitude as the RV-Can impedance vector 332 of the temporally corresponding sample. For example, the change in impedance of RA-Can impedance vector 331 from a sample before t2 to a sample after t2 is Δ2A , or about 2 ohms. The change in impedance of the RV-Can impedance vector 332 from the sample before t 2 to the sample after t 2 is Δ 2V , which is about 2 ohms. Thus, Δ 2A is approximately equal to Δ 2V , and the magnitudes of the two impedance vectors are adjusted by approximately the same amount. Similarly, the change in impedance for the RA-Can impedance vector 331 from the sample before t4 to the sample after t4 is Δ4A , and for the RV - Can impedance vector 332 is Δ4V , where Δ4A is approximately equal to Δ4V . In other words, while the RA-Can and RV-Can impedance vectors are expected to vary throughout a given period of time, eg, in response to normal circadian rhythm changes, the magnitudes of both vectors can be expected to vary by approximately the same amount. That is, generally, (│RA-Can t -RA-Can t-1 │)≈(│RV-Can t -RV-Can t-1 │).
然而,在时间t1和t3时,RV-Can阻抗矢量332的阻抗幅度的变化可以大于RA-Can阻抗矢量331的阻抗的幅度变化。在图3的实施例中,时间t1就发生在午夜前,并且体位信息或倾角表明,患者已经经历了从直立到侧卧的体位变化,如当患者进入夜晚的睡眠时。紧随这种体位改变,可以观察到阻抗矢量幅度的变化。据认为,在体位变化时的阻抗矢量的幅度变化可以归因于,除其它因素外,患者胸腔流体的突然转移。However, at times t1 and t3 , the change in magnitude of the impedance of the RV-Can impedance vector 332 may be greater than the magnitude of the change in impedance of the RA-Can impedance vector 331 . In the example of FIG. 3, time t1 occurs just before midnight, and the body position information or inclination indicates that the patient has undergone a body position change from upright to side lying, such as when the patient enters a night's sleep. Following this change in body position, changes in the magnitude of the impedance vector can be observed. It is believed that the change in magnitude of the impedance vector upon body position change can be attributed, among other factors, to the sudden shift of the patient's pleural fluid.
在图3的实施例中,RA-Can阻抗矢量331的幅度变化是Δ1A,或约1欧姆,并且RV-Can阻抗矢量332的幅度变化是Δ1V,或约4欧姆。因此,可以在该患者体位改变时观察到RV-Can阻抗矢量332相比于RA-Can阻抗矢量331的较大的幅度变化。类似地,在t3时,患者经历从侧卧位到直立位的第二体位改变,例如当患者白天醒来时。从t3之前的样本到t3之后的样本的阻抗变化对于RA-Can阻抗矢量331是Δ3A并且对于RV-Can阻抗矢量332是Δ3V。同样地,RV-Can阻抗矢量332的幅度变化Δ3V比RA-Can阻抗矢量331的幅度变化Δ3A更大。In the embodiment of FIG. 3 , the magnitude change of RA-Can impedance vector 331 is Δ 1A , or about 1 ohm, and the magnitude change of RV-Can impedance vector 332 is Δ 1V , or about 4 ohms. Therefore, a larger magnitude change of the RV-Can impedance vector 332 compared to the RA-Can impedance vector 331 can be observed when the patient position changes. Similarly, at t3 , the patient undergoes a second postural change from a lateral to an upright position, such as when the patient wakes up during the day. The change in impedance from the sample before t3 to the sample after t3 is Δ3A for RA-Can impedance vector 331 and Δ3V for RV-Can impedance vector 332 . Likewise, the magnitude change Δ3V of the RV-Can impedance vector 332 is larger than the magnitude change Δ3A of the RA-Can impedance vector 331.
图4A使用笛卡尔坐标系一般地图解图400的实施例,其中来自第一生理传感器的信息可以针对来自第二生理传感器的信息作图。在图4A的 实施例中,来自RA-Can阻抗矢量331的阻抗数据(如沿x-轴)可以针对来自RV-Can阻抗矢量332的阻抗数据(例如沿y-轴)作图。在对应的时间或在对应的样本窗口内得到的阻抗幅度样本形成绘制的阻抗数据的坐标。FIG. 4A generally illustrates an embodiment of a graph 400 using a Cartesian coordinate system where information from a first physiological sensor can be plotted against information from a second physiological sensor. In the embodiment of FIG. 4A , impedance data from RA-Can impedance vector 331 (eg, along the x-axis) can be plotted against impedance data from RV-Can impedance vector 332 (eg, along the y-axis). Impedance magnitude samples taken at corresponding times or within corresponding sample windows form the coordinates of the plotted impedance data.
在图4A的实施例中,第一时间间隔0<t<1可以包括对RA-Can阻抗矢量331和RV-Can阻抗矢量332的每一个的阻抗幅度测量。将第一时间间隔期间获得的第一阻抗数据的幅度针对相同的第一时间间隔期间获得的第二阻抗数据作图。可以对随后的时间间隔例如每半小时添加附加阻抗幅度数据。In the embodiment of FIG. 4A , the first time interval 0<t<1 may include impedance magnitude measurements for each of the RA-Can impedance vector 331 and the RV-Can impedance vector 332 . The magnitude of the first impedance data obtained during the first time interval is plotted against the second impedance data obtained during the same first time interval. Additional impedance magnitude data may be added for subsequent time intervals, eg, every half hour.
图4A是图解来自单一患者的约4天的阻抗信息的实施例,如使用图3中所示的阻抗信息。在一个实施例中,图4A中所示的阻抗数据可以以每20分钟一个样本的速率取样,在四天时期期间共有288个数据点。在图4A中,来自RA-Can矢量和RV-Can矢量的阻抗数据可以绘制在笛卡尔平面上,形成至少两个数据群集。由于在患者体位改变时相比于第二矢量(例如Δ1V)第一矢量的幅度变化(例如Δ1A)的差异,可以发生数据聚类(data clustering)。数据群集可以是原始数据的子集。使用数种聚类技术中的一种或多种,例如使用计算机处理器执行指令来执行聚类技术,可以实现原始数据至数据群集的划分或分配。可以使用多种聚类技术,包括层次聚类(例如,涉及大数据集划分成依次较小的群集)、划分聚类(例如,涉及每个点对每个群集的归属因子的确定),或基于密度的聚类(例如,涉及识别高密度区域)。每个群集可以表示使用来自两个或多个生理传感器的信息形成的函数的一部分。FIG. 4A is an example illustrating about 4 days of impedance information from a single patient, such as using the impedance information shown in FIG. 3 . In one embodiment, the impedance data shown in Figure 4A may be sampled at a rate of one sample every 20 minutes, for a total of 288 data points during the four day period. In Figure 4A, the impedance data from the RA-Can vector and the RV-Can vector can be plotted on a Cartesian plane, forming at least two data clusters. Data clustering may occur due to differences in the magnitude change (eg Δ 1A ) of the first vector compared to the second vector (eg Δ 1V ) as the patient position changes. A data cluster can be a subset of the original data. The partitioning or assignment of raw data into data clusters can be accomplished using one or more of several clustering techniques, eg, using a computer processor to execute instructions to perform the clustering techniques. A variety of clustering techniques can be used, including hierarchical clustering (e.g. involving the division of a large data set into successively smaller clusters), partitional clustering (e.g. involving the determination of an attribution factor for each point to each cluster), or Density-based clustering (e.g., involves identifying high-density regions). Each cluster may represent a portion of a function formed using information from two or more physiological sensors.
现在参看图3和图4A,对于t<t1的RA-Can阻抗矢量331和RV-Can阻抗矢量332的阻抗数据可以表示在图4A的下部群集542中。在时间t=t1,RV-Can阻抗矢量332的幅度变化Δ1V比RA-Can阻抗矢量331的幅度变化Δ1A更大。这种幅度变化的差异可以导致从对应于直立患者位的下部群集442跃变到对应于侧卧患者位的上部群集441。在时间t1<t<t2期间获取的阻抗数据,如对应于侧卧患者位,可以属于上部群集441的范围内。在时间t=t3,患者体位改变,如将患者恢复到直立位,可以导致另一个跃变。跃变可以从上部群集441到下部群集442。对于t>t3获取的阻抗数据可以属于下部群集442的范围内,对应于直立患者位。Referring now to FIGS. 3 and 4A , impedance data for RA-Can impedance vector 331 and RV-Can impedance vector 332 for t < t 1 may be represented in lower cluster 542 of FIG. 4A . At time t=t 1 , the magnitude change Δ1V of the RV-Can impedance vector 332 is greater than the magnitude change Δ1A of the RA-Can impedance vector 331 . This difference in amplitude change may result in a jump from the lower cluster 442 corresponding to the upright patient position to the upper cluster 441 corresponding to the side lying patient position. Impedance data acquired during times t 1 <t<t 2 , such as corresponding to a lateral patient position, may fall within the upper cluster 441 . At time t= t3 , a change in patient position, such as returning the patient to an upright position, may result in another jump. A transition may be from upper cluster 441 to lower cluster 442 . Impedance data acquired for t> t3 may fall within the lower cluster 442, corresponding to the upright patient position.
在实施例中,图400可以包括使用第一生理传感器获得的第一生理数据,和使用第二生理传感器获得的第二生理数据。在实施例中,第一和第二生理数据可以随着时间的推移而获取,并且可以通过将第一生理数据对第二生理数据作图从图400中除去时间变量。In an embodiment, graph 400 may include first physiological data obtained using a first physiological sensor, and second physiological data obtained using a second physiological sensor. In an embodiment, the first and second physiological data may be acquired over time, and the time variation may be removed from the graph 400 by plotting the first physiological data against the second physiological data.
生理传感器可以包括被配置为测量电特性如电压或阻抗的传感器,或被配置为测量机械或声学信息的传感器,等。在实施例中,三个或多个生理传感器如三个不同的可植入电极,可用于监测患者中的三个不同阻抗矢量。在实施例中,两个生理传感器可以被配置为监测两个不同阻抗矢量,并且第三生理传感器可以被配置为监测S3心音。来自所述两个或多个生理传感器的数据,可以用于形成函数,如第一生理数据对第二或第三生理数据的函数。函数可用于形成数据群集,如通过确定函数的离散部分,如通过以不依赖时间的方式对数据作图。Physiological sensors may include sensors configured to measure electrical properties such as voltage or impedance, or sensors configured to measure mechanical or acoustic information, among others. In an embodiment, three or more physiological sensors, such as three different implantable electrodes, may be used to monitor three different impedance vectors in the patient. In an embodiment, two physiological sensors may be configured to monitor two different impedance vectors, and a third physiological sensor may be configured to monitor the S3 heart sound. Data from the two or more physiological sensors may be used to form a function, such as a function of the first physiological data on the second or third physiological data. Functions can be used to form clusters of data, such as by determining discrete parts of the function, such as by plotting the data in a time-independent manner.
在实施例中,图400可包括第三阻抗矢量,如使用左心室电极和金属盒电极。该第三阻抗矢量可以对RA-Can阻抗矢量331和RV-Can阻抗矢量332作图以形成三维数据群集。附加传感器数据可以对该三维数据群集作图,例如,以形成多维函数。In an embodiment, map 400 may include a third impedance vector, such as using left ventricular electrodes and metal box electrodes. This third impedance vector can be plotted against the RA-Can impedance vector 331 and the RV-Can impedance vector 332 to form a three-dimensional data cluster. Additional sensor data can be plotted against the three-dimensional data cluster, for example, to form a multidimensional function.
图4B一般地图解图400的特性或定量属性中的数个。特性的一些例子可以包括沿x-轴的展开、沿y-轴的范围,和数据群集形心位置。多维函数的一些特性,例如,可以使用来自两个或多个传感器的数据形成,可以包括扩展(spread)、范围(range)、面积(area)、体积(volume)和超体积(hyper-volume)(在4维或更高维空间的情况下),以及其它属性。FIG. 4B generally illustrates several of the characteristic or quantitative attributes of graph 400 . Some examples of properties may include spread along the x-axis, extent along the y-axis, and data cluster centroid locations. Some properties of multidimensional functions, for example, can be formed using data from two or more sensors, and can include spread, range, area, volume, and hyper-volume (in the case of 4-dimensional or higher-dimensional spaces), and other properties.
在实施例中,可以测量数据群集441、442中的一个或两者的诸如沿x-轴的扩展450。数据群集的扩展450可以代表归因于特定矢量如RA-Can阻抗矢量331的全部阻抗幅度值的域。在图4B所示的实施例中,下部群集442的扩展可以是33欧姆到46欧姆。在实施例中,最大阻抗和最小阻抗之间的差可以代表扩展450。在图4B所示的实施例中,下部群集442的扩展450可以是13欧姆,并且上部群集441的扩展450可以是16欧姆。在图4B所示的实施例中,上部群集441的扩展450可以等于图400上表示的整个函数的扩展450。在实施例中,扩展450可以表示群集内的数据点的阻抗值的标准差或方差。In an embodiment, the spread 450 of one or both of the data clusters 441, 442, such as along the x-axis, may be measured. The expansion 450 of the data cluster may represent a domain of all impedance magnitude values attributed to a particular vector, such as the RA-Can impedance vector 331 . In the embodiment shown in FIG. 4B, the extension of the lower cluster 442 may be 33 ohms to 46 ohms. In an embodiment, the difference between the maximum impedance and the minimum impedance may represent the extension 450 . In the embodiment shown in FIG. 4B, the extension 450 of the lower cluster 442 may be 13 ohms and the extension 450 of the upper cluster 441 may be 16 ohms. In the embodiment shown in FIG. 4B , the expansion 450 of the upper cluster 441 may be equal to the expansion 450 of the entire function represented on the graph 400 . In an embodiment, the spread 450 may represent the standard deviation or variance of the impedance values of the data points within the cluster.
图4B一般地图解图400上表示的函数的范围451的实施例。范围451可以代表图400上表示的整个函数的范围,或范围451可以代表函数的一部分,如包括一个或多个数据群集的范围。在图4B的实施例中,上部群集441的范围451可以是约15欧姆。在实施例中,下部群集442的范围可以是约13欧姆。在实施例中,范围451可以表示群集内数据点的阻抗值的标准差或方差。FIG. 4B generally illustrates an embodiment of the range 451 of the function represented on the graph 400 . Range 451 may represent the range of the entire function represented on graph 400, or range 451 may represent a portion of a function, such as a range that includes one or more clusters of data. In the embodiment of FIG. 4B, the range 451 of the upper cluster 441 may be about 15 ohms. In an embodiment, the range of the lower cluster 442 may be about 13 ohms. In an embodiment, the range 451 may represent the standard deviation or variance of the impedance values of the data points within the cluster.
在实施例中,可以将函数的范围和展开结合,如使用勾股定理,以在多维空间上获得函数的范围。例如,使用方程式可以结合函数的范围和展开,其中展开(x)是数据沿x-轴的全部展开,并且范围(y)是数据沿y-轴的全部范围。In an embodiment, the scope of the function and the expansion can be combined, such as using the Pythagorean theorem, to obtain the scope of the function on a multi-dimensional space. For example, using the equation Range and Spread of the function can be combined, where Spread(x) is the full spread of the data along the x-axis, and Range(y) is the full range of the data along the y-axis.
数据的定量属性,如数据群集的形心、数据群集形心之间的距离或一个或多个数据群集的面积,以及其它属性,也可以使用图400测量。图4B一般地图解上部群集441的形心452和下部群集442的形心453。例如,上部群集441的形心可以位于坐标:Quantitative properties of the data, such as centroids of data clusters, distances between data cluster centroids, or areas of one or more data clusters, among other properties, can also be measured using graph 400 . FIG. 4B generally illustrates the centroid 452 of the upper cluster 441 and the centroid 453 of the lower cluster 442 . For example, the centroid of the upper cluster 441 may be located at the coordinates:
其中n是归因于上部群集441的RA-Can阻抗测量的数目,并且(RA-Can)i是归因于样本i的阻抗测量的幅度。where n is the number of RA-Can impedance measurements attributed to the upper cluster 441 and (RA-Can) i is the magnitude of the impedance measurement attributed to sample i.
可以例如使用勾股定理确定上部群集441和下部群集442的形心之间的距离。一般地,形心分析可以扩展到任何数量的群集,包括三维空间中的群集,例如可以使用来自附加传感器或阻抗矢量的数据作图。第三维度中的形心坐标可以是:The distance between the centroids of the upper cluster 441 and the lower cluster 442 can be determined, for example, using the Pythagorean theorem. In general, centroid analysis can be extended to any number of clusters, including clusters in three-dimensional space, for example, can be plotted using data from additional sensors or impedance vectors. The centroid coordinates in the third dimension can be:
其中n是归因于上部群集441的来自第三传感器的测量的数目,并且(传感器)i是归因于样本i的来自第三传感器的测量的幅度。where n is the number of measurements from the third sensor attributed to the upper cluster 441 and (sensor) i is the magnitude of the measurement from the third sensor attributed to sample i.
在实施例中,分析与形心相关的一个或多个矢量可以提供定量属性信息。例如,与原点以及形心452有关的矢量可以与和原点以及形心453有关的矢量比较。在实施例中,可以进行两个或多个矢量的点积以获得定量属性,包括矢量之间的角度。In an embodiment, analyzing one or more vectors associated with a centroid may provide quantitative attribute information. For example, a vector related to the origin and centroid 452 may be compared to a vector related to the origin and centroid 453 . In an embodiment, a dot product of two or more vectors may be performed to obtain quantitative attributes, including angles between vectors.
有几种计算数据群集面积的方法,如通过将表示数据的函数或函数集积分,或通过数值积分技术,等。图4C一般地图解用数值积分计算数据群集面积的方法。数据的展开或范围可以分为n个离散区间,并且可以为每个区间找到局部最小值和最大值以限定矩形范围。可以确定矩形面积并加和以提供总群集面积的近似值。在图4C的实施例中,数据群集可以各自分成每个1欧姆的14个区间。上部群集441的第6区间中的数据点包括在(RA-Can=36.3,RV-Can=33)局的部最小值455,和在(RA-Can=36.25,RV-Can=36.5)的局部最大值454以限定矩形面积为3.5(单位省略)。下部群集的第6区间中的矩形面积是2.25(单位省略)。使用该方法计算的上部群集的总面积为约29.25,下部群集的总面积为约22.5。There are several ways to calculate the area of a data cluster, such as by integrating a function or set of functions representing the data, or by numerical integration techniques, etc. Figure 4C generally illustrates a method of calculating the area of a data cluster using numerical integration. The spread or range of data can be divided into n discrete intervals, and local minima and maxima can be found for each interval to define a rectangular extent. The rectangular areas can be determined and summed to provide an approximation of the total cluster area. In the embodiment of FIG. 4C, the data clusters may each be divided into 14 bins of 1 ohm each. The data points in interval 6 of the upper cluster 441 include a local minimum 455 at (RA-Can=36.3, RV-Can=33), and a local minimum at (RA-Can=36.25, RV-Can=36.5). The maximum value is 454 to define a rectangle with an area of 3.5 (units omitted). The area of the rectangle in the 6th interval of the lower cluster is 2.25 (units omitted). The total area calculated using this method is about 29.25 for the upper cluster and about 22.5 for the lower cluster.
还可以计算数据群集组的面积,如用图4D中所示的方法。可以绘制完全囊括数据群集的矩形。在图4D的实施例中,囊括数据群集的矩形的总面积是约74。可以使用几个其它用于计算或近似数据群集总面积的技术,如图4C的讨论中的上述数值积分法。The area of the data cluster group can also be calculated, as shown in Figure 4D. A rectangle can be drawn that completely encloses the cluster of data. In the example of FIG. 4D , the total area of the rectangle enclosing the data clusters is about 74 . Several other techniques for calculating or approximating the total area of data clusters can be used, such as the numerical integration method described above in the discussion of Figure 4C.
在实施例中,一对数据群集的面积可以使用下面的方程式计算:In an embodiment, the area of a pair of data clusters can be calculated using the following equation:
其中d是两个群集的形心之间的距离,展开(x)是沿x-轴的数据的全部展开,并且范围(y)是沿Y轴的数据的全部范围。在实施例中,假定数据群集可以表示为具有长度的两条相对边的四边形,并且这两条相对边之间的距离等于形心之间的距离。where d is the distance between the centroids of the two clusters, spread (x) is the full spread of the data along the x-axis, and extent (y) is the full extent of the data along the y-axis. In an embodiment, it is assumed that data clusters can be represented as having length A quadrilateral with two opposite sides, and the distance between the two opposite sides is equal to the distance between the centroids.
可以使用其它数据群集分析技术。例如,最小二乘技术可以用于将最佳拟合线回归到一个或多个数据群集。最佳拟合线的斜率可以用作定量属性,或者可以使用最佳拟合线的一部分下的面积。还可以使用用于将更高阶最佳拟合曲线回归到一个或多个数据群集的其它技术。Other data clustering analysis techniques may be used. For example, least squares techniques can be used to regress a line of best fit to one or more data clusters. The slope of the line of best fit can be used as a quantitative attribute, or the area under a portion of the line of best fit can be used. Other techniques for regressing higher order best fit curves to one or more data clusters may also be used.
可以随着时间而监测数据群集密度,如在特定范围或展开上。改变密度或密度的位置可以用作定量属性以提供患者的诊断信息。在实施例中,可以形成表示密度的函数并分析以确定定量属性。Data cluster density can be monitored over time, such as over a particular range or spread. Density of change or location of density can be used as a quantitative attribute to provide diagnostic information for a patient. In an embodiment, a function representing the density may be formed and analyzed to determine a quantitative attribute.
图4A至4D一般地图解数据群集441和442的数个定量属性的非限制性实施例。这些实施例不应被看作是限制本主题的范围。有许多计算与数据群集相关的定量属性的方式。4A-4D generally illustrate non-limiting examples of several quantitative attributes of data clusters 441 and 442 . These examples should not be viewed as limiting the scope of the present subject matter. There are many ways of computing quantitative properties associated with clustering of data.
关于第一患者生理(如目前没有心脏代偿失调的指征的生理学),已经描述了用于获取并表示生理数据的各种方法。在第二患者生理中,如患病生理,生理数据可以基本上区别于第一生理。例如,特定胸阻抗矢量的调制幅度可以在第一患者生理和第二患者生理之间基本上不同。Various methods for acquiring and representing physiological data have been described with respect to a first patient physiology (eg, a physiology that is currently not indicative of cardiac decompensation). In a second patient physiology, such as a diseased physiology, the physiology data may be substantially different from the first physiology. For example, the magnitude of modulation of a particular thoracic impedance vector may differ substantially between a first patient physiology and a second patient physiology.
图5一般地图解图500的实施例,其图解来自心力衰竭代偿失调的风险增加的患者的阻抗矢量和患者体位数据的实施例。图500图解了记录体位信息的包括大约4天的时期,并且记录患者的RA-Can阻抗矢量531和RV-Can阻抗矢量532的阻抗数据。在图5的实施例中,RV-Can阻抗矢量532在接近或处于患者体位变化时没有表现出显著的幅度变化。FIG. 5 generally illustrates an embodiment of a graph 500 illustrating an embodiment of impedance vector and patient position data from a patient at increased risk of heart failure decompensation. Diagram 500 illustrates a period comprising approximately 4 days of recording positional information and recording impedance data for the patient's RA-Can impedance vector 531 and RV-Can impedance vector 532 . In the embodiment of FIG. 5, the RV-Can impedance vector 532 does not exhibit a significant change in magnitude when approaching or at a change in patient position.
如在图3中,图5图解了由于患者移动、神经激素调制或影响患者的其它因素而可以预期的胸阻抗波动。然而,图5中描述的阻抗矢量可以指示患病的患者状态,如经历肺水肿的患者。特别是,与RV-Can阻抗矢量532相比RA-Can阻抗矢量531的幅度变化的差异,在患者体位变化时可以降低或最小化。As in FIG. 3 , FIG. 5 illustrates fluctuations in thoracic impedance that can be expected due to patient movement, neurohormonal modulation, or other factors affecting the patient. However, the impedance vector depicted in FIG. 5 may be indicative of a diseased patient state, such as a patient experiencing pulmonary edema. In particular, the difference in magnitude change of the RA-Can impedance vector 531 compared to the RV-Can impedance vector 532 may be reduced or minimized as the patient position changes.
例如,在t5和t7,RV-Can阻抗矢量532的阻抗幅度变化不再与RA-Can阻抗矢量531的阻抗幅度变化形成明显对比。在图5的实施例中,时间t5刚好发生在午夜之前,并且体位信息指示患者已经经历了从直立到侧卧体位的改变,如当患者进入夜晚的睡眠时。紧随着该体位改变,RV-Can阻抗矢量332的大幅度变化,如在图3中在Δ1V观察到的,减小或不再存在。For example, at t 5 and t 7 , the change in impedance magnitude of RV-Can impedance vector 532 no longer contrasts significantly with the change in impedance magnitude of RA-Can impedance vector 531 . In the embodiment of FIG. 5 , time t5 occurs just before midnight, and the position information indicates that the patient has undergone a change from an upright to side-lying position, such as when the patient enters a night's sleep. Following this body position change, the large change in RV-Can impedance vector 332, as observed at Δ1V in FIG. 3, is reduced or no longer exists.
在实施例中,患者在体位变化时的RA-Can或RV-Can阻抗矢量的幅度变化可以归因于,除其它因素外,患者胸腔流体中的局部转移。直立患者中的胸腔流体可以倾向于积聚在身体的下部区域,原因在于由于重力所致的流体的正常反应。当患者进入侧卧或平卧体位时,流体可分散在胸部,包括心脏区域中。植入电极的区域中流体积聚可以促成使用这些电极检测到的阻抗变化,如可以由于肺中的流体积聚所致的夜间胸导纳增加。经历肺水肿的患者,如可由与充血性心力衰竭相关的静脉充血引起,可出现胸腔流体的异常积聚。然而,随着流体积聚,直立和侧卧体位之间的正常流体转移的幅度减小。即,因为流体水平可以在疾病状态时升高,因此当患者改变体位时,流体转移可能不那么大。如果将肺区域用流体饱和,由于患者体位变化所致的测量到的胸阻抗矢量幅度的变化可以降低。在一些矢 量中,可以比在其它矢量中更容易地反映流体转移。In an embodiment, changes in the magnitude of the RA-Can or RV-Can impedance vector as the patient changes position may be due, among other factors, to local shifts in the patient's pleural fluid. Pleural fluid in an upright patient may tend to accumulate in the lower regions of the body due to the normal response of the fluid due to gravity. Fluid can be dispersed in the chest, including the heart region, when the patient is placed in a lateral or supine position. Fluid accumulation in the region where the electrodes are implanted can contribute to the impedance changes detected using these electrodes, as can be the nocturnal increase in thoracic admittance due to fluid accumulation in the lungs. Patients experiencing pulmonary edema, as can be caused by venous congestion associated with congestive heart failure, may develop abnormal accumulation of pleural fluid. However, the magnitude of normal fluid transfer between upright and lateral positions is reduced as fluid accumulates. That is, because fluid levels may be elevated in disease states, fluid shifts may not be as great when the patient changes position. Changes in the magnitude of the measured thoracic impedance vector due to changes in patient position can be reduced if the lung region is saturated with fluid. In some vectors, fluid transfer can be reflected more easily than in others.
在图5的实施例中,在t5时的RA-Can阻抗矢量531的幅度变化是Δ 5A,或约1欧姆,并且RV-Can阻抗矢量532的幅度变化是Δ5V,或约1欧姆。在t5时的RV-Can阻抗矢量532的幅度变化显著小于在t1时的RV-Can阻抗矢量332的幅度变化。在类似的体位改变时的这种实质性区别可以指示增加的胸腔流体水平。同样地,在t7时,患者经历第二体位改变,从侧卧到直立体位。从t7之前的样本到t7之后的样本,阻抗幅度变化,对于RA-Can阻抗矢量531是Δ7A和对于RV-Can阻抗矢量532是Δ7V。重要的是,RV-Can阻抗矢量532的幅度变化,Δ7V,小于RV-Can阻抗矢量332的幅度变化,Δ3V。In the embodiment of FIG. 5 , the magnitude change of RA-Can impedance vector 531 at t5 is Δ5A , or about 1 ohm, and the magnitude change of RV-Can impedance vector 532 is Δ5V , or about 1 ohm. The change in magnitude of the RV - Can impedance vector 532 at t5 is significantly less than the change in magnitude of the RV-Can impedance vector 332 at t1 . This substantial difference at similar postural changes may indicate increased pleural fluid levels. Likewise, at t 7 , the patient undergoes a second change in position, from side lying to an upright position. From the sample before t7 to the sample after t7, the impedance magnitude changes by Δ7A for RA - Can impedance vector 531 and Δ7V for RV-Can impedance vector 532 . Importantly, the magnitude change of the RV-Can impedance vector 532 , Δ 7V , is less than the magnitude change of the RV-Can impedance vector 332 , Δ 3V .
图6一般地图解第二图600的实施例,其中来自RA-Can阻抗矢量531的阻抗数据可以对来自RV-Can阻抗矢量532的相应阻抗数据作图。如在图4A中,当两个矢量的阻抗数据针对彼此作图以除去作为图轴变量的时间,数据可以形成群集。然而,在图6的实施例中,数据可以指示升高的流体水平,如因心力衰竭恶化所致的肺水肿。比较图6和4A,第二图600中的群集不能如它们在图400上那样明确区分。由于在患者体位改变时与第二矢量中的变化差异的幅度(例如Δ5A)相比第一矢量中的变化差异的幅度(例如Δ5V)减小,在RA-Can/RV-Can笛卡尔平面中群集相互接近。在实施例中,群集边界可以变得难以区分。表示第一体位的上部群集641可以与表示不同体位的下部群集642不可区分。FIG. 6 generally illustrates an embodiment of a second graph 600 in which impedance data from RA-Can impedance vector 531 can be plotted against corresponding impedance data from RV-Can impedance vector 532 . As in Figure 4A, when two vectors of impedance data are plotted against each other to remove time as the plot axis variable, the data can form clusters. However, in the embodiment of Figure 6, the data may indicate elevated fluid levels, such as pulmonary edema due to worsening heart failure. Comparing FIGS. 6 and 4A , the clusters in the second graph 600 are not as clearly distinguishable as they are on graph 400 . Since the magnitude of the change difference in the first vector (eg Δ 5V ) is reduced compared to the magnitude of the change difference in the second vector (eg Δ 5A ) when the patient position changes, in RA-Can/RV-Can Cartesian Clusters are close to each other in the plane. In an embodiment, cluster boundaries may become indistinguishable. An upper cluster 641 representing a first body position may be indistinguishable from a lower cluster 642 representing a different body position.
在图6的实施例中,相比于不同时期内在矢量中观察到的调制诸如包括健康、非水肿状态,由于4天时期内的正常昼夜节奏变化所致的矢量的阻抗调制可以在幅度上减小。例如,在第六天在Δ8A和Δ8V时的阻抗变化幅度,可以低于在第二天的相同时间时的阻抗变化的幅度,如在图4A中的Δ4A和Δ4V。阻抗变化的幅度改变可以指示不同的患者生理状态。图6的减小的阻抗调制,与图4A比较,可以在第二图600中的数据群集的展开和范围中观察到。展开和范围是从图400中表示的不同生理状态各自减少的。例如,上部群集441的展开是17欧姆,并且上部群集641的展开是10欧姆。In the example of FIG. 6, the impedance modulation of the vector due to normal circadian rhythm changes over a 4-day period can be reduced in magnitude compared to the modulation observed in the vector during different time periods, such as including the healthy, non-edematous state. Small. For example, the magnitude of the impedance change at Δ8A and Δ8V on the sixth day may be lower than the magnitude of the impedance change at the same time on the second day, such as Δ4A and Δ4V in FIG. 4A . Changes in the magnitude of impedance changes may indicate different patient physiological states. The reduced impedance modulation of FIG. 6 , as compared to FIG. 4A , can be observed in the spread and extent of the data clusters in the second graph 600 . Spread and range are each reduced from the different physiological states represented in graph 400 . For example, the spread of upper cluster 441 is 17 ohms, and the spread of upper cluster 641 is 10 ohms.
利用最近获取的数据形成的数据群集的定量属性可以与使用先前获取 的数据形成的数据群集的属性相比,诸如检测患者生理学的变化。通过监控与生理数据的数个离散边界束有关的数据群集的定量属性,例如每周或每日的生理数据,可以监控这种变化。数据群集的定量属性,在实施例中,可以使用处理器电路108在任意时间段期间被监控或趋势化,例如确定患者病因学的一个或多个趋势。例如,随着时间的数据群集分析可以用于指示患病的或有风险的患者状态。这可以包括提供心力衰竭代偿失调指标。数据群集属性信息可以以任意数量的格式存储,例如,以直方图的格式以便于存储大量数据。Quantitative properties of data clusters formed using recently acquired data may be compared to properties of data clusters formed using previously acquired data, such as detecting changes in patient physiology. Such changes can be monitored by monitoring quantitative properties of data clusters associated with several discrete boundary bundles of physiological data, such as weekly or daily physiological data. Quantitative properties of the data clusters, in an embodiment, may be monitored or trended over an arbitrary period of time using the processor circuit 108, eg, to determine one or more trends in patient etiology. For example, data clustering analysis over time can be used to indicate diseased or at-risk patient status. This can include providing indicators of heart failure decompensation. Data cluster attribute information can be stored in any number of formats, for example, in the format of a histogram to facilitate storage of large amounts of data.
可以分析并趋势化数据群集的一个或多个定量属性如面积、形心位置、展开或体积,等。在实施例中,在第二图600中的一个或两个数据群集的面积可以与图400中的一个或两个数据群集的面积相比。在实施例中,上部群集641可以与下部群集441相比。第二图600中的一个或两个数据群集的面积可以相比于包括多于一个之前群集面积的群集面积的趋势。在三个生理传感器用于获得三维函数的情况下,数据群集的体积可以被趋势化。在实施例中,四个以上的生理传感器可以用于获取多维函数。多维函数定义的群集的定量属性可以被趋势化。在实施例中,将一个或多个定量属性趋势化可以包括监控和记录数个时间窗诸如连续时间窗期间获得的一系列数据群集的定量属性。One or more quantitative attributes of data clusters such as area, centroid location, spread or volume, etc. can be analyzed and trended. In an embodiment, the area of one or both data clusters in second graph 600 may be compared to the area of one or both data clusters in graph 400 . In an embodiment, upper cluster 641 may be compared to lower cluster 441 . The area of one or two data clusters in the second graph 600 may be compared to a trend of cluster areas including more than one previous cluster area. Where three physiological sensors are used to obtain the three-dimensional function, the volume of the data clusters can be trended. In an embodiment, more than four physiological sensors may be used to obtain multidimensional functions. Quantitative properties of clusters defined by multidimensional functions can be trended. In an embodiment, trending one or more quantitative attributes may include monitoring and recording quantitative attributes for a series of data clusters obtained during several time windows, such as consecutive time windows.
数据群集641、642的形心位置可以相比于以前记录的数据的形心位置。例如,形心652的位置可以与形心452的位置相比较。在实施例中,在与特定患者的体位相关联的数据群集的形心位置的变化可以指示生理趋势,如心脏代偿失调的风险增加。形心652的位置可以相比于一系列以前的与上部数据群集关联的形心位置,例如以发现上部数据群集形心位置的趋势。The centroid locations of the data clusters 641, 642 may be compared to the centroid locations of previously recorded data. For example, the location of centroid 652 may be compared to the location of centroid 452 . In an embodiment, a change in the centroid position of a data cluster associated with a particular patient's position may indicate a physiological trend, such as an increased risk of cardiac decompensation. The location of the centroid 652 may be compared to a series of previous centroid locations associated with the upper data cluster, for example, to discover trends in the upper data cluster centroid locations.
可以在一段时间内记录两个或多个形心之间的距离并将其趋势化,例如以指示患者生理状态中的一个或多个变化。可确定形心452和453之间的第一距离,如使用勾股定理。可以类似地确定形心652和653之间的第二距离。可以计算并趋势化表示反映数种体位的数据群集的任意数目的形心之间的距离。在实施例中,第一和第二距离之间的距离减小可以指示异常的患者状态,如存在的或即将发生的与肺水肿相关的心力衰竭代偿失 调。The distance between two or more centroids can be recorded over a period of time and trended, eg, to indicate one or more changes in the physiological state of the patient. A first distance between centroids 452 and 453 may be determined, such as using the Pythagorean theorem. The second distance between centroids 652 and 653 can be similarly determined. The distance between any number of centroids representing clusters of data reflecting several body positions can be calculated and trended. In an embodiment, a decrease in the distance between the first and second distances may indicate an abnormal patient condition, such as an existing or impending decompensation of heart failure associated with pulmonary edema.
可以将每个数据群集的最大值和最小值趋势化,或者数据群集的范围或展开可以随时间趋势化。例如,上部数据群集441的展开450可以与上部数据群集641的展开650比较,或它可以相比于一系列上部数据群集的展开的趋势。图400中表示的函数的展开450可以相比于第二图600中表示的函数的展开450,或几个函数的展开的趋势。在实施例中,相比于图400的第二图600中减小的展开可以指示患者生理变化。The maximum and minimum values of each data cluster can be trended, or the extent or spread of the data clusters can be trended over time. For example, the spread 450 of the upper data cluster 441 can be compared to the spread 650 of the upper data cluster 641, or it can be compared to the trend of the spread of a series of upper data clusters. The expansion 450 of the function represented in graph 400 may be compared to the expansion 450 of the function represented in the second graph 600 , or the trend of the expansion of several functions. In an embodiment, a reduced spread in the second graph 600 compared to graph 400 may be indicative of a patient physiological change.
在实施例中,可以建立基线生理患者状态,例如,包括基线数据群集定量属性。基线数据群集定量属性可以包括表示直立和侧卧体位的不同数据群集的数据群集形心之间的基线距离。在实施例中,超过一些阈值距离的距基线距离的改变,可以将警报发送到患者或医生以提供潜在的异常状态的早期指征。In an embodiment, a baseline physiological patient state may be established, eg, including quantitative attributes of the baseline data cluster. The baseline data cluster quantitative attributes may include a baseline distance between data cluster centroids of different data clusters representing upright and side lying positions. In an embodiment, a change in distance from baseline beyond some threshold distance may send an alert to the patient or physician to provide an early indication of a potentially abnormal condition.
图7一般地图解实施例700,其可以包括获得第一生理数据712,获得第二生理数据714,形成第一生理数据对第二生理数据的函数720,形成至少两个数据群集722,确定数据群集属性762,以及使用数据群集属性提供心力衰竭代偿失调指标782。7 generally illustrates an embodiment 700, which may include obtaining first physiological data 712, obtaining second physiological data 714, forming a function 720 of the first physiological data to the second physiological data, forming at least two data clusters 722, determining the data Clustering attributes 762, and using the data clustering attributes to provide heart failure decompensation indicators 782.
在712,可以得到第一生理数据。在714,可以得到第二生理数据。获得生理数据可以包括获得指示患者电特性的数据,指示患者机械特性的数据,或指示目前患者状态的数据中的一个或多个。指示电特性的数据可以包括指示阻抗、固有组织信号、电容、或导纳的信息,以及其它类型的信息。指示机械特性的数据可以包括指示患者移动的信息、包括心音的声音信息、或呼吸信息,以及其它类型的信息。指示目前患者状态的数据可以包括关于患者体位或患者活动水平的信息,以及其它类型的信息。At 712, first physiological data can be obtained. At 714, second physiological data can be obtained. Obtaining physiological data may include obtaining one or more of data indicative of an electrical characteristic of the patient, data indicative of a mechanical characteristic of the patient, or data indicative of a current state of the patient. Data indicative of electrical properties may include information indicative of impedance, intrinsic tissue signal, capacitance, or admittance, among other types of information. Data indicative of mechanical properties may include information indicative of patient movement, acoustic information including heart sounds, or respiration information, among other types of information. Data indicative of the current state of the patient may include information about the patient's position or the patient's activity level, among other types of information.
在实施例中,获得第一生理数据712可以包括使用定位在患者身体之上或之中的电极获得胸阻抗测量。可以使用在心壁内或附近安装的植入式电极,如右心室感测电极115。第二电极,如金属盒(Can)电极,可以定位于其它位置,例如在患者的胸部或腹部中。第一阻抗矢量,例如在右心室感测电极115和金属盒电极之间,可以用于获得胸阻抗测量。可用于获得生理数据的几个其它矢量列于表1中,其中“X”表示在相应的第一和第二电极之间的可能矢量。在表1中,Can指的是可植入装置的导电壳体, RA指的是定位在心脏右心房内或附近的一个或多个电极,RV指的是定位在心脏右心室内或附近的一个或多个电极,LV指的是定位在心脏左心室内或附近的一个或多个电极,SV指的是定位在心脏室上区域内或附近的一个或多个电极,连接器插头块指的是导联连接器插头块(例如,“集线(header)”)电极,如在CRM102上,其独立于金属盒电极,并且血管内阴极指的是定位于心脏以外的血管内位置的一个或多个电极。在实施例中,获得胸阻抗测量可以包括平均或以其它方式计算全部测量的阻抗的集中趋势,以致由于心脏搏动或呼吸所致的阻抗变化被大大省略。In an embodiment, obtaining first physiological data 712 may include obtaining chest impedance measurements using electrodes positioned on or in the patient's body. Implantable electrodes installed in or near the heart wall, such as right ventricle sensing electrodes 115, may be used. A second electrode, such as a metal can (Can) electrode, may be positioned elsewhere, for example in the patient's chest or abdomen. A first impedance vector, eg, between the right ventricle sensing electrode 115 and the metal box electrode, may be used to obtain chest impedance measurements. Several other vectors that can be used to obtain physiological data are listed in Table 1, where "X" indicates a possible vector between the corresponding first and second electrodes. In Table 1, Can refers to the conductive housing of the implantable device, RA refers to one or more electrodes positioned in or near the right atrium of the heart, and RV refers to electrodes positioned in or near the right ventricle of the heart. One or more electrodes, LV refers to one or more electrodes positioned in or near the left ventricle of the heart, SV refers to one or more electrodes positioned in or near the supraventricular region of the heart, connector plug block refers to is a lead connector plug block (e.g., "header") electrode, as on the CRM102, which is separate from the metal case electrode, and intravascular cathode refers to one located at an intravascular location other than the heart or multiple electrodes. In an embodiment, obtaining thoracic impedance measurements may include averaging or otherwise calculating a central tendency of all measured impedances such that changes in impedance due to cardiac beating or respiration are largely omitted.
表1用于获得生理数据的阻抗矢量。Table 1 Impedance vectors used to obtain physiological data.
在实施例中,获得第一生理数据712可以包括使用传感器如加速度计获得心音信息,所述加速度计被配置为检测S3心音信息。第一生理数据可以包括来自指示心脏机械振动的加速度计的电信号。In an embodiment, obtaining first physiological data 712 may include obtaining heart sound information using a sensor such as an accelerometer configured to detect S3 heart sound information. The first physiological data may include electrical signals from an accelerometer indicative of mechanical vibrations of the heart.
在720处,可以使用第一生理数据和第二生理数据形成函数。在实施例中,第一生理数据可以用作值域,并且第二生理数据可以用作值的范围。域中每个值可以对应于范围中的值,例如通过将在相同时间获得的、或在共同的时间间隔或窗口期间获得的值配对。在实施例中,第一和第二生理数据可以在公共轴线上针对彼此作图。在以时间依赖方式获得第一和第二的生理数据的情况下,第一生理数据对第二生理数据的作图可以在形成的函数中去除作为显式变量(explicit variable)的时间。At 720, a function can be formed using the first physiological data and the second physiological data. In an embodiment, the first physiological data may be used as a range of values, and the second physiological data may be used as a range of values. Each value in the domain may correspond to a value in the range, for example by pairing values obtained at the same time, or during a common time interval or window. In an embodiment, the first and second physiological data may be plotted against each other on a common axis. In case the first and second physiological data are obtained in a time-dependent manner, the plotting of the first physiological data against the second physiological data may remove time as an explicit variable in the formed function.
在722处,可以形成一个或多个数据群集。在实施例中,可以从在720形成的函数获得数据群集。可以使用数个聚类技术中的一个或多个,诸如上面在图4A的讨论中所述。在实施例中,两个阻抗矢量可以用于形成函 数,并且至少两个数据群集可以从函数中被辨别。如果需要,数据群集的数量可以受限于例如聚类技术或可用的处理器容量。在实施例中,仅单一的群集可以使用可用的聚类技术从函数中辨别。At 722, one or more data clusters can be formed. In an embodiment, data clusters may be obtained from the function formed at 720 . One or more of several clustering techniques may be used, such as described above in the discussion of FIG. 4A. In an embodiment, two impedance vectors may be used to form the function, and at least two data clusters may be discerned from the function. If desired, the number of data clusters can be limited, for example, by the clustering technique or by available processor capacity. In an embodiment, only a single cluster can be discerned from the function using available clustering techniques.
在包括使用两个阻抗矢量从函数获得的两个数据群集的实施例中,一个群集可以对应于上升阶段,或增长阶段(build-up phase),遍及患者日间清醒部分测量阻抗的阶段。在增长阶段期间,阻抗数据可以对应于第一数据群集,并且在下降阶段期间,阻抗数据可以对应于不同的数据群集。取决于患者体位,阻抗可以趋于在平均幅度上更高或更低,并且可以趋于以近似周期性或其它反复出现的方式随时间增长和下降,如在图2、3和5中所图解。In embodiments comprising two clusters of data obtained from the function using two impedance vectors, one cluster may correspond to the build-up phase, or build-up phase, during which impedance is measured throughout the waking portion of the patient's day. During the ramp-up phase, the impedance data may correspond to a first data cluster, and during the ramp-down phase, the impedance data may correspond to a different data cluster. Depending on patient position, impedance may tend to be higher or lower in average magnitude, and may tend to grow and fall over time in an approximately periodic or other recurring fashion, as illustrated in Figures 2, 3 and 5 .
在762处,可以确定一个或多个数据群集属性,如展开、范围、平均值、形心位置、面积、密度或体积。几个用于确定数据群集属性的非限定性方法包括在图4A、4B、4C和4D的讨论中。At 762, one or more data cluster attributes can be determined, such as spread, extent, mean, centroid location, area, density, or volume. Several non-limiting methods for determining data cluster properties are included in the discussion of Figures 4A, 4B, 4C and 4D.
在782处,可以使用一个或多个数据群集属性提供心力衰竭代偿失调指标。在实施例中,任何一个或多个定量属性,如数据群集的展开、范围、平均值、形心位置、两个或多个形心之间的距离、面积、密度或体积,单独地或组合地,可以用于提供心力衰竭代偿失调指标。在实施例中,与第一时间窗有关的一个或多个定量属性与不同的时间窗有关的一个或多个定量属性的比较可以用于提供心力衰竭代偿失调指标。下面,图8的讨论包括几个使用数据群集属性以确定异常或疾病状态的实施例,如确定心力衰竭代偿失调指标。At 782, a heart failure decompensation index can be provided using one or more data cluster attributes. In an embodiment, any one or more quantitative properties, such as the spread, extent, mean, centroid location, distance between two or more centroids, area, density, or volume of a data cluster, alone or in combination Therefore, it can be used to provide indicators of decompensation in heart failure. In an embodiment, a comparison of one or more quantitative attributes associated with a first time window with one or more quantitative attributes associated with a different time window may be used to provide an index of heart failure decompensation. Below, the discussion of FIG. 8 includes several examples of using data cluster attributes to determine abnormal or disease states, such as determining heart failure decompensation indicators.
图8一般图解实施例800,其可以包括在第一时间窗期间获得第一和第二生理数据810,形成第一生理数据对第二生理数据的第一函数820,使用第一函数确定第一定量属性830,在第二时间窗期间获得第三和第四生理数据840,形成第三生理数据对第四生理数据的第二函数850,使用第二函数确定第二定量属性860,评估第一和第二定量属性的趋势870,并使用趋势提供心力衰竭代偿失调指标880。8 generally illustrates an embodiment 800 that may include obtaining first and second physiological data 810 during a first time window, forming a first function 820 of the first physiological data versus second physiological data, using the first function to determine a first quantitative attribute 830, obtaining third and fourth physiological data 840 during a second time window, forming a second function 850 of the third physiological data on the fourth physiological data, determining a second quantitative attribute 860 using the second function, evaluating the first The first and second quantitative attributes are trended 870 and the trends are used to provide a heart failure decompensation index 880 .
在810处,可以在第一时间窗期间得到第一和第二生理数据。获得生理数据可以包括获得指示患者电特性的数据,指示患者机械特性的数据,或指示目前患者状态的数据中的一个或多个,其中可以在离散的时间间隔 期间获得生理数据。第一生理传感器可以用于获得第一生理数据,并且第二生理传感器可用于获得第二生理数据。第一和第二生理传感器可以是可植入导联系统110中的电极。At 810, first and second physiological data can be obtained during a first time window. Obtaining physiological data may include obtaining one or more of data indicative of an electrical characteristic of the patient, data indicative of a mechanical characteristic of the patient, or data indicative of a current patient state, wherein the physiological data may be obtained during discrete time intervals. A first physiological sensor may be used to obtain first physiological data, and a second physiological sensor may be used to obtain second physiological data. The first and second physiological sensors may be electrodes in implantable lead system 110 .
在实施例中,可以在第一时间窗期间,如在第一个20分钟窗口期间在任何瞬间或在多个实例(instance)下获得第一和第二生理数据。例如,可以通过平均或计算20分钟窗口中的一系列测量的另一种集中趋势,或者通过存储20分钟窗口中发生的最大值或最小值测量而获得第一和第二生理数据。窗口持续时间和在所述窗口期间的数据收集实例的数目可以是任何适当的持续时间或数目,其将容许准确收集生理数据。例如,可以使用可植入导联系统110作为数毫秒期间的阻抗的平均值或其它集中趋势而取得阻抗测量。检测心壁运动的测量可以涉及数秒的窗口,如检测肌肉对于电刺激的反应。In an embodiment, the first and second physiological data may be obtained at any instant or at multiple instances during the first time window, such as during the first 20 minute window. For example, the first and second physiological data may be obtained by averaging or calculating another central tendency of a series of measurements in a 20 minute window, or by storing the maximum or minimum measurements occurring in the 20 minute window. The window duration and number of data collection instances during the window may be any suitable duration or number that will allow accurate collection of physiological data. For example, impedance measurements may be taken using the implantable lead system 110 as an average or other central tendency of the impedance over a period of milliseconds. Measurements to detect heart wall motion can involve windows of several seconds, such as detecting muscle responses to electrical stimulation.
在820处,可以针对第二生理数据形成第一生理数据的第一函数。可以例如根据对图7的720的讨论形成第一函数。在实施例中,第一函数的一部分可以确定至少第一对数据群集。At 820, a first function of the first physiological data can be formed for the second physiological data. The first function may be formed, eg, according to the discussion of 720 of FIG. 7 . In an embodiment, part of the first function may determine at least a first pair of data clusters.
在830处,可以使用第一函数确定第一定量属性。第一定量属性可以包括第一函数的任何属性,如包括函数的范围、域或周期性,以及其它属性。第一定量属性可以来自于使用该函数的一个或多个部分形成的一个或多个数据群集,如第一对数据群集。例如,函数可以描述多个数据群集,并且第一定量属性可以包括特定的数据群集的面积。At 830, a first quantitative attribute can be determined using a first function. The first quantitative property may include any property of the first function, such as including the range, domain, or periodicity of the function, among other properties. The first quantitative attribute may be from one or more data clusters formed using one or more parts of the function, such as the first pair of data clusters. For example, a function may describe multiple data clusters, and the first quantitative attribute may include the area of a particular data cluster.
在840处,可以在第二时间窗期间获得第三和第四生理数据。可以以与第一和第二生理数据相同的方式获得第三和第四生理数据,虽然第三和第四生理数据可以对应于不同的时间间隔。在实施例中,第一和第三生理数据可以使用相同的生理传感器获得,如配置为获得心音信息的加速度计。可以使用相同的生理传感器类似地获得第二和第四生理数据,如定位于在患者胸部的可植入电极。在实施例中,第二时间窗可以是不同于第一时间窗的持续时间。不同的时间窗持续时间或采样率可以用于在特定的时间增加或减少数据收集。例如,当预期特定的事件时,诸如患者体位变化,可以使用增加的采样率。可以使用降低的采样率,例如,当患者睡眠或不动时。At 840, third and fourth physiological data can be obtained during a second time window. The third and fourth physiological data may be obtained in the same manner as the first and second physiological data, although the third and fourth physiological data may correspond to different time intervals. In an embodiment, the first and third physiological data may be obtained using the same physiological sensor, such as an accelerometer configured to obtain heart sound information. The second and fourth physiological data may similarly be obtained using the same physiological sensor, such as an implantable electrode positioned on the patient's chest. In an embodiment, the second time window may be of a different duration than the first time window. Different time window durations or sampling rates can be used to increase or decrease data collection at specific times. For example, an increased sampling rate may be used when a specific event is expected, such as a patient position change. A reduced sampling rate can be used, for example, when the patient is sleeping or immobile.
在850处,可以使用第三和第四生理数据形成第二函数。可以以与第一函数相同的方式形成第二函数,如上面在对图8的820的讨论中所述。在实施例中,第二函数的一部分可以确定至少第二对数据群集。At 850, a second function can be formed using the third and fourth physiological data. The second function may be formed in the same manner as the first function, as described above in the discussion of 820 of FIG. 8 . In an embodiment, part of the second function may determine at least a second pair of data clusters.
在860处,第二定量属性,如测试定量属性,可以使用第二函数来确定。第二定量属性可以包括第二函数的任何属性,如包括在830处此讨论中描述的属性。在实施例中,第二定量属性可以来自于第二对数据群集。At 860, a second quantitative attribute, such as a test quantitative attribute, can be determined using a second function. The second quantitative property may include any property of the second function, such as including properties described at 830 in this discussion. In an embodiment, the second quantitative attribute may be from a second pair of data clusters.
在870处,可以评估第一和第二定量属性,如辨别趋势。在实施例中,第一和第二定量属性可以分别指示第一和第二函数的总面积。该评估可以指示,从第一时间窗到第二时间窗总面积减少。在实施例中,第一时间窗可以指示在第一周期间所取的患者胸阻抗测量,并且第二时间窗可以指示在随后的一周期间所取的胸阻抗测量。在实施例中,总面积的第一和第二定量属性的评价可以指示减小面积趋势。可以评估附加定量属性以确定在一段较长的时间段例如数周或数月期间的趋势。趋势,如总面积减小,可以指示患者健康状况或风险因素。At 870, first and second quantitative attributes, such as discerning trends, can be evaluated. In an embodiment, the first and second quantitative properties may indicate the total area of the first and second functions, respectively. The evaluation may indicate that the total area decreases from the first time window to the second time window. In an embodiment, the first time window may indicate patient chest impedance measurements taken during a first week, and the second time window may indicate chest impedance measurements taken during a subsequent week. In an embodiment, the evaluation of the first and second quantitative attributes of the total area may indicate a decreasing area trend. Additional quantitative attributes can be evaluated to determine trends over a longer period of time, such as weeks or months. Trends, such as a decrease in total area, may indicate patient health status or risk factors.
在880处,可以使用趋势提供心力衰竭代偿失调指标。在实施例中,第一和第二函数定义的总面积可以表示减小趋势。减小的总面积可以指示患者心力衰竭代偿失调风险增加。可以在检测到增加的患者风险以后对患者或临床医师提供警报,如在CRM102中使用遥测电路,其与外部患者管理装置通信耦接。At 880, trends can be used to provide indicators of heart failure decompensation. In an embodiment, the total area defined by the first and second functions may represent a decreasing trend. A reduced total area may indicate that the patient is at increased risk of heart failure decompensation. An alert may be provided to the patient or clinician upon detection of increased patient risk, such as in the CRM 102 using telemetry circuitry that is communicatively coupled to an external patient management device.
现在转到体位检测,患者体位可以影响患者胸阻抗。传感器,如包括电极对,所述电极对包含一个金属盒电极和一个或多个来自可植入导联系统110的电极,可以检测患者的体位或体位变化。电极可以定位于患者胸的相对的侧面上,或可以定位于心脏组织中,或这样定位的组合。例如,电极可以定位于患者脊柱附近以递送治疗,并且具有包括在其壳体101处的电极的可植入装置可以植入在患者的腹部或胸部中。Turning now to position detection, patient position can affect patient thoracic impedance. Sensors, such as comprising electrode pairs comprising a metal box electrode and one or more electrodes from the implantable lead system 110, can detect the patient's position or changes in position. The electrodes may be positioned on opposite sides of the patient's chest, or may be positioned in cardiac tissue, or a combination of such positioning. For example, electrodes may be positioned near a patient's spine to deliver therapy, and an implantable device having electrodes included at its housing 101 may be implanted in the patient's abdomen or chest.
图9一般地图解实施例900,其可以包括获得体位判别度量905,获得胸阻抗测试数据915,将胸阻抗测试数据与体位判别度量比较971,和提供体位状态991。FIG. 9 generally illustrates an embodiment 900 that may include obtaining a postural discriminative metric 905 , obtaining thoracic impedance test data 915 , comparing 971 the thoracic impedance test data to the postural discriminative metric, and providing a postural status 991 .
在905处,可以得到体位判别度量。在实施例中,获得体位判别度量可以包括使用第一胸阻抗数据和第二胸阻抗数据。可以使用限定第一胸阻 抗矢量的第一电极配置如使用可植入导联系统110中的电极组合测量第一胸阻抗数据。第一胸阻抗数据可以对应于第一时间窗期间的一个或多个实例。使用限定第二胸阻抗矢量的第二电极配置可以测量第二胸阻抗数据,其中第二电极配置不同于第一电极配置。第二胸阻抗数据可以对应于相同的第一时间窗期间的一个或多个实例。At 905, a body position discriminant metric can be obtained. In an embodiment, obtaining the body position discriminant metric may include using the first chest impedance data and the second chest impedance data. The first chest impedance data may be measured using a first electrode configuration defining a first chest impedance vector, such as using a combination of electrodes in implantable lead system 110. The first chest impedance data may correspond to one or more instances during the first time window. Second thoracic impedance data may be measured using a second electrode configuration defining a second thoracic impedance vector, wherein the second electrode configuration is different from the first electrode configuration. The second chest impedance data may correspond to one or more instances during the same first time window.
在实施例中,第一胸阻抗数据和第二胸阻抗数据的定量属性可以用来形成体位判别度量。可以使用一组阻抗数据的平均值或中值或其它集中趋势,如建立阈值阻抗。超过阈值的阻抗值可以对应于第一体位,并且小于该阈值的阻抗值可以对应于第二体位。在实施例中,几个定量属性可以用来形成体位判别度量,例如,以提高度量的特异性。除了使用一组阻抗数据的平均值或中值,可以使用给定时间窗期间的阻抗矢量调制的幅度,如建立更有辨别力的度量。In an embodiment, quantitative attributes of the first chest impedance data and the second chest impedance data may be used to form a postural discriminant metric. The mean or median or other central tendency of a set of impedance data can be used, such as to establish a threshold impedance. Impedance values above a threshold may correspond to a first body position, and impedance values below the threshold may correspond to a second body position. In an embodiment, several quantitative attributes may be used to form a body position discriminative metric, eg, to improve the specificity of the metric. Instead of using the mean or median of a set of impedance data, the magnitude of the impedance vector modulation during a given time window can be used, eg, to create a more discriminative metric.
在实施例中,第一胸阻抗数据和第二胸阻抗数据可以用于形成函数,如可以通过在矩形笛卡尔坐标上将第一胸阻抗数据对第二胸阻抗数据作图而获得。此函数可被离散化为一个或多个部分的函数以形成体位判别度量。例如,函数的第一部分可以对应于第一体位,并且函数的第二部分可以对应于第二体位。在实施例中,函数的一部分可以与数据群集关联,或函数的几个不同部分可以与几个不同的数据群集关联。In an embodiment, the first chest impedance data and the second chest impedance data may be used to form a function, such as may be obtained by plotting the first chest impedance data against the second chest impedance data on a rectangular Cartesian coordinate. This function can be discretized as a function of one or more parts to form a body position discriminant metric. For example, a first part of the function may correspond to a first body position, and a second part of the function may correspond to a second body position. In an embodiment, a portion of a function may be associated with a data cluster, or several different portions of a function may be associated with several different data clusters.
使用第一胸阻抗数据和第二胸阻抗数据形成的数据群集可以用于形成体位判别度量。离散数据群集可以对应于多个患者体位,并可以用来确定患者体位,如通过比较目前获取的生理信息。在包括两个数据群集的实施例中,第一数据群集可以代表第一患者体位,并且第二数据群集可以代表第二患者体位。附加数据群集,如果存在,可以代表中间患者体位。各种技术,如回归分析或判别分析,可以识别数据群集的边界。A data cluster formed using the first chest impedance data and the second chest impedance data may be used to form a postural discriminant measure. The discrete data clusters may correspond to multiple patient positions and may be used to determine patient position, such as by comparing currently acquired physiological information. In an embodiment including two data clusters, the first data cluster may represent a first patient position and the second data cluster may represent a second patient position. Additional data clusters, if present, may represent intermediate patient positions. Various techniques, such as regression analysis or discriminant analysis, can identify the boundaries of data clusters.
在实施例中,获得体位判别度量可以包括学习或训练期。可以监测第一和第二胸阻抗数据,如在包括一个星期的第一时间窗期间,以建立基线患者阻抗数据集。可以评估基线数据集的聚类,并且体位可以归因于特定的群集。可以手动建立体位-群集相关性,如由临床医生,或自动地,如由处理器驱动的分析建立。在实施例中,可以在CRM102的植入期间或以后在临床环境中执行学习期。在实施例中,学习期可以包括体位传感器或 加速度计的使用。In an embodiment, obtaining a body position discriminative metric may include a learning or training period. The first and second chest impedance data may be monitored, such as during a first time window including one week, to establish a baseline patient impedance data set. Clustering of the baseline dataset can be assessed, and body positions can be attributed to specific clusters. Position-cluster correlations can be established manually, as by a clinician, or automatically, as by processor-driven analysis. In an embodiment, a learning period may be performed in a clinical setting during or after implantation of the CRM 102 . In an embodiment, the learning period may include the use of a body position sensor or an accelerometer.
在实施例中,可以至少部分地使用时刻信息以确定体位比较度量。患者体位的变化一般可以预期处于规律的周期性时间间隔,如包括当患者将在夜晚躺下或在早晨起来时。因此,当评估胸阻抗数据的积累以建立体位比较度量时,处理器或临床医生可以查看相对窄的时间窗,其中可能已经发生了体位变化。在实施例中,患者可以记录在第一时间窗期间的睡眠/觉醒次数用于后续的与相同的第一时间窗期间获取的阻抗数据的相关。In an embodiment, the time-of-day information may be used at least in part to determine the body position comparison metric. Changes in the patient's position can generally be expected at regular periodic intervals, such as including when the patient will be lying down at night or rising in the morning. Thus, when evaluating the accumulation of thoracic impedance data to establish a body position comparison metric, the processor or clinician can look at a relatively narrow window of time in which body position changes may have occurred. In an embodiment, the patient may record sleep/wake times during a first time window for subsequent correlation with impedance data acquired during the same first time window.
在915处,可以得到胸阻抗测试数据。可以使用多种硬件组件,包括可植入导联系统110、皮下电极阵列或定位于体表上的电极阵列,得到胸阻抗测试数据。在实施例中,至少两个电极用于限定用于获得胸阻抗测试数据的测试阻抗矢量。在实施例中,获得胸阻抗测试数据可以包括使用与学习或训练期期间可以使用的相同可植入导联系统110或相同可植入导联系统110的相同部分。用于在915处获得胸阻抗测试数据的矢量配置可以与学习或训练期期间使用的矢量配置基本相同。At 915, chest impedance test data can be obtained. Thoracic impedance measurement data can be obtained using a variety of hardware components, including implantable lead system 110, subcutaneous electrode arrays, or electrode arrays positioned on the body surface. In an embodiment, at least two electrodes are used to define a test impedance vector for obtaining chest impedance test data. In an embodiment, obtaining chest impedance test data may include using the same implantable lead system 110 or the same portion of the same implantable lead system 110 that may be used during a study or training session. The vector configuration used to obtain the chest impedance test data at 915 may be substantially the same as the vector configuration used during the learning or training period.
在971处,胸阻抗测试数据可以相比于体位判别度量。可以使用处理器电路108进行阻抗测试数据与体位判别度量的比较。比较也可以手动进行,例如由评估患者数据的临床医生进行。在实施例中,可以使用一个测试阻抗矢量获得胸阻抗测试数据,并且可以将其相比于在905处获得的一个或多个体位比较度量。在实施例中,其中体位比较度量包括第一胸阻抗数据和第二胸阻抗数据的平均值,胸阻抗测试数据可以相比于该平均值。At 971, chest impedance test data can be compared to a body position discriminant measure. The comparison of the impedance test data to the body position discriminant metric may be performed using the processor circuit 108 . Comparisons can also be performed manually, for example by clinicians evaluating patient data. In an embodiment, chest impedance test data may be obtained using a test impedance vector and may be compared to the one or more postural comparison metrics obtained at 905 . In an embodiment, wherein the body position comparison metric comprises an average of the first chest impedance data and the second chest impedance data, the chest impedance test data may be compared to the average.
在实施例中,胸阻抗测试数据可以包括来自第一测试阻抗矢量和第二测试阻抗矢量的数据。第一胸阻抗矢量可以与第一测试阻抗矢量相同,并且第二胸阻抗矢量可以与第二测试阻抗矢量相同。在来自第一胸阻抗矢量和第二胸阻抗矢量的数据(其包括至少两个数据群集)用于形成函数的情况下,来自第一和第二测试阻抗矢量的数据可以相比于该函数。现在参看图5A,来自第一和第二测试阻抗矢量的数据可以包括,在第一时间窗期间,40欧姆的RA-Can阻抗测量,36欧姆的RV-Can阻抗测量。在第二时间窗期间,RA-Can阻抗测量可以是40欧姆,并且RV-Can阻抗测量可以是33欧姆。来自第一和第二测试阻抗矢量的数据可以相比于数据群集541、542。In an embodiment, the chest impedance test data may include data from the first test impedance vector and the second test impedance vector. The first chest impedance vector may be the same as the first test impedance vector, and the second chest impedance vector may be the same as the second test impedance vector. Where data from the first chest impedance vector and the second chest impedance vector (which includes at least two data clusters) are used to form the function, the data from the first and second test impedance vectors may be compared to the function. Referring now to FIG. 5A , data from the first and second test impedance vectors may include, during the first time window, RA-Can impedance measurements at 40 ohms, RV-Can impedance measurements at 36 ohms. During the second time window, the RA-Can impedance measurement may be 40 ohms and the RV-Can impedance measurement may be 33 ohms. Data from the first and second test impedance vectors can be compared to data clusters 541,542.
在991处,可以提供体位状态。在实施例中,胸阻抗测试数据和体位 判别度量的比较结果可以用于提供体位状态。在实施例中,体位判别度量可以包括阈值。测试阻抗数据与阈值的比较可以确定患者体位,条件是测试阻抗数据的适当的定量属性满足或超过阈值。At 991, a body position status can be provided. In an embodiment, a comparison of chest impedance test data and a postural discriminant metric may be used to provide a postural status. In an embodiment, the body position discrimination metric may include a threshold. Comparison of the test impedance data to the threshold may determine the patient position, provided that appropriate quantitative attributes of the test impedance data meet or exceed the threshold.
在包括第一和第二胸阻抗数据的聚类的实施例中,通过识别与胸阻抗测试数据相关的一个或多个群集可以提供体位状态。例如,图4A中的数据点443属于上部群集441的范围内。在上部群集与侧卧患者体位相关联的情况下,数据点443也可以对应于侧卧患者体位。因此,可以确定的是,当获取测试阻抗数据时,在第一时间窗的至少一部分期间,患者处于侧卧体位。In embodiments comprising clustering of the first and second chest impedance data, the position status may be provided by identifying one or more clusters associated with the chest impedance test data. For example, data point 443 in FIG. 4A falls within the upper cluster 441 . Where the upper cluster is associated with a lateral patient position, data point 443 may also correspond to a lateral patient position. Thus, it can be determined that the patient was in a lateral position during at least a portion of the first time window when the test impedance data was acquired.
图4A中的数据点444超出数据群集441和442之外。然而,可以评价数据点444与一个或多个数据群集441和442中的一个或多个的关联。在实施例中,数据群集441和442可以对应于获取的阻抗数据,如在第一时间窗期间在多个实例下使用RA-Can阻抗矢量331和RV-Can阻抗矢量332。数据点444可以对应于在第二时间窗期间使用RA-Can阻抗矢量331和RV-Can阻抗矢量332获取的测试胸阻抗数据。可以使用数据点444和上部群集441计算第一归属因子,可以使用数据点444和下部数据群集442计算第二归属因子。使用第一和第二归属因子的比较,数据点444可以与数据群集441、442中之一相关联。例如,归属因子可以包括从数据点444到数据群集441和442中每一个的形心的距离。在图4A的实施例中,从数据点444到下部群集442的形心的距离小于从数据点444到上部群集441的形心的距离。因此,数据点444可以与下部群集442关联。该关联可以指示患者在第二时间窗的至少一部分期间处于直立位置。在实施例中,归属因子可以包括与数据点关联的可能性,如用于提供数据点与已知体位或数据群集关联的可能性。Data point 444 in FIG. 4A is outside data clusters 441 and 442 . However, the association of data point 444 with one or more of one or more data clusters 441 and 442 may be evaluated. In an embodiment, data clusters 441 and 442 may correspond to acquired impedance data, such as using RA-Can impedance vector 331 and RV-Can impedance vector 332 at multiple instances during a first time window. Data points 444 may correspond to test chest impedance data acquired using RA-Can impedance vector 331 and RV-Can impedance vector 332 during the second time window. A first membership factor may be calculated using data points 444 and upper cluster 441 , and a second membership factor may be calculated using data points 444 and lower data cluster 442 . Using the comparison of the first and second attribute factors, the data point 444 can be associated with one of the data clusters 441,442. For example, the attribute factor may include the distance from data point 444 to the centroid of each of data clusters 441 and 442 . In the embodiment of FIG. 4A , the distance from data point 444 to the centroid of lower cluster 442 is less than the distance from data point 444 to the centroid of upper cluster 441 . Accordingly, data point 444 may be associated with lower cluster 442 . The association may indicate that the patient was in an upright position during at least a portion of the second time window. In an embodiment, an attribution factor may include a likelihood associated with a data point, such as to provide a likelihood that a data point is associated with a known body position or cluster of data.
图10一般地图解实施例1000,其可以包括在第一时间窗期间获得第一和第二生理数据1011,形成第一生理数据对第二生理数据的函数1021,在第二时间窗期间获得生理测试数据1045,将生理测试数据与函数比较1073,和使用生理测试数据和函数的比较提供体位状态1093。10 generally illustrates an embodiment 1000, which may include obtaining first and second physiological data 1011 during a first time window, forming a function 1021 of the first physiological data versus second physiological data, obtaining physiological data during a second time window. Test data 1045, compare 1073 the physiological test data to the function, and provide a postural state 1093 using the comparison of the physiological test data and the function.
在1011处,可以在第一时间窗期间获得第一和第二生理数据,如上面在对图8的810的讨论中所述。可以使用多个不同的生理传感器获得第一 和第二生理数据。第一时间窗可以是任何持续时间,其允许使用多个生理传感器充分精确地获取第一和第二生理数据。获取数据的必要时间将根据使用的传感器类型变化。At 1011, first and second physiological data may be obtained during a first time window, as described above in the discussion of 810 of FIG. 8 . The first and second physiological data may be obtained using a plurality of different physiological sensors. The first time window may be any duration that allows for sufficiently accurate acquisition of the first and second physiological data using the plurality of physiological sensors. The time necessary to acquire data will vary depending on the type of sensor used.
在1021处,可以使用第一和第二生理数据形成函数。该函数可以根据对图7的720的讨论而形成。在实施例中,函数可以指示基线患者病理状态、当前患者生理状态中的一个或多个,或它可以使用第一和第二生理数据识别一个或多个生理趋势。基线患者生理状态可以提供信息,其可以相对于患者的生理信号而被监控或追踪,如使用处理器电路108。可以由医疗装置的制造商建立基线,或可以由临床医生建立基线,诸如在装置植入操作之前、期间或之后。在实施例中,可以将基线建立为最近患者信息的移动平均值,如第一和第二生理数据,或与第一和第二生理数据的函数相关联的一系列定量属性。也可以建立评价标准以提供索引或度量用于与基线的比较。例如,基线可以用于与测试数据比较以提供患者体位状态。因为基线可以是移动平均值,它可以随着时间而改变。可以监控变化的基线,如使用处理器电路108以监测基线与之前值或预设值的偏离,以确保准确评价生理信息。At 1021, a function may be formed using the first and second physiological data. This function may be formed as discussed for 720 of FIG. 7 . In an embodiment, the function may indicate one or more of a baseline patient pathological state, a current patient physiological state, or it may identify one or more physiological trends using the first and second physiological data. The baseline patient physiological state may provide information that may be monitored or tracked relative to the patient's physiological signals, such as using processor circuit 108 . A baseline may be established by the manufacturer of the medical device, or may be established by a clinician, such as before, during, or after a device implantation procedure. In an embodiment, the baseline may be established as a moving average of recent patient information, such as the first and second physiological data, or a series of quantitative attributes associated with a function of the first and second physiological data. Metrics can also be established to provide an index or metric for comparison with a baseline. For example, a baseline can be used for comparison with test data to provide a patient positional status. Because the baseline can be a moving average, it can change over time. A changing baseline may be monitored, such as using the processor circuit 108 to monitor the baseline for deviations from previous or preset values, to ensure accurate assessment of physiological information.
在1045处,可以在第二时间窗期间得到生理测试数据。可以以与第一和第二生理数据的相同方式获得生理测试数据,并且生理测试数据可以对应于第二时间窗,其可以不同于用于获取第一和第二生理数据的时间间隔。在实施例中,使用与用于获得第一或第二生理数据中的一个或多个的生理传感器相同的生理传感器,诸如加速度计或阻抗传感器可以获得生理测试数据。可以使用相同的生理传感器,如定位于患者的胸部中的可植入压力传感器,获得第二和第四生理数据。在实施例中,第二时间窗可以是不同于第一时间窗的持续时间。At 1045, physiological test data may be obtained during a second time window. The physiological test data may be obtained in the same manner as the first and second physiological data, and the physiological test data may correspond to a second time window, which may be different from the time interval used to obtain the first and second physiological data. In an embodiment, the physiological test data may be obtained using the same physiological sensor as used to obtain one or more of the first or second physiological data, such as an accelerometer or an impedance sensor. The second and fourth physiological data may be obtained using the same physiological sensor, such as an implantable pressure sensor positioned in the patient's chest. In an embodiment, the second time window may be of a different duration than the first time window.
在1073处,生理测试数据可以相比于函数。生理测试数据和函数的比较可以由处理器电路108或外部数据接收和处理电路执行。比较也可以手动进行,例如由临床医生进行。At 1073, the physiological test data can be compared to the function. The comparison of the physiological test data and the function may be performed by the processor circuit 108 or by external data receiving and processing circuits. The comparison can also be done manually, for example by a clinician.
在实施例中,生理测试数据可以包括从患者生理信息可确定的或可测量的任何参数或特征,例如,包括来自第一测试阻抗矢量和第二测试阻抗矢量的数据。第一生理传感器可以与第一测试阻抗矢量相同,并且第二生 理传感器可以与第二测试阻抗矢量相同。在来自第一生理传感器和第二生理传感器的数据用于形成函数的情况下,包括至少两个数据群集,来自第一和第二测试阻抗矢量的数据可以相比于函数。在实施例中,来自第一和第二测试阻抗矢量的数据的定量属性可以相比于函数或数据群集的定量属性。现在参看图5A,来自第一和第二测试阻抗矢量的数据可以包括,在第一时间窗期间,40欧姆的RA-Can阻抗测量,36欧姆的RV-Can阻抗测量。在第二时间窗期间,RA-Can阻抗测量可以是40欧姆,RV-Can阻抗测量可以是33欧姆。来自第一和第二测试阻抗矢量的数据可以相比于数据群集541、542。In an embodiment, the physiological test data may include any parameter or characteristic determinable or measurable from patient physiological information, including, for example, data from the first test impedance vector and the second test impedance vector. The first physiological sensor can be identical to the first test impedance vector, and the second physiological sensor can be identical to the second test impedance vector. Where data from the first physiological sensor and the second physiological sensor are used to form the function, comprising at least two clusters of data, the data from the first and second test impedance vectors may be compared to the function. In an embodiment, the quantitative properties of the data from the first and second test impedance vectors may be compared to the quantitative properties of the function or cluster of data. Referring now to FIG. 5A , data from the first and second test impedance vectors may include, during the first time window, RA-Can impedance measurements at 40 ohms, RV-Can impedance measurements at 36 ohms. During the second time window, the RA-Can impedance measurement may be 40 ohms and the RV-Can impedance measurement may be 33 ohms. Data from the first and second test impedance vectors can be compared to data clusters 541,542.
在1093处,可以使用生理测试数据和函数的比较提供体位状态。在包括第一和第二生理传感器数据的聚类的实施例中,患者体位状态,对应于第一时间窗的至少一部分,可以通过识别与生理测试数据关联的一个或多个群集而提供。例如,图5A中的数据点543属于上部群集541范围内。因此,数据点543对应于与上部群集541有关联的相同患者体位,如侧卧患者体位。At 1093, the postural status may be provided using a comparison of the physiological test data and the function. In embodiments comprising clusters of first and second physiological sensor data, the patient positional state, corresponding to at least a portion of the first time window, may be provided by identifying one or more clusters associated with the physiological test data. For example, data point 543 in FIG. 5A falls within upper cluster 541 . Thus, data point 543 corresponds to the same patient position associated with upper cluster 541, such as a side lying patient position.
图5A中的数据点544不属于数据群集541和542的范围内。然而,可以评价数据点544与数据群集541和542中的一个或多个的关联。例如,可以计算数据点544和与群集关联的最近数据点之间的距离。数据点544可以与包括最近数据点的数据群集关联。在这个实施例中,数据点544可以与下部群集542关联,并且可以用于指示患者体位。Data point 544 in FIG. 5A does not fall within data clusters 541 and 542 . However, the association of data point 544 with one or more of data clusters 541 and 542 may be evaluated. For example, the distance between data point 544 and the closest data point associated with the cluster can be calculated. Data point 544 may be associated with a data cluster that includes the most recent data point. In this embodiment, data points 544 may be associated with lower cluster 542 and may be used to indicate patient position.
图11一般地图解实施例1100,其可以包括在第一时间窗期间获得第一和第二生理数据1111,形成第一生理数据对第二生理数据的第一函数1121,使用第一函数确定第一定量属性1131,在第二时间窗期间获得第三和第四生理数据1141,形成第三生理数据对第四生理数据的第二函数1151,使用第二函数确定第二定量属性1161,比较第一和第二定量属性1175,以及使用第一和第二定量属性的比较确定体位状态1195。11 generally illustrates an embodiment 1100, which may include obtaining first and second physiological data 1111 during a first time window, forming a first function 1121 of the first physiological data versus second physiological data, using the first function to determine the second physiological data. A certain quantitative attribute 1131, obtaining third and fourth physiological data 1141 during a second time window, forming a second function 1151 of the third physiological data to the fourth physiological data, using the second function to determine a second quantitative attribute 1161, comparing First and second quantitative attributes 1175, and determining a body state 1195 using the comparison of the first and second quantitative attributes.
在1111处,可以在第一时间窗期间获得第一和第二生理数据,诸如上面在对图8的810的讨论中所述。分别使用第一和第二生理传感器可以获得第一和第二生理数据,其中第一和第二生理传感器是不同的。第一时间窗可以是足以获得准确的第一和第二生理数据的任何持续时间。At 1111 , first and second physiological data may be obtained during a first time window, such as described above in the discussion of 810 of FIG. 8 . The first and second physiological data may be obtained using first and second physiological sensors, respectively, wherein the first and second physiological sensors are different. The first time window may be any duration sufficient to obtain accurate first and second physiological data.
在1121处,可以针对第二生理数据形成第一生理数据的第一函数。可以根据对图7的720的讨论形成第一函数。At 1121, a first function of the first physiological data may be formed for the second physiological data. The first function may be formed as discussed for 720 of FIG. 7 .
在1131处,第一定量属性可以使用第一函数确定。第一定量属性可以包括第一函数的任何属性,如数据群集的面积、体积或位置,以及其它属性。第一定量属性可以来自于使用函数的一个或多个部分形成的一个或多个数据群集。例如,函数可以描述两个数据群集。第一定量属性可以包括两个数据群集的展开。At 1131, a first quantitative attribute can be determined using a first function. The first quantitative attribute may include any attribute of the first function, such as the area, volume or location of the data cluster, among other attributes. The first quantitative attribute may be from one or more data clusters formed using one or more parts of the function. For example, a function can describe two data clusters. The first quantitative attribute may include an expansion of the two data clusters.
在实施例中,步骤1111、1121或1131中的一个或多个可以包括方法的学习期以确定体位状态。学习期可以包括使用第一和第二生理数据、第一函数或第一定量属性确定体位判别比较度量。In an embodiment, one or more of steps 1111, 1121 or 1131 may include a learning period of the method to determine the postural state. The learning period may include determining a postural discrimination comparison metric using the first and second physiological data, the first function, or the first quantitative attribute.
在1141处,可以在第二时间窗期间获得第三和第四生理数据。可以以与第一和第二生理数据相同的方式获得第三和第四生理数据,虽然可以在不同时间间隔诸如第二时间窗期间获得第三和第四生理数据。在实施例中,可以使用相同的生理传感器,如配置成获得心脏阻抗矢量信息的阻抗传感器获得第一和第三生理数据。可以使用相同的生理传感器,如定位于患者胸部中的可植入压力传感器获得第二和第四生理数据。在实施例中,第二时间窗中可以是不同于第一时间窗的持续时间。At 1141, third and fourth physiological data can be obtained during a second time window. The third and fourth physiological data may be obtained in the same manner as the first and second physiological data, although the third and fourth physiological data may be obtained during a different time interval, such as a second time window. In an embodiment, the first and third physiological data may be obtained using the same physiological sensor, such as an impedance sensor configured to obtain cardiac impedance vector information. The second and fourth physiological data may be obtained using the same physiological sensor, such as an implantable pressure sensor positioned in the patient's chest. In an embodiment, the second time window may be of a different duration than the first time window.
在1151处,可以使用第三生理数据和第四生理数据形成第二函数。可以以与第一函数相同的方式形成第二函数,或如上面在对图8的820的讨论中所述。At 1151, a second function may be formed using the third physiological data and the fourth physiological data. The second function may be formed in the same manner as the first function, or as described above in the discussion of 820 of FIG. 8 .
在1161处,可以使用第二函数确定第二定量属性。第二定量属性可以包括第二函数的任何属性,如包括上面在对图8的830的讨论中所述的相同属性。At 1161, a second quantitative attribute can be determined using a second function. The second quantitative property may include any property of the second function, such as including the same properties described above in the discussion of 830 of FIG. 8 .
在实施例中,步骤1141、1151或1161中的一个或多个可以包括方法的测试期以确定体位状态。测试期可以包括获得用于与体位判别比较度量比较的信息,如使用第三和第四生理数据、第二函数或第二定量属性。In an embodiment, one or more of steps 1141 , 1151 or 1161 may include a test phase of the method to determine the postural state. The testing session may include obtaining information for comparison with a postural discriminant comparison metric, such as using third and fourth physiological data, a second function, or a second quantitative attribute.
在1175处,可以比较第一和第二定量属性。在实施例中,第一和第二定量属性可以包括阻抗幅度信息、形心位置信息或体积信息。在实施例中,可以比较第一和第二面积。在实施例中,可以比较两个或多个定量属性,如用于形成趋势。例如,可以评价第一、第二和第三形心位置,例如与第 一、第二和第三时间窗关联,以确定形心位置的趋势。可以评价第四形心位置,如对应于测试胸阻抗数据,与趋势的关联。At 1175, the first and second quantitative attributes can be compared. In an embodiment, the first and second quantitative attributes may include impedance magnitude information, centroid location information, or volume information. In an embodiment, the first and second areas may be compared. In an embodiment, two or more quantitative attributes may be compared, such as for trending. For example, first, second, and third centroid locations may be evaluated, e.g., in association with first, second, and third time windows, to determine trends in centroid locations. Correlation of the fourth centroid position, as corresponding to the test chest impedance data, with the trend can be evaluated.
在实施例中,可以使用与定量属性关联的时间间隔以形成查找表。可以获得生理测试数据并且与查找表比较,如以提供体位状态。在实施例中,上面讨论的第一、第二和第三形心位置可以各自与离散的患者体位,或查找表的离散部分相关联。可以评价第四形心位置在查找表内的最佳适合。In an embodiment, time intervals associated with quantitative attributes may be used to form a lookup table. Physiological test data can be obtained and compared to a lookup table, eg, to provide postural status. In an embodiment, the first, second, and third centroid locations discussed above may each be associated with a discrete patient position, or discrete portion of a look-up table. The best fit of the fourth centroid location within the lookup table can be evaluated.
在1195处,可以使用第一和第二定量属性的比较确定体位状态。在实施例中,与第一时间窗关联的数据群集的面积可以相比于与第二时间窗相关联的数据群集的面积。患者体位可以适用于包括在重叠区域中的数据点。At 1195, the postural state can be determined using the comparison of the first and second quantitative attributes. In an embodiment, the area of the data cluster associated with the first time window may be compared to the area of the data cluster associated with the second time window. Patient position can be applied to the data points included in the overlapping region.
附加注释additional notes
实施例1包括主题,诸如医疗装置,其包括:处理器,包括第一数据输入,其被配置为从第一生理传感器接收第一生理数据,所述第一生理数据对应于在第一时间窗期间的多个实例,和第二数据输入,其被配置为从第二生理传感器接收第二生理数据,所述第二生理数据对应于在相同的第一时间窗期间的多个实例。实施例1可以包括主题,如配置为使用第一生理传感器以获得第一生理数据的第一数据输入,和配置为使用第二生理传感器以获得第二生理数据的第二数据输入。实施例1可以包括主题,如处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以形成第一生理数据对第二生理数据的函数,使用该函数形成至少两个数据群集,确定数据群集中的至少一个的定量属性,并且使用定量属性提供心力衰竭代偿失调指标。Embodiment 1 includes subject matter, such as a medical device, comprising: a processor comprising a first data input configured to receive first physiological data from a first physiological sensor, the first physiological data corresponding to a plurality of instances during, and a second data input configured to receive second physiological data from a second physiological sensor, the second physiological data corresponding to the plurality of instances during the same first time window. Embodiment 1 may include subject matter such as a first data input configured to use a first physiological sensor to obtain first physiological data, and a second data input configured to use a second physiological sensor to obtain second physiological data. Embodiment 1 may include subject matter, such as a processor-readable medium, comprising instructions that, when executed by a processor, configure a medical device to form a function of first physiological data on second physiological data, using the function to form at least two data clusters, determine quantitative properties of at least one of the data clusters, and use the quantitative properties to provide an index of heart failure decompensation.
在实施例2中,实施例1的主题可任选地包括被配置为接收第一生理数据的第一数据输入,所述第一生理数据包括使用限定第一胸阻抗矢量的第一电极配置获得的第一胸阻抗数据,和被配置为接收第二生理数据的第二数据输入,所述第二生理数据包括使用限定不同的第二胸阻抗矢量的不同的第二电极配置获得的第二胸阻抗数据。In Example 2, the subject matter of Example 1 may optionally include a first data input configured to receive first physiological data comprising a first electrode configuration that defines a first thoracic impedance vector. first thoracic impedance data, and a second data input configured to receive second physiological data comprising a second thoracic impedance obtained using a different second electrode configuration defining a different second thoracic impedance vector Impedance data.
在实施例3中,实施例1-2中的一种或任何组合的主题可任选地包括第一数据输入,将其配置为接收第一生理数据,所述第一生理数据包括使 用定位于心脏心室内或附近的第一电极和至少不同的第二电极获得的第一胸阻抗数据。In Example 3, the subject matter of one or any combination of Examples 1-2 can optionally include a first data input configured to receive first physiological data comprising using a location located at First chest impedance data obtained from a first electrode and at least a different second electrode in or near a ventricle of the heart.
在实施例4中,实施例1-3中的一种或任何组合的主题可任选地包括配置成耦合到加速度计以获得第一生理数据或第二生理数据的第一数据输入或第二数据输入中的至少一种。In Example 4, the subject matter of one or any combination of Examples 1-3 can optionally include a first data input or a second data input configured to be coupled to an accelerometer to obtain the first physiological data or the second physiological data. At least one of the data inputs.
在实施例5中,实施例1-4中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以使用体位信息形成至少两个数据群集。In Example 5, the subject matter of one or any combination of Examples 1-4 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to use body position The information forms at least two data clusters.
在实施例6中,实施例1-5中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以使用体位信息来确定第一和第二生理数据以用于形成函数。In Example 6, the subject matter of one or any combination of Examples 1-5 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to use body position information to determine the first and second physiological data for forming the function.
在实施例7中,实施例1-6中的一种或任何组合的主题可以任选地包括被配置为从第一生理传感器接收第一生理数据的第一数据输入,所述第一个生理数据对应于第一时间窗期间的多个实例,包括至少一个患者体位变化。In Example 7, the subject matter of one or any combination of Examples 1-6 can optionally include a first data input configured to receive first physiological data from a first physiological sensor, the first physiological The data corresponds to a plurality of instances during the first time window including at least one change in patient position.
在实施例8中,实施例1-7中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以使用时刻信息来确定第一和第二生理数据以用于形成函数。In Example 8, the subject matter of one or any combination of Examples 1-7 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to use the time information to determine the first and second physiological data for forming the function.
在实施例9中,实施例1-8中的一种或任何组合的主题可以任选地包括被配置为从第一生理传感器接收第一生理数据的第一数据输入,所述第一数据输入对应于在第一时间窗期间的多个实例,所述第一时间窗包括其中预期发生患者体位变化的时间间隔。In Example 9, the subject matter of one or any combination of Examples 1-8 can optionally include a first data input configured to receive first physiological data from a first physiological sensor, the first data input Corresponding to a plurality of instances during a first time window comprising time intervals in which a change in patient position is expected to occur.
在实施例10中,实施例1-9中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以确定数据群集中的至少一个的定量属性,所述定量属性包括下列中的至少一个:函数的一部分的展开、函数的一部分的范围、至少部分地由函数的一部分限定的面积、函数的一部分的位置或形心、函数的至少两个不同部分的位置或形心之间的距离、或使用函数的至少两个不同部分形成的不同的第二函数。In Example 10, the subject matter of one or any combination of Examples 1-9 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to determine data A quantitative property of at least one of the clusters, the quantitative property comprising at least one of the following: an expansion of a portion of a function, an extent of a portion of a function, an area at least partially bounded by a portion of a function, a location or shape of a portion of a function The centroid, the position of at least two different parts of the function or the distance between centroids, or a different second function formed using at least two different parts of the function.
在实施例11中,实施例1-10中的一种或任何组合的主题可任选地包 括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以比较基线距离与函数的至少两个不同部分的位置或形心之间的距离。In Example 11, the subject matter of one or any combination of Examples 1-10 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to compare a baseline Distance is the distance between the positions or centroids of at least two distinct parts of the function.
在实施例12中,实施例1-11中的一种或任何组合的主题可任选地包括第三数据输入,将其配置为从至少第三生理传感器接收附加生理数据,所述附加生理数据对应于在相同的第一时间窗期间的多个实例,和处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以使用第一生理数据、第二生理数据和附加生理数据形成多维函数。In Example 12, the subject matter of one or any combination of Examples 1-11 can optionally include a third data input configured to receive additional physiological data from at least a third physiological sensor, the additional physiological data corresponding to multiple instances during the same first window of time, and a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to use the first physiological data, the second physiological data, and the Additional physiological data form a multidimensional function.
在实施例13中,实施例1-12中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以确定数据群集中的至少一个的定量属性,包括使用多维函数的一部分确定体积。In Example 13, the subject matter of one or any combination of Examples 1-12 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to determine data A quantitative property of at least one of the clusters includes determining volume using a portion of the multidimensional function.
在实施例14中,实施例1-13中的一种或任何组合的主题可任选地包括被配置为从第一生理传感器接收第三生理数据的第一数据输入,所述第三生理数据对应于在第二时间窗期间的多个实例,被配置为从第二生理传感器接收第四生理数据的第二数据输入,所述第四生理数据对应于在相同第二时间窗期间的多个实例,和处理器可读介质,其包括指令,当所述指令由处理器执行时,配置医疗装置以形成第三生理数据对第四生理数据的第二函数,使用第二函数形成至少两个附加数据群集,确定附加数据群集中的至少一个的测试定量属性,并使用测试定量属性以提供心力衰竭代偿失调指标。In Example 14, the subject matter of one or any combination of Examples 1-13 can optionally include a first data input configured to receive third physiological data from the first physiological sensor, the third physiological data Corresponding to a plurality of instances during a second time window, a second data input configured to receive fourth physiological data from a second physiological sensor corresponding to a plurality of instances during the same second time window Example, and a processor-readable medium comprising instructions that, when executed by a processor, configure a medical device to form a second function of third physiological data to fourth physiological data, using the second function to form at least two Additional data clusters, determining a test quantitative attribute of at least one of the additional data clusters, and using the test quantitative attribute to provide an index of heart failure decompensation.
在实施例15中,实施例1-14中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以将定量属性和测试定量属性趋势化以提供心力衰竭代偿失调指标。In Example 15, the subject matter of one or any combination of Examples 1-14 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to quantify Attributes and Tests Quantitative attributes were trended to provide indicators of heart failure decompensation.
在实施例16中,实施例1-15中的一种或任何组合的主题可任选地包括处理器可读介质,其包括指令,当该指令由处理器执行时,配置医疗装置以使用时刻信息形成至少两个数据群集。In Example 16, the subject matter of one or any combination of Examples 1-15 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure the medical device to use the time The information forms at least two data clusters.
实施例17可包括或可结合实施例1-16中的一个或任何组合的主题以任选地包括主题,诸如系统,所述系统包括可植入医疗装置,其包括第一生理传感器,将其配置成获得对应于在第一时间窗期间的多个实例的第一生理数据,第二生理传感器,将其配置为获得对应于相同的第一时间窗期 间的多个实例的第二生理数据,和处理器电路,将其配置为:接收第一和第二生理数据,使用第一和第二生理数据形成至少两个不同的数据群集,并使用数据群集中的至少一个的定量属性提供心力衰竭代偿失调指标。Example 17 may comprise or may combine the subject matter of one or any combination of Examples 1-16 to optionally comprise subject matter, such as a system comprising an implantable medical device comprising a first physiological sensor which configured to obtain first physiological data corresponding to a plurality of instances during a first time window, a second physiological sensor configured to obtain second physiological data corresponding to a plurality of instances during the same first time window, and a processor circuit configured to: receive first and second physiological data, use the first and second physiological data to form at least two different data clusters, and use a quantitative attribute of at least one of the data clusters to provide heart failure Indicator of decompensation.
在实施例18中,实施例1-17中的一种或任何组合的主题可任选地包括阻抗测量电路,将其配置为至少使用第一生理传感器接收第一阻抗信号和使用第二生理传感器接收第二阻抗信号,其中第一生理传感器包括第一电极并且第二生理传感器包括不同的第二电极。In Example 18, the subject matter of one or any combination of Examples 1-17 can optionally include an impedance measurement circuit configured to receive a first impedance signal using at least a first physiological sensor and to use a second physiological sensor A second impedance signal is received, wherein the first physiological sensor includes a first electrode and the second physiological sensor includes a second, different electrode.
在实施例19中,实施例1-18中的一种或任何组合的主题可任选地包括存储电路,将其配置为存储多个定量属性。In Example 19, the subject matter of one or any combination of Examples 1-18 can optionally include a storage circuit configured to store a plurality of quantitative attributes.
实施例20可以包括或可以结合实施例1-19中的一个或组合的主题以任选地包括主题诸如医疗装置,其包括:处理器,其包括第一数据输入,将其配置为接收来自第一胸阻抗矢量的第一胸阻抗数据,所述第一胸阻抗数据对应于第一时间窗期间的多个实例,第二数据输入,将其配置为接收来自第二胸阻抗矢量的第二胸阻抗数据,所述第二胸阻抗数据对应于相同的第一时间窗期间的多个实例,和第三数据输入,将其配置为使用至少两个胸阻抗矢量接收测试胸阻抗数据。Embodiment 20 may comprise or may combine the subject matter of one or a combination of Embodiments 1-19 to optionally comprise subject matter such as a medical device comprising: a processor comprising a first data input configured to receive data from a second first chest impedance data for a chest impedance vector, the first chest impedance data corresponding to a plurality of instances during the first time window, a second data input configured to receive a second chest impedance data from a second chest impedance vector Impedance data, the second chest impedance data corresponding to multiple instances during the same first time window, and a third data input configured to receive test chest impedance data using at least two chest impedance vectors.
在实施例21中,实施例1-20中的一个或任何组合的主题可任选地包括处理器可读介质,其包括指令,当所述指令由处理器执行时,配置医疗装置:形成第一胸阻抗数据对第二胸阻抗数据的第一函数,使用第一函数形成第一对数据群集,使用第一对数据群集确定第一定量属性,使用测试胸阻抗数据形成第二函数,使用第二函数形成第二对数据群集,使用第二对数据群集形成第二定量属性,并使用第一和第二定量属性的比较提供心力衰竭代偿失调指标。In Example 21, the subject matter of one or any combination of Examples 1-20 can optionally include a processor-readable medium comprising instructions that, when executed by a processor, configure a medical device to: form a first a first function of chest impedance data on a second chest impedance data, using the first function to form a first pair of data clusters, using the first pair of data clusters to determine a first quantitative attribute, using the test chest impedance data to form a second function, using The second function forms a second pair of data clusters, forms a second quantitative attribute using the second pair of data clusters, and provides a heart failure decompensation index using a comparison of the first and second quantitative attributes.
这些非限制性实施例可以以任何排列或组合而组合。These non-limiting examples can be combined in any permutation or combination.
上面详细描述包括对于附图的参考,其形成详细说明的一部分。附图通过举例说明的方式显示其中可以实施本发明的具体实施方案。这些实施方案在本文中也称为“实施例”。除了显示或描述的那些以外,这样的实施例还可以包括一些要素。然而,本发明人还考虑这样的实施例,其中仅提供显示或描述的那些要素。此外,本发明人还考虑关于特定实施例(或其一个或多个方面),或者关于本文显示或描述的其它实施例(或其一个或多 个方面),使用显示或描述的那些要素(或其一个或多个方面)的任意组合或排列的实施例。The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are also referred to herein as "examples." Such embodiments may include elements in addition to those shown or described. However, the inventors also contemplate embodiments in which only those elements shown or described are provided. In addition, the inventors contemplate using those elements shown or described (or any combination or permutation of one or more aspects thereof).
在本文件和通过引用结合的那些文件之间的不一致用法的情况下,以本文件中的用法为准。In the event of inconsistent usage between this document and those documents incorporated by reference, the usage in this document controls.
在本文件中,使用术语“一个(a)”或“一种(an)”,如在专利文献中常见的那样,包括一个或多于一个,独立于“至少一个”或“一个或多个”的任何其它情况或用法。在本文件中,术语“或”用来指非排它性的,或者,以致“A或B”包括“A但非B,”“B但非A”和“A和B”,除非另有说明。在本文件中,术语“包括(including)”和“其中(in which)”用作相应术语“包括(comprising)”和“其中(wherein)”的通俗英语等效形式。同样,在下面的权利要求中,术语“包括”和“包含”是开放式的,也就是说,包括除了权利要求中这样一种术语以后列出的那些以外的要素的系统、装置、物品或过程仍然被视为属于该权利要求的范围内。此外,在下面的权利要求中,术语“第一”、“第二”和“第三”等仅用来作为标签,并且不意欲对它们的对象施加数字要求。In this document, the term "a" or "an" is used, as is common in patent literature, to include one or more than one, independently of "at least one" or "one or more any other instance or use of ". In this document, the term "or" is used to mean a non-exclusive, alternative, such that "A or B" includes "A but not B," "B but not A" and "A and B," unless otherwise illustrate. In this document, the terms "including" and "in which" are used as the plain English equivalents of the corresponding terms "comprising" and "wherein". Likewise, in the following claims, the terms "comprising" and "comprising" are open ended, that is, a system, device, article, or system that includes elements other than those listed after such term in a claim. The process is still considered to be within the scope of the claim. Furthermore, in the following claims, the terms "first", "second", and "third", etc. are used only as labels and are not intended to impose numerical requirements on their objects.
本文描述的方法实施例,可以是机器、处理器或至少部分计算机执行的。一些实施例可以包括计算机可读介质或处理器可读介质,其用指令编码,所述指令可操作的用于配置电子设备来执行在以上实施例中描述的方法。这种方法的实现可以包括代码,如微代码,汇编语言代码,更高级别的语言代码等。这样的代码可以包括用于执行各种方法的计算机可读指令。代码可形成计算机程序产品的部分。另外,在实施例中,代码可以被有形地存储在一种或多种易失性、非瞬时性或非易失性的有形计算机可读介质上,如在执行过程中,或在其它时间。这些有形的计算机可读介质的实例可以包括,但不限于,硬盘、可移动磁盘、可移动光盘(例如,光盘、数字视频盘)、磁带盒、存储卡或棒、随机存储器(RAM)、只读存储器(ROM)等。The method embodiments described herein may be implemented by a machine, a processor, or at least partially a computer. Some embodiments may include a computer-readable medium or a processor-readable medium encoded with instructions operable to configure an electronic device to perform the methods described in the above embodiments. The implementation of this method can include code such as microcode, assembly language code, higher level language code, etc. Such code may include computer readable instructions for performing various methods. The code may form part of a computer program product. Additionally, in an embodiment, the code may be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution, or at other times. Examples of such tangible computer-readable media may include, but are not limited to, hard disks, removable disks, removable optical disks (e.g., compact disks, digital video disks), magnetic tape cartridges, memory cards or sticks, random access memory (RAM), Read memory (ROM), etc.
上面的描述旨在是说明性的,而不是限制性的。例如,上述实施例(或它们的一个或多个方面)可以被相互组合使用。可使用其它实施方案,如由本技术领域的普通技术人员在审阅上述的说明以后使用。提供摘要以符合37C.F.R.§1.72(b),允许读者快速地确定本技术公开的本质。要理解它将 不会用于解释或限制权利要求的范围或含义。同样,在上面的详细说明中,可以将各种特征组合在一起以简化本公开内容。这不应该被解释为意欲,未主张的公开特征对于任何权利要求是必不可少的。相反,本发明的主题可以在于少于具体公开的实施方案的全部特征。因此,下面的权利要求因此被并入到详细描述中,每个权利要求自身作为单独的实施方案成立,并且预期的是,这样的实施方案可以以各种组合或排列相互组合。本发明的范围应当参考所附的权利要求书以及这样的权利要求有资格获得权利的等效形式的全部范围来确定。The above description is intended to be illustrative, not restrictive. For example, the above-described embodiments (or one or more aspects thereof) may be used in combination with each other. Other implementations may be used, as would be used by one of ordinary skill in the art after reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b) to allow the reader to quickly ascertain the nature of the technical disclosure. It is to be understood that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to simplify the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments may be combined with each other in various combinations and permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Claims (15)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US42312710P | 2010-12-15 | 2010-12-15 | |
| US61/423,127 | 2010-12-15 | ||
| PCT/US2011/064553 WO2012082692A2 (en) | 2010-12-15 | 2011-12-13 | Cardiac decompensation detection using multiple sensors |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103370004A CN103370004A (en) | 2013-10-23 |
| CN103370004B true CN103370004B (en) | 2016-11-30 |
Family
ID=
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060025699A1 (en) * | 2004-07-28 | 2006-02-02 | Cardiac Pacemakers, Inc. | Determining a patient's posture from mechanical vibrations of the heart |
| US20060241513A1 (en) * | 2005-04-26 | 2006-10-26 | Cardiac Pacemakers, Inc. | Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance |
| US20060258952A1 (en) * | 2005-05-11 | 2006-11-16 | Cardiac Pacemakers, Inc. | Enhancements to the detection of pulmonary edema when using transthoracic impedance |
| CN101052967A (en) * | 2004-09-24 | 2007-10-10 | 皇家飞利浦电子股份有限公司 | Method of medical monitoring |
| EP1911399A1 (en) * | 2006-10-11 | 2008-04-16 | Pacesetter, Inc. | Techniques for correlating thoracic impedance with physiological status |
| CN101765400A (en) * | 2007-04-17 | 2010-06-30 | 心脏起搏器股份公司 | Heart Failure Detection Using Respiratory Distress Manifestations |
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060025699A1 (en) * | 2004-07-28 | 2006-02-02 | Cardiac Pacemakers, Inc. | Determining a patient's posture from mechanical vibrations of the heart |
| CN101052967A (en) * | 2004-09-24 | 2007-10-10 | 皇家飞利浦电子股份有限公司 | Method of medical monitoring |
| US20060241513A1 (en) * | 2005-04-26 | 2006-10-26 | Cardiac Pacemakers, Inc. | Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance |
| US20060258952A1 (en) * | 2005-05-11 | 2006-11-16 | Cardiac Pacemakers, Inc. | Enhancements to the detection of pulmonary edema when using transthoracic impedance |
| EP1911399A1 (en) * | 2006-10-11 | 2008-04-16 | Pacesetter, Inc. | Techniques for correlating thoracic impedance with physiological status |
| CN101765400A (en) * | 2007-04-17 | 2010-06-30 | 心脏起搏器股份公司 | Heart Failure Detection Using Respiratory Distress Manifestations |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8821404B2 (en) | Cardiac decompensation detection using multiple sensors | |
| US9332924B2 (en) | Posture detection using thoracic impedance | |
| US12023179B2 (en) | Readmission risk assessment based on chronobiological rhythms | |
| JP5180823B2 (en) | Multi-axis cardiac vibration measurement system and method | |
| US9993165B2 (en) | Transient sensor response to posture as a measure of patient status | |
| US10595734B2 (en) | Diagnostic and optimization using exercise recovery data | |
| US8483818B2 (en) | Enhancements to the detection of pulmonary edema when using transthoracic impedance | |
| US9089275B2 (en) | Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance | |
| US20150126878A1 (en) | Heart failure event detection and risk stratification using heart sound | |
| US10271797B2 (en) | Detection of worsening heart failure | |
| US9295405B2 (en) | SV/CO trending via intracardiac impedance | |
| JP2014502535A (en) | Physiological response to posture | |
| JP2011528933A (en) | Morphological feature evaluation in implantable medical devices | |
| EP2793696B1 (en) | Physiological status indicator apparatus | |
| CN103370004B (en) | Cardiac decompensation detection using multiple sensors | |
| US20100168812A1 (en) | method and device for collecting rem sleep data |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161130 Termination date: 20211213 |