+

CN103275971A - RNA interference targets for hepatitis b virus (HBV) infection treatment - Google Patents

RNA interference targets for hepatitis b virus (HBV) infection treatment Download PDF

Info

Publication number
CN103275971A
CN103275971A CN2013101317546A CN201310131754A CN103275971A CN 103275971 A CN103275971 A CN 103275971A CN 2013101317546 A CN2013101317546 A CN 2013101317546A CN 201310131754 A CN201310131754 A CN 201310131754A CN 103275971 A CN103275971 A CN 103275971A
Authority
CN
China
Prior art keywords
hbv
sirna
cells
cell
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101317546A
Other languages
Chinese (zh)
Inventor
程通
张雅丽
蔡毅君
苗季
张军
夏宁邵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Beijing WanTai Biological Pharmacy Enterprise Co Ltd
Original Assignee
Xiamen University
Beijing WanTai Biological Pharmacy Enterprise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Beijing WanTai Biological Pharmacy Enterprise Co Ltd filed Critical Xiamen University
Priority to CN2013101317546A priority Critical patent/CN103275971A/en
Publication of CN103275971A publication Critical patent/CN103275971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to 42 different hepatitis b virus (HBV)-targeting RNA interference targets for HBV infection treatment. The RNA interference targets can be used for preparation of a drug for HBV infection treatment. The invention provides recombinant expression vectors for expression of HBV-targeting siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide. The invention relates to cells which can inhibit HBV gene expression and can express and/or be introduced with the siRNA and/or the miRNA and/or the ribozyme and/or the antisense oligonucleotide and/or a drug obtained according to the RNA interference targets.

Description

可用于乙型肝炎病毒感染治疗的RNA干扰靶点RNA interference targets that can be used in the treatment of hepatitis B virus infection

本申请是申请日为2008年6月13日、申请号为200810110686.4的同名申请的分案申请。This application is a divisional application of the application with the same title filed on June 13, 2008 and with application number 200810110686.4.

技术领域technical field

本发明一般涉及分子生物学、细胞生物学和基因治疗领域。更具体地,本发明涉及可用于乙型肝炎病毒感染治疗的RNA干扰(RNAi)的42个靶点以及应用这些靶点的重组表达载体和应用这些靶点以各种方式获得的可用于乙型肝炎病毒感染治疗的药物和方法。The present invention relates generally to the fields of molecular biology, cell biology and gene therapy. More specifically, the present invention relates to 42 targets of RNA interference (RNAi) that can be used in the treatment of hepatitis B virus infection, as well as recombinant expression vectors using these targets and the recombinant expression vectors that can be used in hepatitis B obtained in various ways using these targets. Drugs and methods for the treatment of hepatitis virus infection.

背景技术Background technique

乙型肝炎病毒(Hepatitis B virus)感染是全世界最重要的公共卫生问题之一。HBV感染引起的相关疾病包括急性或慢性乙型肝炎,及由慢性乙型肝炎进一步发展引发的肝硬化(HC)、肝细胞癌(HCC)等。HBV感染的范围很广,目前全世界约有4亿HBV感染者,约20亿人感染过HBV。慢性HBV携带者中有相当一部份发展成为CHB,部分患者发展成为HC、HCC,每年因为HBV感染而死亡的人数超过100万(DonGanem等,新英格兰医学,2004年,35卷:1118-1129页)。我国是HBV感染高发区,HBV感染率约为56.7%,HBV病毒携带率为9.75%,约1.2亿人长期携带HBV(1992-1995年全国流调)。在各型病毒型肝炎中,HBV对人类健康的危害最严重。随着HBV疫苗在1982年的问世,HBV的感染率有明显降低,同时抗病毒药物的出现也使乙型肝炎的治疗取得了一定的进展。然而,由于HBV携带者数量庞大,而且目前的抗病毒药物尚无法根治HBV感染,因此仍将有大量的HBV携带者面临可能发展为肝硬化和肝细胞癌的危险。因此,迫切需要发展新的治疗手段以对付HBV的威胁。Hepatitis B virus infection is one of the most important public health problems worldwide. Related diseases caused by HBV infection include acute or chronic hepatitis B, and liver cirrhosis (HC) and hepatocellular carcinoma (HCC) caused by the further development of chronic hepatitis B. The range of HBV infection is very wide. At present, there are about 400 million HBV infected people in the world, and about 2 billion people have been infected with HBV. A considerable number of chronic HBV carriers develop into CHB, and some patients develop into HC and HCC, and the number of deaths due to HBV infection exceeds 1 million every year (DonGanem et al., New England Medicine, 2004, Volume 35: 1118-1129 Page). my country is a high-incidence area of HBV infection. The HBV infection rate is about 56.7%, and the HBV virus carrier rate is 9.75%. Among various types of viral hepatitis, HBV is the most serious hazard to human health. With the advent of HBV vaccine in 1982, the infection rate of HBV has been significantly reduced, and the emergence of antiviral drugs has also made some progress in the treatment of hepatitis B. However, due to the large number of HBV carriers and the fact that current antiviral drugs cannot cure HBV infection, a large number of HBV carriers will still face the risk of developing liver cirrhosis and hepatocellular carcinoma. Therefore, there is an urgent need to develop new treatments to deal with the threat of HBV.

RNA干扰(RNA interference,RNAi)是一种由双链RNA(double-stranded RNA,dsRNA)介导的细胞内的序列特异性的抑制基因表达的机制,是1998年在线虫中进行基因表达抑制研究中被首次提出(Fire A等,自然,1998年,391卷:806-811页)。在此之后,进一步的研究发现RNAi广泛存在于高等哺乳动物以及真菌、拟南芥、水螅、涡虫、锥虫、斑马鱼等几乎所有的真核生物中,是一种普遍存在和保守的抑制基因表达的机制,可起到调控基因表达、抗病毒入侵、抑制转座子活动等作用(Dykxhoorn DM等,自然分子细胞生物学综述,2003年,4卷:457-467页)。目前RNAi作用的机制已基本阐明:内源或外源产生的dsRNA分子在细胞质中被属RNA酶Ⅲ的Dicer切割成小干扰RNA(small interfering RNA,siRNA)。典型的siRNA结构特征为:5'端磷酸化,3'端呈对称性突出2-3nt并带羟基,长度为19-23nt的dsRNA。siRNA分子与RNA诱导的沉默复合体(RNA-inducingsilencing complex,RISC)的蛋白复合体进行结合,RISC具有解螺旋酶和核酸内切酶活性。siRNA分子在复合体中被解聚,其中反义链与可与之匹配的靶mRNA按碱基配对原则结合,并引导与之结合的RISC将靶mRNA在与反义链的结合区中部距5'端10nt的位置处酶解,从而抑制靶基因的表达。目前获得siRNA的方法主要有:可表达小发夹RNA(short hairpin RNA,shRNA)的质粒和重组病毒载体、化学合成方法、体外转录等。RNA interference (RNA interference, RNAi) is a mechanism of intracellular sequence-specific inhibition of gene expression mediated by double-stranded RNA (double-stranded RNA, dsRNA). was first proposed in (Fire A et al., Nature, 1998, Vol. 391: pp. 806-811). After that, further research found that RNAi widely exists in higher mammals and almost all eukaryotes such as fungi, Arabidopsis, hydra, planarians, trypanosomes, zebrafish, etc., and is a ubiquitous and conserved inhibitory The mechanism of gene expression can regulate gene expression, resist virus invasion, inhibit transposon activity, etc. At present, the mechanism of RNAi has been basically elucidated: dsRNA molecules produced endogenously or exogenously are cut into small interfering RNA (small interfering RNA, siRNA) by Dicer, which belongs to RNase III, in the cytoplasm. Typical structural features of siRNA are: phosphorylation at the 5' end, 2-3 nt protruding symmetrically at the 3' end with a hydroxyl group, and dsRNA with a length of 19-23 nt. The siRNA molecule binds to the protein complex of the RNA-inducing silencing complex (RISC), which has helicase and endonuclease activities. The siRNA molecule is depolymerized in the complex, in which the antisense strand binds to the target mRNA that can be matched with it according to the principle of base pairing, and guides the RISC bound to it to place the target mRNA at a distance of 5 in the binding region with the antisense strand The position of 10nt at the ' end is enzymatically hydrolyzed, thereby inhibiting the expression of the target gene. At present, the methods for obtaining siRNA mainly include: plasmids and recombinant virus vectors that can express small hairpin RNA (short hairpin RNA, shRNA), chemical synthesis methods, in vitro transcription, etc.

目前,RNAi技术在包括乙型肝炎病毒感染在内的病毒性疾病以及肿瘤等疾病的防治研究已显示出良好的应用前景。研究已显示靶向HBV mRNA的siRNA可在体外培养的人肝癌细胞株中抑制HBV的复制和病毒基因的表达(Konishi M等,Hepatology,2003年,38卷:842-850页)。由于HBV的致病机理较为复杂,要达到有效的治疗目的必须能够高效抑制病毒复制和基因表达。然而,并非所有符合常规设计要求的RNAi靶点都能够有效抑制靶基因的表达,不同靶点间的抑制效率各有差别。因此,选择获得合适的具有高抑制效率的RNAi靶点成为RNAi技术是否能够成功应用于抗HBV治疗的重要因素。选择合适的RNAi靶点需要从结构特征、抑制效率、非人类基因同源性等方面进行综合考虑。可使用的辅助方法包括目前已提出的siRNA辅助设计软件、RNA分子结构分析、核酸序列分析比对以及实验经验等,并通过具体的抑制评估实验予以验证。At present, RNAi technology has shown good application prospects in the prevention and treatment of viral diseases including hepatitis B virus infection and tumors. Studies have shown that siRNA targeting HBV mRNA can inhibit HBV replication and viral gene expression in human liver cancer cell lines cultured in vitro (Konishi M et al., Hepatology, 2003, Vol. 38: pp. 842-850). Since the pathogenic mechanism of HBV is relatively complex, it must be able to efficiently inhibit virus replication and gene expression in order to achieve effective treatment. However, not all RNAi targets that meet the conventional design requirements can effectively inhibit the expression of target genes, and the inhibition efficiency varies among different targets. Therefore, the selection of suitable RNAi targets with high inhibitory efficiency has become an important factor for whether RNAi technology can be successfully applied to anti-HBV therapy. Selecting a suitable RNAi target needs to be comprehensively considered in terms of structural characteristics, inhibition efficiency, and non-human gene homology. Auxiliary methods that can be used include the proposed siRNA-assisted design software, RNA molecular structure analysis, nucleic acid sequence analysis and comparison, and experimental experience, etc., and are verified by specific inhibition evaluation experiments.

以RNA干扰技术为基础将有望开发出新型的更有效可用于乙型肝炎病毒感染治疗的方法,该类型的治疗方法需要提供可有效抑制HBV复制和表达的RNA干扰靶点。本发明满足了这一要求,提供了可用于该目的的RNA干扰靶点、重组表达载体等。Based on RNA interference technology, it is expected to develop new and more effective methods for the treatment of hepatitis B virus infection. This type of treatment method needs to provide RNA interference targets that can effectively inhibit HBV replication and expression. The present invention meets this requirement by providing RNA interference targets, recombinant expression vectors and the like that can be used for this purpose.

发明内容Contents of the invention

本发明提供了靶向HBV的RNA干扰靶点,可用于构建包含或导入了本发明涉及的RNA干扰靶点的编码核酸序列的表达质粒、重组病毒载体和细胞,及可用于获得包含有由本发明涉及的RNA干扰靶点获得的治疗药物。The present invention provides an RNA interference target targeting HBV, which can be used to construct expression plasmids, recombinant virus vectors and cells that contain or introduce the coding nucleic acid sequence of the RNA interference target involved in the present invention, and can be used to obtain the RNA interference target containing the present invention. Involved RNA interference targets to obtain therapeutic drugs.

本发明提供的RNA干扰靶点可靶向HBV,可抑制HBV的复制和病毒基因表达。本发明提供的RNA干扰靶点是通过以下方法获得的:选择设计可靶向HBV的RNA干扰靶点序列,通过设计合适的引物构建shRNA,并克隆入表达载体获得相应的shRNA表达质粒,将该质粒分别与HBV感染性克隆质粒进行共转染实验,通过检测HBV蛋白的表达水平及鉴定抑制特异性等分析筛选获得合适的RNA干扰靶点。The RNA interference target provided by the invention can target HBV, and can inhibit HBV replication and viral gene expression. The RNA interference target provided by the present invention is obtained by the following method: selecting and designing the RNA interference target sequence that can target HBV, constructing shRNA by designing suitable primers, and cloning into the expression vector to obtain the corresponding shRNA expression plasmid. The plasmids were co-transfected with the HBV infectious clone plasmids, and the appropriate RNA interference targets were obtained through analysis and screening of HBV protein expression levels and identification of inhibition specificity.

本发明提供(特异)靶向HBV的RNA干扰靶点序列,该序列选自:The present invention provides (specifically) RNA interference target sequence targeting HBV, the sequence is selected from:

(1)SEQ ID NO:1-42中任何一个所示的序列,或者(1) the sequence shown in any one of SEQ ID NO: 1-42, or

(2)与(1)中序列具有至少70%(优选至少80%、85%、90%、95%、98%或更高)一致性的序列,或者(2) A sequence that is at least 70% (preferably at least 80%, 85%, 90%, 95%, 98% or more) identical to the sequence in (1), or

(3)在严紧条件下或者高度严紧条件下与(1)中序列能够杂交的核苷酸序列,或者(3) A nucleotide sequence that can hybridize with the sequence in (1) under stringent conditions or highly stringent conditions, or

(4)与(1)中序列仅有1-3个(优选1-2个,更优选1个)核苷酸不同的序列;或者(4) A sequence that differs from the sequence in (1) by only 1-3 (preferably 1-2, more preferably 1) nucleotides; or

(5)上述序列的片段或者互补序列。(5) Fragments or complementary sequences of the above sequences.

在一个具体方面,所述RNA干扰靶点序列可以靶向HBV X、S、P或者C基因。In a specific aspect, the RNA interference target sequence can target HBV X, S, P or C genes.

在一个优选实施方案中,所述RNA干扰靶点选自siHBV7(SEQ IDNO:7)和siHBV12(SEQ ID NO:12)。In a preferred embodiment, the RNA interference target is selected from siHBV7 (SEQ ID NO: 7) and siHBV12 (SEQ ID NO: 12).

本发明提供的RNA干扰靶点可以是DNA或RNA序列。The RNA interference target provided by the present invention can be a DNA or RNA sequence.

本发明还提供包含该RNA干扰靶点序列的核酸构建体或载体如表达载体。包含该RNA干扰靶点序列的重组表达载体可用于表达本发明的靶向HBV的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。The present invention also provides nucleic acid constructs or vectors such as expression vectors comprising the RNA interference target sequence. The recombinant expression vector containing the RNA interference target sequence can be used to express the HBV-targeted siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide of the present invention.

本发明还提供了可表达本发明的靶向HBV的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸的重组表达载体。The present invention also provides a recombinant expression vector capable of expressing the HBV-targeting siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide of the present invention.

在一个实施方案中,本发明重组表达载体具有以下特征:包含了本发明提供的RNA干扰靶点序列的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸的编码核酸序列,这些编码核酸序列与表达控制序列可操作地连接,使得可在动物细胞(特别是哺乳动物细胞,如人细胞,优选肝细胞和干细胞)中表达所述靶向HBV的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。In one embodiment, the recombinant expression vector of the present invention has the following characteristics: the nucleic acid sequence encoding the siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide comprising the RNA interference target sequence provided by the present invention , these coding nucleic acid sequences are operably linked with expression control sequences, so that the siRNA and/or miRNA targeting HBV can be expressed in animal cells (especially mammalian cells, such as human cells, preferably liver cells and stem cells) and /or ribozymes and/or antisense oligonucleotides.

本发明的重组表达载体可以是质粒载体或病毒载体,例如逆转录病毒载体、慢病毒载体、腺病毒载体、腺相关病毒载体等。The recombinant expression vector of the present invention may be a plasmid vector or a virus vector, such as a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, and the like.

本发明还提供依据上述的RNA干扰靶点序列获得的、能够抑制HBV相应基因的表达和/或HBV的复制和/或感染的siRNA或miRNA或核酶或反义寡核苷酸。The present invention also provides siRNA or miRNA or ribozyme or antisense oligonucleotide obtained according to the above-mentioned RNA interference target sequence and capable of inhibiting the expression of HBV corresponding genes and/or the replication and/or infection of HBV.

本发明还涉及分离的细胞,其包含:(1)本发明RNA干扰靶点序列,或者(2)含有本发明RNA干扰靶点序列的核酸构建体或载体如表达载体。The present invention also relates to isolated cells comprising: (1) the RNA interference target sequence of the present invention, or (2) a nucleic acid construct or vector such as an expression vector containing the RNA interference target sequence of the present invention.

本发明还涉及转化或转染或转导了重组表达载体的分离的细胞,所述重组表达载体可表达本发明的靶向HBV的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。The present invention also relates to an isolated cell transformed or transfected or transduced with a recombinant expression vector expressing the HBV-targeting siRNA and/or miRNA and/or ribozyme and/or antisense oligo of the present invention Nucleotides.

本发明还涉及一种改造的细胞(包括动物例如哺乳动物优选人的细胞,优选肝细胞和干细胞),其可表达或包含有本发明siRNA或miRNA或核酶或反义寡核苷酸。The present invention also relates to a modified cell (including animal such as mammalian, preferably human cells, preferably liver cells and stem cells), which can express or contain the siRNA or miRNA or ribozyme or antisense oligonucleotide of the present invention.

本发明还涉及在基因组中或者基因组外携带本发明涉及的RNA干扰靶点的编码核酸序列的细胞,包括原核细胞(如细菌细胞,如大肠杆菌细胞)和真核细胞(如真菌细胞,昆虫细胞,植物细胞,动物细胞,优选哺乳动物如人的细胞,优选肝细胞和干细胞),其包含有本发明涉及的RNA干扰靶点的编码核酸序列(这些编码核酸序列可与表达控制序列可操作地连接,使得可在该细胞中表达所述的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸)。The present invention also relates to cells carrying the nucleic acid sequence encoding the RNA interference target involved in the present invention in the genome or outside the genome, including prokaryotic cells (such as bacterial cells, such as Escherichia coli cells) and eukaryotic cells (such as fungal cells, insect cells) , plant cells, animal cells, preferably mammalian cells such as human cells, preferably hepatocytes and stem cells), which contain the coding nucleic acid sequences of the RNA interference targets involved in the present invention (these coding nucleic acid sequences can be operably with expression control sequences Ligated so that said siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide can be expressed in the cell).

本发明还涉及导入了由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸的细胞,包括原核细胞(如细菌细胞,如大肠杆菌细胞)和真核细胞(如真菌细胞,昆虫细胞,植物细胞,动物细胞,优选哺乳动物如人的细胞,优选肝细胞和干细胞),其被导入了包含有由本发明涉及的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。The present invention also relates to cells, including prokaryotic cells (such as bacterial cells, such as E. ) and eukaryotic cells (such as fungal cells, insect cells, plant cells, animal cells, preferably mammalian cells such as human cells, preferably liver cells and stem cells), which are introduced into cells containing the RNA interference target obtained by the present invention siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide.

在一个优选的实施方案中,含有本发明获得的RNA干扰靶点的编码核酸序列的shRNA表达元件导入肝细胞后可使细胞获得抑制HBV复制和病毒基因表达的能力。In a preferred embodiment, after the shRNA expression element containing the nucleic acid sequence encoding the RNA interference target obtained in the present invention is introduced into hepatocytes, the cells can obtain the ability to inhibit HBV replication and viral gene expression.

本发明还涉及包含上述细胞的组织和生物,如动物。本发明还涉及包含本发明的细胞的药物组合物。The invention also relates to tissues and organisms, such as animals, comprising the cells described above. The invention also relates to pharmaceutical compositions comprising the cells of the invention.

另一方面,本发明还涉及制备本发明改造细胞的方法,包括用本发明的重组表达载体转化或转染或转导细胞(包括动物例如哺乳动物优选人的细胞,优选肝细胞和干细胞)。On the other hand, the present invention also relates to the method for preparing the modified cells of the present invention, including transforming or transfecting or transducing cells (including animal such as mammalian, preferably human cells, preferably liver cells and stem cells) with the recombinant expression vector of the present invention.

在一个实施方案中,所述方法包括用本发明重组病毒载体(例如慢病毒载体,如慢病毒Lenti-siHBV7等)转导哺乳动物优选人的肝细胞和干细胞。In one embodiment, the method includes transducing mammalian, preferably human, hepatocytes and stem cells with the recombinant viral vector of the present invention (eg, lentiviral vector, such as lentivirus Lenti-siHBV7, etc.).

在上述方法,所述细胞可以是分离的(或离体的),例如从感染HBV的患者或者正常个体分离的,或者是在体的,或者是体外培养的细胞株。In the above method, the cells may be isolated (or ex vivo), such as isolated from HBV-infected patients or normal individuals, or in vivo, or cell lines cultured in vitro.

本发明还涉及DNA序列的组合,其包括或者由编码正义RNA片段的第一DNA序列和编码反义RNA片段的第二DNA序列组成,所述正义RNA片段包含本发明靶点序列所编码的RNA序列,反义RNA片段和正义RNA片段能形成双链RNA,该双链RNA能抑制HBV基因的表达和/或HBV的复制和/或感染。The invention also relates to a combination of DNA sequences comprising or consisting of a first DNA sequence encoding a sense RNA segment comprising RNA encoded by a target sequence of the invention and a second DNA sequence encoding an antisense RNA segment Sequence, antisense RNA fragment and positive sense RNA fragment can form double-stranded RNA, and this double-stranded RNA can inhibit the expression of HBV gene and/or the replication and/or infection of HBV.

本发明还涉及小分子干扰核糖核酸(siRNA),其包括正义RNA片段和反义RNA片段,所述正义RNA片段包含本发明靶点序列编码的RNA序列,反义RNA片段和正义RNA片段能形成双链RNA,且该双链RNA能抑制HBV相应基因的表达和/或HBV的复制和/或感染。The present invention also relates to small-molecule interfering ribonucleic acid (siRNA), which includes sense RNA fragments and antisense RNA fragments, the sense RNA fragments comprise the RNA sequence encoded by the target sequence of the present invention, and the antisense RNA fragments and sense RNA fragments can form Double-stranded RNA, and the double-stranded RNA can inhibit the expression of HBV corresponding genes and/or the replication and/or infection of HBV.

本发明还涉及由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸在制备治疗HBV感染或者HBV患者的药物和/或药物组合物中的用途。The present invention also relates to the siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide obtained from the RNA interference target provided by the present invention in the preparation of medicines and/or pharmaceutical compositions for treating HBV infection or HBV patients the use of.

本发明还涉及由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸在制备抑制HBV复制或者HBV基因表达的药物和/或药物组合物中的用途。The present invention also relates to the use of siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide obtained from the RNA interference target provided by the present invention in the preparation of drugs and/or pharmaceutical compositions for inhibiting HBV replication or HBV gene expression use in .

本发明还涉及本发明RNA干扰靶点序列、或核酸构建体或载体、或重组表达载体在制备治疗HBV感染或者HBV患者的药物中的用途。The present invention also relates to the use of the RNA interference target sequence of the present invention, or the nucleic acid construct or vector, or the recombinant expression vector in the preparation of medicines for treating HBV infection or HBV patients.

本发明还涉及本发明的经改造的细胞(包括动物例如哺乳动物优选人的细胞,优选肝细胞和干细胞)在制备治疗HBV感染或者HBV患者的药物和/或药物组合物中的用途。The present invention also relates to the use of the modified cells of the present invention (including animal, such as mammalian, preferably human cells, preferably liver cells and stem cells) in the preparation of medicines and/or pharmaceutical compositions for treating HBV infection or HBV patients.

本发明还涉及本发明的siRNA靶序列在筛选抗HBV药物中的应用。The present invention also relates to the application of the siRNA target sequence of the present invention in screening anti-HBV drugs.

本发明还涉及治疗HBV感染或者HBV患者的方法,包括向有需要的个体给予本发明的RNA干扰靶点序列、核酸构建体或载体、重组表达载体、siRNA或miRNA或核酶或反义寡核苷酸、或细胞。The present invention also relates to a method for treating HBV infection or HBV patients, comprising administering the RNA interference target sequence, nucleic acid construct or vector, recombinant expression vector, siRNA or miRNA or ribozyme or antisense oligonucleotide of the present invention to individuals in need nucleotides, or cells.

本发明还涉及本发明载体和细胞用于治疗HBV感染或者HBV患者的用途。The present invention also relates to the use of the vector and cells of the present invention for treating HBV infection or HBV patients.

本发明还涉及治疗HBV感染或者HBV患者的方法,包括向患者给予治疗有效量的本发明所述RNA干扰靶点序列、核酸构建体或载体、siRNA或miRNA或核酶或反义寡核苷酸、表达载体、细胞、DNA序列组合或siRNA。The present invention also relates to a method for treating HBV infection or HBV patients, comprising administering to the patient a therapeutically effective amount of the RNA interference target sequence, nucleic acid construct or vector, siRNA or miRNA or ribozyme or antisense oligonucleotide of the present invention , expression vectors, cells, DNA sequence combinations or siRNA.

本发明还涉及抑制HBV复制或者HBV基因表达的方法,包括向有需要的个体给予有效量的本发明所述RNA干扰靶点序列、核酸构建体或载体、siRNA或miRNA或核酶或反义寡核苷酸、表达载体、细胞、DNA序列组合或siRNA。The present invention also relates to a method for inhibiting HBV replication or HBV gene expression, comprising administering to an individual in need an effective amount of the RNA interference target sequence, nucleic acid construct or vector, siRNA or miRNA or ribozyme or antisense oligo Nucleotides, expression vectors, cells, combinations of DNA sequences, or siRNA.

本发明还涉及本发明所述RNA干扰靶点序列、核酸构建体或载体、siRNA或miRNA或核酶或反义寡核苷酸、表达载体、细胞、DNA序列组合或siRNA,用于治疗HBV感染或者HBV患者,或者用于抑制HBV复制或者HBV基因表达。The present invention also relates to the RNA interference target sequence, nucleic acid construct or carrier, siRNA or miRNA or ribozyme or antisense oligonucleotide, expression vector, cell, DNA sequence combination or siRNA described in the present invention, for treating HBV infection Or for HBV patients, or for inhibiting HBV replication or HBV gene expression.

下面结合附图对本发明进行更详细的说明。从下文的详细描述中,本发明的上述方面和本发明的其他方面将是明显的。The present invention will be described in more detail below in conjunction with the accompanying drawings. The above aspects of the invention and other aspects of the invention will be apparent from the following detailed description.

附图说明Description of drawings

图1为pSUPER-siRNA系列表达质粒的构建流程示意图。Figure 1 is a schematic diagram of the construction process of pSUPER-siRNA series expression plasmids.

图2显示了分别靶向我们获得的42个RNA干扰靶点的siRNA表达质粒在与HBV感染性克隆质粒共转染实验中对HBV基因表达的抑制效果。结果显示,这些RNA干扰靶点可抑制HBV。Figure 2 shows the inhibitory effect of siRNA expression plasmids respectively targeting the 42 RNA interference targets obtained by us in the co-transfection experiment with HBV infectious clone plasmids on HBV gene expression. The results showed that these RNAi targets suppressed HBV.

图3显示了携带有靶向HBV的siRNA表达序列的表达载体质粒pSUPER-siHBV7、pSUPER-siHBV12转染后的HepG2-N10细胞可显示出抑制HBV表达的能力,可抑制HepG2-N10细胞中HBsAg的表达。Figure 3 shows that HepG2-N10 cells transfected with expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12 carrying HBV-targeted siRNA expression sequences can show the ability to inhibit HBV expression, and can inhibit the production of HBsAg in HepG2-N10 cells Express.

图4显示了携带有靶向HBV的siRNA表达序列的表达载体质粒pSUPER-siHBV7、pSUPER-siHBV12转染后的HepG2-N10细胞可显示出抑制HBV复制的能力,可降低HepG2-N10细胞培养上清中HBV核酸的拷贝量。Figure 4 shows that HepG2-N10 cells transfected with expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12 carrying HBV-targeting siRNA expression sequences can show the ability to inhibit HBV replication, which can reduce the expression of HepG2-N10 cell culture supernatant The copy amount of HBV nucleic acid in the

图5显示了携带有靶向HBV的siRNA表达序列的重组慢病毒Lenti-siHBV7、Lenti-siHBV12转导后的HepG2-N10细胞可显示出抑制HBV表达的能力,可抑制HepG2-N10细胞中HBsAg的表达。Figure 5 shows that HepG2-N10 cells transduced by recombinant lentiviruses Lenti-siHBV7 and Lenti-siHBV12 carrying HBV-targeting siRNA expression sequences can show the ability to inhibit HBV expression, and can inhibit the production of HBsAg in HepG2-N10 cells Express.

图6显示了携带有靶向HBV的siRNA表达序列的重组慢病毒Lenti-siHBV7、Lenti-siHBV12转导后的HepG2-N10细胞可显示出抑制HBV复制的能力,可降低HepG2-N10细胞培养上清中HBV核酸的拷贝量。Figure 6 shows that HepG2-N10 cells transduced by recombinant lentiviruses Lenti-siHBV7 and Lenti-siHBV12 carrying HBV-targeted siRNA expression sequences can show the ability to inhibit HBV replication, which can reduce the expression of HepG2-N10 cell culture supernatant The copy amount of HBV nucleic acid in the

图7显示了携带有靶向HBV的siRNA表达序列的表达载体质粒pSUPER-siHBV7、pSUPER-siHBV12注射转导后的小鼠肝细胞可显示出抑制HBV表达的能力,可抑制HBV感染性克隆质粒的表达,降低血清中HBsAg的水平。Figure 7 shows that the expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12 carrying the siRNA expression sequence targeting HBV can show the ability to inhibit HBV expression after injection and transduction of the expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12, and can inhibit the HBV infectious clone plasmid expression, reducing the level of HBsAg in serum.

图8显示了携带有靶向HBV的siRNA表达序列的表达载体质粒pSUPER-siHBV7、pSUPER-siHBV12注射转导后的小鼠肝细胞可显示出抑制HBV复制的能力,可抑制HBV感染性克隆质粒的表达,降低血清中HBV核酸的拷贝量。Figure 8 shows that the expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12 carrying the siRNA expression sequence targeting HBV can show the ability to inhibit HBV replication after injection and transduction of the expression vector plasmids pSUPER-siHBV12, which can inhibit the expression of HBV infectious clone plasmids Expression, reducing the copy amount of HBV nucleic acid in serum.

图9显示了合成的靶向HBV的RNA干扰靶点的siRNA对HBV的抑制效果。siR-HBV7和siR-HBV12转染后的HepG2-N10细胞可显示出抑制HBV表达的能力,可抑制HepG2-N10细胞中HBsAg的表达。Fig. 9 shows the inhibitory effect of the synthetic siRNA targeting the RNA interference target of HBV on HBV. HepG2-N10 cells transfected with siR-HBV7 and siR-HBV12 can show the ability to inhibit the expression of HBV, and can inhibit the expression of HBsAg in HepG2-N10 cells.

图10显示了合成的靶向HBV的RNA干扰靶点的siRNA对HBV的抑制效果。siR-HBV7和siR-HBV12转染后的HepG2-N10细胞可显示出抑制HBV复制的能力,可降低HepG2-N10细胞培养上清中HBV核酸的拷贝量。FIG. 10 shows the inhibitory effect of the synthesized siRNA targeting the RNA interference target of HBV on HBV. HepG2-N10 cells transfected with siR-HBV7 and siR-HBV12 can show the ability to inhibit HBV replication, and can reduce the copy amount of HBV nucleic acid in the culture supernatant of HepG2-N10 cells.

图11显示了合成的并经2’-Ome(2’-甲氧基)修饰和/或磷酸化修饰和/或固醇修饰的靶向HBV的RNA干扰靶点的siRNA对HBV的抑制效果。siRpo-HBV7、siRpo-HBV12、siRpoC-HBV7、siRpoC-HBV12转染后的HepG2-N10细胞可显示出抑制HBV表达的能力,可抑制HepG2-N10细胞中HBsAg的表达。Figure 11 shows the inhibitory effect on HBV of the siRNA targeting the RNA interference target of HBV modified by 2'-Ome (2'-methoxy) and/or phosphorylated and/or sterol-modified. HepG2-N10 cells transfected with siRpo-HBV7, siRpo-HBV12, siRpoC-HBV7, and siRpoC-HBV12 can show the ability to inhibit the expression of HBV, and can inhibit the expression of HBsAg in HepG2-N10 cells.

图12显示了合成的并经2’-OMe修饰和/或磷酸化修饰和/或固醇修饰的靶向HBV的RNA干扰靶点的siRNA对HBV的抑制效果。siRpo-HBV7、siRpo-HBV12、siRpoC-HBV7、siRpoC-HBV12转染后的HepG2-N10细胞可显示出抑制HBV复制的能力,可降低HepG2-N10细胞培养上清中HBV核酸的拷贝量。Figure 12 shows the inhibitory effect on HBV of synthetic and 2'-OMe-modified and/or phosphorylated-modified and/or sterol-modified siRNA targeting the RNA interference target of HBV. HepG2-N10 cells transfected with siRpo-HBV7, siRpo-HBV12, siRpoC-HBV7, and siRpoC-HBV12 can show the ability to inhibit HBV replication, and can reduce the copy amount of HBV nucleic acid in the culture supernatant of HepG2-N10 cells.

具体实施方式Detailed ways

除非特别说明,本发明的术语具有本领域通常使用的含义。Unless otherwise specified, terms in the present invention have meanings commonly used in the art.

本发明提供了可靶向HBV的RNA干扰靶点,包含如下序列或与其具有至少70%(优选至少80%、85%、90%、95%、98%或更高)一致性的序列中的任何一个或几个序列:SEQ ID NO:1-42。The present invention provides an RNA interference target that can target HBV, comprising the following sequence or a sequence having at least 70% (preferably at least 80%, 85%, 90%, 95%, 98% or higher) identity therewith Any one or several sequences: SEQ ID NO:1-42.

一致性(identity)可以按照本领域公知的方法计算。适合于确定序列一致性和序列相似性百分数的算法的一个优选例子是BLAST和BLAST2.0算法,它们分别描述在Altschul等(1977)Nucl.Acid.Res.25:3389-3402和Altschul等(1990)J.Mol.Biol.215:403-410。采用例如本文所述参数,BLAST和BLAST2.0可以用于确定本发明的多核苷酸和多肽的序列一致性百分数。执行BLAST分析的软件可以通过国立生物技术信息中心为公众所获得。Identity can be calculated according to methods known in the art. A preferred example of an algorithm suitable for determining percent sequence identity and sequence similarity is the BLAST and BLAST2.0 algorithms described in Altschul et al. (1977) Nucl. Acid. Res. 25:3389-3402 and Altschul et al. (1990 ) J. Mol. Biol. 215:403-410. Using parameters such as those described herein, BLAST and BLAST 2.0 can be used to determine percent sequence identity for polynucleotides and polypeptides of the invention. Software for performing BLAST analyzes is publicly available through the National Center for Biotechnology Information.

在其它实施方案中,所述RNA干扰靶点的序列具有在严紧条件下或者高度严紧条件与本文提供的多核苷酸、或其片段、或其互补序列能够杂交的多核苷酸序列。在分子生物学领域中杂交技术是熟知的。为了举例说明的目的,所述杂交的条件是严紧条件,例如与滤膜结合的DNA在6×氯化钠/柠檬酸钠(SSC)中约45℃下杂交,之后在0.2×SSC/0.1%SDS中于约50-65℃下作一或多次洗涤;高度严紧条件,例如与滤膜结合的核酸在6×SSC中约45℃下杂交,之后在0.1×SSC/0.2%SDS中于约68℃下作一或多次洗涤;或本领域技术人员已知的其它严紧杂交条件(参见例如Ausubel,F.M.等编,1989,CurrentProtocols in Molecular Biology,第1卷,Green PublishingAssociates,Inc.,和John Wiley&Sons,Inc.,纽约,第6.3.1-6.3.6和2.10.3页)。In other embodiments, the sequence of the RNA interference target has a polynucleotide sequence that can hybridize to a polynucleotide provided herein, or a fragment thereof, or a complementary sequence thereof under stringent conditions or highly stringent conditions. Hybridization techniques are well known in the field of molecular biology. For the purpose of illustration, the conditions of the hybridization are stringent conditions, for example, the DNA bound to the filter is hybridized at about 45° C. in 6× sodium chloride/sodium citrate (SSC), followed by 0.2×SSC/0.1% One or more washes in SDS at about 50-65°C; highly stringent conditions, such as hybridization of filter-bound nucleic acids at about 45°C in 6×SSC, and then in 0.1×SSC/0.2% SDS at about One or more washes at 68° C.; or other stringent hybridization conditions known to those skilled in the art (see, for example, Ausubel, F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. 1, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, pp. 6.3.1-6.3.6 and 2.10.3).

本发明还涉及在严紧条件下或者高度严紧条件与SEQ ID NO:1-42的任一序列、或其片段、或其互补序列能够杂交的核苷酸序列。The present invention also relates to a nucleotide sequence capable of hybridizing to any sequence of SEQ ID NO: 1-42, or a fragment thereof, or a complementary sequence thereof under stringent conditions or highly stringent conditions.

在本发明中,siRNA和/或miRNA和/或核酶和/或反义寡核苷酸可被设计成靶向目的基因或者调节序列,例如需要抑制其表达的基因或其调控序列,以便抑制或降低其表达。所针对的基因或其调控序列可以是需要抑制或降低其表达的任何基因或其调控序列,例如来自病原体的、或者参与癌症形成和发展的那些,特别是靶向HBV。本发明的siRNA、miRNA、核酶和反义寡核苷酸可按照常规方法设计。In the present invention, siRNAs and/or miRNAs and/or ribozymes and/or antisense oligonucleotides can be designed to target genes or regulatory sequences, such as genes whose expression needs to be inhibited or their regulatory sequences, in order to inhibit or reduce its expression. The targeted gene or its regulatory sequence may be any gene or its regulatory sequence whose expression needs to be suppressed or reduced, such as those from pathogens, or those involved in the formation and progression of cancer, especially targeting HBV. The siRNA, miRNA, ribozyme and antisense oligonucleotide of the present invention can be designed according to conventional methods.

“依据本发明RNA干扰靶点序列获得的siRNA、miRNA、核酶和反义寡核苷酸”指的是通过设计表达或设计合成等方式得到的siRNA、miRNA、核酶和反义寡核苷酸,其所作用的靶序列(可以是DNA或RNA序列)为或包含有本发明涉及的RNA干扰靶点序列。"siRNA, miRNA, ribozyme and antisense oligonucleotide obtained according to the RNA interference target sequence of the present invention" refers to siRNA, miRNA, ribozyme and antisense oligonucleotide obtained by design expression or design synthesis acid, the target sequence (which can be a DNA or RNA sequence) acts on or contains the RNA interference target sequence involved in the present invention.

siRNA的常规设计方法可参考文献(如:Reynolds A等,自然生物技术,2004年,22卷:326-330)或Amhion、Qiagen等公司网站的公开资料或实施例1中的描述。miRNA的常规设计方法可参考文献(Lo HL等,基因治疗,2007年,14卷:1503-1512页),选择靶序列的方法与siRNA的设计方法相似,例如可将设计的含有靶序列的正义链及相应的反义链替换到pri-microRNA上,使构建的miRNA可阻止含有靶序列的mRNA的表达。核酶的常规设计方法可参考文献(Haseloff J等,自然,1988年,334卷:585-591页),例如可将与靶序列的前后序列互补的核苷酸序列分别置于核酶保守性核心的序列(如锤头结构)前后,使构建的核酶能在靶序列处切割含有靶序列的核酸。反义寡核苷酸的常规设计方法可参考文献(Matveeva OV等,核酸研究,2003年,31卷:4989-4994页)。The conventional design method of siRNA can refer to the literature (such as: Reynolds A et al., Nature Biotechnology, 2004, volume 22: 326-330) or the public information on the websites of companies such as Amhion and Qiagen or the description in Example 1. The conventional design method of miRNA can refer to the literature (Lo HL et al., Gene Therapy, 2007, Volume 14: 1503-1512). The method of selecting the target sequence is similar to the design method of siRNA, for example, the designed sense gene containing the target sequence can be Strand and the corresponding antisense strand are replaced on the pri-microRNA, so that the constructed miRNA can prevent the expression of mRNA containing the target sequence. The conventional design method of ribozyme can refer to the literature (Haseloff J et al., Nature, 1988, Volume 334: 585-591 pages), for example, the nucleotide sequence complementary to the front and rear sequences of the target sequence can be placed in the ribozyme conservative Before and after the sequence of the core (such as the hammerhead structure), the constructed ribozyme can cut the nucleic acid containing the target sequence at the target sequence. Conventional design methods of antisense oligonucleotides can be referred to (Matveeva OV et al., Nucleic Acid Research, 2003, Vol. 31: pp. 4989-4994).

本发明使用的启动子可以是任何适于在细胞中表达目的基因的启动子。可以是组成型的,也可以是诱导型的。还可以是复合启动子,如双启动子。The promoter used in the present invention can be any promoter suitable for expressing a gene of interest in a cell. Can be constitutive or inducible. It can also be a composite promoter, such as a double promoter.

“可操作地连接”是指所连接的分子的连接方式使得能够实现预期的功能。例如,表达控制序列与基因编码序列的可操作的连接可实现表达控制序列对基因编码序列的表达控制作用。"Operably linked" means that the linked molecules are linked in such a way that the intended function is achieved. For example, the operative linkage of the expression control sequence and the gene coding sequence can realize the expression control effect of the expression control sequence on the gene coding sequence.

“表达控制序列”是实现基因表达所需要的控制序列,是本领域熟知的。通常必须包括启动子,常常也包括转录终止序列,也可以包含其他序列,如增强子序列。基因表达对于siRNA、miRNA、核酶和反义寡核苷酸等是指转录,也可以包括转录后加工;对于蛋白质编码序列通常是指转录和翻译,产生成熟的蛋白质。"Expression control sequence" is a control sequence required for gene expression, which is well known in the art. Usually a promoter must be included, often a transcription termination sequence is also included, and other sequences, such as enhancer sequences, may also be included. Gene expression refers to transcription for siRNA, miRNA, ribozymes and antisense oligonucleotides, and may also include post-transcriptional processing; for protein coding sequences, it usually refers to transcription and translation to produce mature proteins.

本发明提供可靶向HBV的RNA干扰靶点以及根据该靶点设计的siRNA、miRNA、核酶和反义寡核苷酸。本发明的siRNA、miRNA、核酶和反义寡核苷酸包括对构成siRNA、miRNA、核酶和反义寡核苷酸的磷酸骨架和/或核糖和/或碱基等构成部分进行化学修饰的修饰产物,修饰方法是本领域已知的,可以为硫代修饰和/或固醇修饰和/或PEG修饰和/或糖修饰和/或LNA修饰等,可参见文献:Dykxhoorn DM等,生物医学工程年度综述,2006年,8卷:377-402页;Behlke MA等,分子治疗,2006年,13卷:644-670页。The invention provides an RNA interference target that can target HBV and siRNA, miRNA, ribozyme and antisense oligonucleotide designed according to the target. The siRNA, miRNA, ribozyme and antisense oligonucleotides of the present invention include chemical modification of the phosphate backbone and/or ribose and/or bases and other constituents of the siRNA, miRNA, ribozyme and antisense oligonucleotides Modified products, the modification method is known in the art, can be sulfur modification and/or sterol modification and/or PEG modification and/or sugar modification and/or LNA modification, etc., can refer to literature: Dykxhoorn DM etc., biology Annual Review of Medical Engineering, 2006, Vol. 8: pp. 377-402; Behlke MA et al., Molecular Therapy, 2006, Vol. 13: pp. 644-670.

在一个具体实施方案中,本发明涉及小分子干扰核糖核酸(siRNA),其包括正义RNA片段和反义RNA片段,所述正义RNA片段包含本发明RNA干扰靶点编码的RNA序列,反义RNA片段和正义RNA片段能形成双链RNA,且该双链RNA能抑制HBV相应基因的表达和/或HBV的复制和/或感染。In a specific embodiment, the present invention relates to small-molecule interfering ribonucleic acid (siRNA), which includes sense RNA fragments and antisense RNA fragments, said sense RNA fragments comprising RNA sequences encoded by RNA interference targets of the present invention, antisense RNA The fragment and the sense RNA fragment can form double-stranded RNA, and the double-stranded RNA can inhibit the expression of HBV corresponding genes and/or the replication and/or infection of HBV.

在本发明中,术语“小分子核糖核酸”、“小分子干扰核糖核酸”或“siRNA”可互换使用,它们都指能够抑制HBV靶基因表达、包括正义RNA片段区域和反义RNA片段区域的核糖核酸(RNA)。In the present invention, the terms "small molecule ribonucleic acid", "small molecule interfering ribonucleic acid" or "siRNA" are used interchangeably, and they all refer to the ability to inhibit the expression of HBV target genes, including sense RNA fragment regions and antisense RNA fragment regions ribonucleic acid (RNA).

相关地,本发明还提供DNA序列的组合,其包括或者由编码正义RNA片段的第一DNA序列和编码反义RNA片段的第二DNA序列组成,所述正义RNA片段包含本发明靶序列所编码的RNA序列,反义RNA片段和正义RNA片段能形成双链RNA,且该双链RNA能(通过RNA干扰)抑制HBV基因的表达和/或HBV的复制和/或感染。Relatedly, the present invention also provides a combination of DNA sequences comprising or consisting of a first DNA sequence encoding a sense RNA segment comprising a target sequence of the invention encoded by a second DNA sequence encoding an antisense RNA segment The RNA sequence, the antisense RNA fragment and the sense RNA fragment can form a double-stranded RNA, and the double-stranded RNA can (by RNA interference) inhibit the expression of HBV genes and/or the replication and/or infection of HBV.

在本发明的这方面,所述正义RNA片段和反义RNA片段可以存在于两条不同的RNA链上或者存在于一条RNA链上,例如在一个单链RNA分子包含正义RNA片段和反义RNA片段。In this aspect of the invention, the sense RNA fragment and the antisense RNA fragment can be present on two different RNA strands or on one RNA strand, for example comprising a sense RNA fragment and an antisense RNA in a single stranded RNA molecule fragment.

例如,本发明的siRNA可以为发夹型单链RNA分子,其中正义RNA片段和反义RNA片段之间的互补区域形成双链RNA区域。For example, the siRNA of the present invention can be a hairpin single-stranded RNA molecule, wherein the region of complementarity between the sense RNA segment and the antisense RNA segment forms a double-stranded RNA region.

正义RNA片段和反义RNA片段的长度优选为8-50个核苷酸,优选10-30(更优选15-27,19-23,如19、20或者21)个。但也可以更长或者更短。The length of the sense RNA fragment and the antisense RNA fragment is preferably 8-50 nucleotides, preferably 10-30 (more preferably 15-27, 19-23, such as 19, 20 or 21) nucleotides. But it can also be longer or shorter.

在正义RNA片段和反义RNA片段形成的双链RNA的互补区域至少有10个(优选15个,更优选18个,如19、20或者21个)碱基对。优选地,所述正义RNA片段与反义RNA片段之间的互补区域含19、20、或21对互补碱基。There are at least 10 (preferably 15, more preferably 18, such as 19, 20 or 21) base pairs in the complementary region of the double-stranded RNA formed by the sense RNA segment and the antisense RNA segment. Preferably, the complementary region between the sense RNA fragment and the antisense RNA fragment contains 19, 20, or 21 complementary base pairs.

在一个实施方案中,在正义RNA片段和反义RNA片段之间允许有少量的错配,例如1-5个,如1个或2个或3个或4个碱基错配。在一个优选实施方案中,正义RNA片段和反义RNA片段完全互补。In one embodiment, a small number of mismatches, such as 1-5, such as 1 or 2 or 3 or 4 base mismatches are allowed between the sense RNA fragment and the antisense RNA fragment. In a preferred embodiment, the sense RNA segment and the antisense RNA segment are fully complementary.

在一个实施方案中,本发明的siRNA为具有10-30(优选,15-27,更优选19-23)对碱基的双链RNA分子,所述双链中至少有10个(优选15个,更优选18个)碱基互补配对。In one embodiment, the siRNA of the present invention is a double-stranded RNA molecule having 10-30 (preferably, 15-27, more preferably 19-23) base pairs, at least 10 (preferably 15) , more preferably 18) base pairing.

在一个优选的实施方案中,正义RNA片段和反义RNA片段的GC含量为35%-75%,例如40-60%、45-55%、48-52%,如约50%。In a preferred embodiment, the GC content of the sense RNA fragment and the antisense RNA fragment is 35%-75%, such as 40-60%, 45-55%, 48-52%, such as about 50%.

在一个优选的实施方案中,正义RNA片段和反义RNA片段与已知人类基因和基因表达片段无显著的一致性。显著的一致性是指至少60%,例如70,80、90%一致性。In a preferred embodiment, the sense RNA segment and the antisense RNA segment have no significant identity to known human genes and gene expression segments. Significant agreement means at least 60%, such as 70, 80, 90% agreement.

优选的是,所述正义RNA片段自5’端开始的19个核苷酸序列中的碱基为鸟嘌呤(G)的核苷酸数量与碱基为胞嘧啶(C)的核苷酸数量之和占除去3’端的TT以外的19个核苷酸数量的比例为35%-75%(即G/C比例),所述反义RNA片段及其一个核苷酸的突变体与已知人类基因和基因表达片段无显著一致性。Preferably, the number of nucleotides whose base is guanine (G) and the number of nucleotides whose base is cytosine (C) in the 19 nucleotide sequence starting from the 5' end of the sense RNA fragment The sum accounted for 35%-75% (i.e. G/C ratio) of the 19 nucleotides except TT at the 3' end. There was no significant identity between human genes and gene expression fragments.

在本发明重组表达载体的一个实施方案中,本发明重组表达载体包含本发明涉及的RNA干扰靶点的编码核酸序列,这些编码核酸序列与表达控制序列可操作地连接,使得可在动物细胞(特别是哺乳动物细胞,如人细胞,如肝细胞或干细胞)中表达所述靶向HBV的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。In one embodiment of the recombinant expression vector of the present invention, the recombinant expression vector of the present invention comprises the coding nucleic acid sequences of the RNA interference targets involved in the present invention, and these coding nucleic acid sequences are operably linked to expression control sequences, so that they can be expressed in animal cells ( In particular, mammalian cells, such as human cells, such as liver cells or stem cells) express the siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotides targeting HBV.

类似地,在制备本发明改造细胞的方法中,可以通过用包含本发明涉及的RNA干扰靶点的编码核酸序列的表达载体转化或转染或转导细胞(包括动物例如哺乳动物优选人的细胞,优选肝细胞和干细胞)来获得本发明改造细胞,只要最终得到的细胞包含本发明涉及的RNA干扰靶点的编码核酸序列即可。Similarly, in the method for preparing the modified cells of the present invention, cells (including animals such as mammals, preferably human cells) can be transformed or transfected or transduced with an expression vector comprising the nucleic acid sequence encoding the RNA interference target involved in the present invention. , preferably liver cells and stem cells) to obtain the modified cells of the present invention, as long as the finally obtained cells contain the coding nucleic acid sequence of the RNA interference target involved in the present invention.

也可以通过在所述细胞中导入包含有由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸来获得本发明改造细胞,只要得到的细胞包含有由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸即可。The transformed cells of the present invention can also be obtained by introducing siRNA and/or miRNA and/or ribozymes and/or antisense oligonucleotides obtained from the RNA interference target provided by the present invention into the cells, as long as the obtained It only needs that the cells contain siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide obtained from the RNA interference target provided by the present invention.

本发明的重组表达载体可以是质粒载体,或病毒载体(例如逆转录病毒载体、慢病毒载体、腺病毒载体、腺相关病毒载体等)。The recombinant expression vector of the present invention may be a plasmid vector, or a virus vector (such as a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, etc.).

本发明的改造的细胞优选是哺乳动物(优选人)的细胞,优选肝细胞,优选干细胞。所述细胞在基因组中或基因组外携带本发明涉及的RNA干扰靶点的编码核酸序列,这些编码核酸序列与表达控制序列可操作地连接,使得可在该细胞中表达所述siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。The engineered cells of the present invention are preferably mammalian (preferably human) cells, preferably hepatic cells, preferably stem cells. The cells carry the coding nucleic acid sequences of the RNA interference target involved in the present invention in the genome or outside the genome, and these coding nucleic acid sequences are operably linked to expression control sequences, so that the siRNA and/or miRNA can be expressed in the cell and/or ribozymes and/or antisense oligonucleotides.

本发明的重组载体和改造细胞可以用于对HBV感染的治疗。The recombinant vector and modified cell of the present invention can be used for the treatment of HBV infection.

在具体的实施方案中,涉及以下内容:In specific embodiments, the following are involved:

1.靶向HBV的RNA干扰靶点序列:1. RNA interference target sequence targeting HBV:

siHBV1:     AGGACCCCTGCTCGTGTTACA     (SEQ ID NO.1)siHBV1: AGGACCCCTGCTCGTGTTACA (SEQ ID NO.1)

siHBV2:     GGACCCCTGCTCGTGTTACAG     (SEQ ID NO.2)siHBV2: GGACCCCTGCTCGTGTTACAG (SEQ ID NO. 2)

siHBV3:     GACCCCTGCTCGTGTTACAGG     (SEQ ID NO.3)siHBV3: GACCCCTGCTCGTGTTACAGG (SEQ ID NO.3)

siHBV4:     ACCCCTGCTCGTGTTACAGGC     (SEQ ID NO.4)siHBV4: ACCCCTGCTCGTGTTACAGGC (SEQ ID NO.4)

siHBV5:     AGAGTCTAGACTCGTGGTGGA     (SEQ ID NO.5)siHBV5: AGAGTCTAGACTCGTGGTGGA (SEQ ID NO.5)

siHBV6:     AGTCTAGACTCGTGGTGGACT     (SEQ ID NO.6)siHBV6: AGTCTAGACTCGTGGTGGACT (SEQ ID NO. 6)

siHBV7:     GAGTCTAGACTCGTGGTGGAC     (SEQ ID NO.7)siHBV7: GAGTCTAGACTCGTGGTGGAC (SEQ ID NO. 7)

siHBV8:     GTCTAGACTCGTGGTGGACTT     (SEQ ID NO.8)siHBV8: GTCTAGACTCGTGGTGGACTT (SEQ ID NO.8)

siHBV9:     AGACTCGTGGTGGACTTCTCT     (SEQ ID NO.9)siHBV9: AGACTCGTGGTGGACTTCTCT (SEQ ID NO.9)

siHBV10:    GACTCGTGGTGGACTTCTCTC     (SEQ ID NO.10)siHBV10: GACTCGTGGTGGACTTCTCTC (SEQ ID NO. 10)

siHBV11:    ACTCGTGGTGGACTTCTCTCA     (SEQ ID NO.11)siHBV11: ACTCGTGGTGGACTTCTCTCA (SEQ ID NO. 11)

siHBV12:    GATGTGTCTGCGGCGTTTTAT     (SEQ ID NO.12)siHBV12: GATGTGTCTGCGGCGTTTTAT (SEQ ID NO. 12)

siHBV13:    GGATGTGTCTGCGGCGTTTTA     (SEQ ID NO.13)siHBV13: GGATGTGTCTGCGGCGTTTTA (SEQ ID NO. 13)

siHBV14:    ATGTGTCTGCGGCGTTTTATC     (SEQ ID NO.14)siHBV14: ATGTGTCTGCGGCGTTTTTATC (SEQ ID NO. 14)

siHBV15:    GTGTCTGCGGCGTTTTATCAT     (SEQ ID NO.15)siHBV15: GTGTCTGCGGCGTTTTTATCAT (SEQ ID NO. 15)

siHBV16:    ATCCTGCTGCTATGCCTCATC     (SEQ ID NO.16)siHBV16: ATCCTGCTGCTATGCCTCATC (SEQ ID NO. 16)

siHBV17:    GCTGCTATGCCTCATCTTCTT     (SEQ ID NO.17)siHBV17: GCTGCTATGCCTCATCTTCTT (SEQ ID NO. 17)

siHBV18:    AAGGTATGTTGCCCGTTTGTC     (SEQ ID NO.18)siHBV18: AAGGTATGTTGCCCGTTTGTC (SEQ ID NO. 18)

siHBV19:    AGGTATGTTGCCCGTTTGTCC     (SEQ ID NO.19)siHBV19: AGGTATGTTGCCCGTTTGTCC (SEQ ID NO. 19)

siHBV20:    GGTATGTTGCCCGTTTGTCCT     (SEQ ID NO.20)siHBV20: GGTATGTTGCCCGTTTGTCCT (SEQ ID NO. 20)

siHBV21:    GTATGTTGCCCGTTTGTCCTC     (SEQ ID NO.21)siHBV21: GTATGTTGCCCGTTTGTCCTC (SEQ ID NO. 21)

siHBV22:    ATGTTGCCCGTTTGTCCTCTA     (SEQ ID NO.22)siHBV22: ATGTTGCCCGTTTGTCCTCTA (SEQ ID NO. 22)

siHBV23:    GCCGATCCATACTGCGGAACT     (SEQ ID NO.23)siHBV23: GCCGATCCATACTGCGGAACT (SEQ ID NO. 23)

siHBV24:    GTGTGCACTTCGCTTCACCTC    (SEQ ID NO.24)siHBV24: GTGTGCACTTCGCTTCACCTC (SEQ ID NO. 24)

siHBV25:    GTGCACTTCGCTTCACCTCTG    (SEQ ID NO.25)siHBV25: GTGCACTTCGCTTCACCTCTG (SEQ ID NO. 25)

siHBV26:    GCACTTCGCTTCACCTCTGCA    (SEQ ID NO.26)siHBV26: GCACTTCGCTTCACCTCTGCA (SEQ ID NO. 26)

siHBV27:    ACTTCGCTTCACCTCTGCACG    (SEQ ID NO.27)siHBV27: ACTTCGCTTCACCTCTGCACG (SEQ ID NO. 27)

siHBV28:    GGAGGCTGTAGGCATAAATTG    (SEQ ID NO.28)siHBV28: GGAGGCTGTAGGCATAAATTG (SEQ ID NO. 28)

siHBV29:    GAGGCTGTAGGCATAAATTGG    (SEQ ID NO.29)siHBV29: GAGGCTGTAGGCATAAATTGG (SEQ ID NO. 29)

siHBV30:    AGGCTGTAGGCATAAATTGGT    (SEQ ID NO.30)siHBV30: AGGCTGTAGGCATAAATTGGT (SEQ ID NO. 30)

siHBV31:    AAGCCTCCAAGCTGTGCCTTG    (SEQ ID NO.31)siHBV31: AAGCCTCCAAGCTGTGCCTTG (SEQ ID NO. 31)

siHBV32:    AGCCTCCAAGCTGTGCCTTGG    (SEQ ID NO.32)siHBV32: AGCCTCCAAGCTGTGCCTTGG (SEQ ID NO. 32)

siHBV33:    AGAAGAAGAACTCCCTCGCCT    (SEQ ID NO.33)siHBV33: AGAAGAAGAACTCCCTCGCCT (SEQ ID NO. 33)

siHBV34:    GAAGAAGAACTCCCTCGCCTC    (SEQ ID NO.34)siHBV34: GAAGAAGAACTCCCTCGCCTC (SEQ ID NO. 34)

siHBV35:    AAGAAGAACTCCCTCGCCTCG    (SEQ ID NO.35)siHBV35: AAGAAGAACTCCCTCGCCTCG (SEQ ID NO. 35)

siHBV36:    AGAAGAACTCCCTCGCCTCGC    (SEQ ID NO.36)siHBV36: AGAAGAACTCCCTCGCCTCGC (SEQ ID NO. 36)

siHBV37:    GAAGAAGAACTCCCTCGCCTC    (SEQ ID NO.37)siHBV37: GAAGAAGAACTCCCTCGCCTC (SEQ ID NO. 37)

siHBV38:    AAGAACTCCCTCGCCTCGCAG    (SEQ ID NO.38)siHBV38: AAGAACTCCCTCGCCTCGCAG (SEQ ID NO. 38)

siHBV39:    AGAACTCCCTCGCCTCGCAGA    (SEQ ID NO.39)siHBV39: AGAACTCCCTCGCCTCGCAGA (SEQ ID NO. 39)

siHBV40:    GAACTCCCTCGCCTCGCAGAC    (SEQ ID NO.40)siHBV40: GAACTCCCTCGCCTCGCAGAC (SEQ ID NO. 40)

siHBV41:    GATCCATACTGCGGAACTCCT    (SEQ ID NO.41)siHBV41: GATCCATACTGCGGAACTCCT (SEQ ID NO. 41)

siHBV42:    AACTCCCTCGCCTCGCAGACG    (SEQ ID NO.42)siHBV42: AACTCCCTCGCCTCGCAGACG (SEQ ID NO. 42)

2.表达载体,优选病毒载体,可用于改造肝细胞或干细胞.2. Expression vectors, preferably viral vectors, can be used to transform liver cells or stem cells.

可表达单个或多个siRNAs、和/或miRNAs、和/或靶向HBV的核酶的重组病毒载体。Recombinant viral vectors capable of expressing single or multiple siRNAs, and/or miRNAs, and/or ribozymes targeting HBV.

该病毒载体在肝细胞和/或干细胞上的应用.可用于稳定表达抗HBV的分子,如可在肝细胞和/或干细胞中特异阻断HBV复制的siRNA。The application of the viral vector on hepatocytes and/or stem cells can be used to stably express anti-HBV molecules, such as siRNA that can specifically block HBV replication in hepatocytes and/or stem cells.

3.改造的细胞,如肝细胞和干细胞,其包含有本发明涉及的RNA干扰靶点的编码核酸序列,可表达所述的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸;或被导入了由本发明提供的RNA干扰靶点获得的siRNA和/或miRNA和/或核酶和/或反义寡核苷酸。3. Transformed cells, such as hepatocytes and stem cells, which contain the nucleic acid sequence encoding the RNA interference target of the present invention, can express the siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide or be introduced into the siRNA and/or miRNA and/or ribozyme and/or antisense oligonucleotide obtained by the RNA interference target provided by the present invention.

RNA干扰靶点的序列(SEQ ID NO:1-42)Sequences of RNA interference targets (SEQ ID NO: 1-42)

实施例Example

实施例1.靶向HBV的siRNA表达载体质粒的设计与构建Example 1. Design and Construction of siRNA Expression Vector Plasmids Targeting HBV

靶向HBV的RNA干扰靶点序列的设计:以HBV参考序列为靶序列,选择保守性好的区域进行步移设计siRNA序列;将初选获得的siRNA序列在GenBank中进行BLAST检索,选择与非靶向序列具有3个或3个以上碱基相异的序列作为候选序列。The design of the RNA interference target sequence targeting HBV: take the HBV reference sequence as the target sequence, select a well-conserved region to walk and design the siRNA sequence; perform a BLAST search on the siRNA sequence obtained from the primary selection in GenBank, select and non- The target sequence has 3 or more bases different sequences as candidate sequences.

siRNA表达质粒的构建:本实施例中,以pSUPER载体(oligoengine公司Cat.No VEC-PBS-0001/0002)为例构建siRNA的表达载体,具体的构建过程可参见该公司的pSUPER载体实验指南(www.oligoengine.com),构建简要流程可见示意图1。分别合成带有RNA干扰序列的引物,将互补引物经退火处理后连接到经Bgl II和Hind III双酶切的pSUPER载体,经酶切和测序鉴定获得正确的siRNA表达质粒。Construction of siRNA expression plasmid: In this example, the pSUPER vector (Cat.No VEC-PBS-0001/0002 of oligoengine company) was used as an example to construct an siRNA expression vector. For the specific construction process, please refer to the company's pSUPER vector experiment guide ( www.oligoengine.com), the construction process can be seen in schematic diagram 1. Primers with RNA interference sequences were synthesized, and the complementary primers were annealed and ligated to the pSUPER vector digested with Bgl II and Hind III, and the correct siRNA expression plasmid was obtained through enzyme digestion and sequencing.

对照siRNA表达质粒的构建:以特异靶向luciferase基因的siRNA序列siRNA-luc(具体序列是5’-GTGCGCTGCTGGTGCCAAC-3’)以及不与HBV和人类基因相匹配的无关siRNA序列siRNA-Nk(具体序列是5’-TGCATCGGAAAATAGATGT-3’)作为对照。通过上述方法合成引物构建至pSUPER载体上,经酶切和测序鉴定后分别获得相应的siRNA表达质粒pSUPER-luc和pSUPER-Nk。Construction of the control siRNA expression plasmid: the siRNA sequence siRNA-luc (the specific sequence is 5'-GTGCGCTGCTGGTGCCAAC-3') specifically targeting the luciferase gene and the irrelevant siRNA sequence siRNA-Nk (the specific sequence is 5'-TGCATCGGAAAATAGATGT-3') as a control. The primers were synthesized by the above method and constructed on the pSUPER vector, and the corresponding siRNA expression plasmids pSUPER-luc and pSUPER-Nk were respectively obtained after enzyme digestion and sequencing identification.

实施例2.共转染实验筛选获得可抑制HBV的RNA干扰靶点Example 2. Co-transfection experiment screening to obtain RNA interference targets that can inhibit HBV

pN31-N10质粒(该质粒包含约1.4倍HBV基因组(GenBank登录号:AY707087)。构建方法简述如下:哺乳动物细胞表达载体质粒pCDNA3.1(+)(Invitrogen公司Cat.No V790-20)以SpeI酶切后,回收载体自连获得质粒pN31。分别以N1f(ACT AGT GGA TCC TTC GCGGGA CGT CC)/N1r(GAA TTC CAC TGC ATG GCC TGA G)、N2f(GAA TTCCAC TGC CTT CCA CC)/N2r(GAT ATC CAC ATT GTG TAA ATG G)、N3f(GAT ATC CTG CCT TAA TGC CTT TG)/N3r(GGG CCC ACA AAT TGTTGA CAC C)这3对引物对HBV基因组进行PCR扩增,产物分别克隆入T载体获得pTN1、pTN2、pTN3。pTN3以EcoRV和ApaI酶切后获得的片段与pN31经EcoRV和ApaI酶切后回收的载体连接获得pN31-N3。以SpeI和EcoRI酶切pTN1回收的片段与SpeI和EcoRI酶切pN31-N3回收的载体连接获得pN31-N1N3。pTN2以EcoRI和EcoRV酶切后回收片段,与pN31-N1N3经EcoRI和EcoRV双酶切后回收的载体连接获得pN31-N10)为HBV感染性克隆质粒,在转染合适的哺乳细胞后(如人肝来源细胞HepG2细胞、huh7细胞等)具有可表达HBV病毒蛋白及病毒粒子的能力。HBsAg是HBV的膜蛋白,通过检测细胞上清中的HBsAg蛋白的含量可以反映病毒蛋白和病毒粒子的表达水平,也与病毒效价呈正相关。因此可将siRNA表达质粒分别和HBV感染性克隆质粒(pN31-N10质粒,也可以使用其它HBV感染性克隆质粒)在Huh-7细胞中进行共转染实验,通过检测共转染后细胞的HBsAg蛋白的表达水平来对不同siRNA抑制HBV表达复制的效率进行检验。pN31-N10 plasmid (this plasmid contains about 1.4 times the HBV genome (GenBank accession number: AY707087). The construction method is briefly described as follows: Mammalian cell expression vector plasmid pCDNA3.1(+) (Invitrogen Cat.No V790-20) and After SpeI digestion, the recovered vector was self-ligated to obtain plasmid pN31. Respectively, N1f (ACT AGT GGA TCC TTC GCGGGA CGT CC)/N1r (GAA TTC CAC TGC ATG GCC TGA G), N2f (GAA TTCCAC TGC CTT CCA CC)/N2r (GAT ATC CAC ATT GTG TAA ATG G), N3f (GAT ATC CTG CCT TAA TGC CTT TG)/N3r (GGG CCC ACA AAT TGTTGA CAC C) were used for PCR amplification of HBV genome, and the products were cloned into T The vectors were pTN1, pTN2, and pTN3. The fragment obtained after pTN3 was digested with EcoRV and ApaI was ligated with the vector recovered after pN31 was digested with EcoRV and ApaI to obtain pN31-N3. The fragment recovered from pTN1 was digested with SpeI and EcoRI and SpeI and pN31-N1N3 was obtained by pN31-N1N3 after EcoRI digestion of pN31-N3. pTN2 was digested with EcoRI and EcoRV, and the recovered fragment was ligated with pN31-N1N3 after EcoRI and EcoRV double digestion to obtain pN31-N10) for HBV infection Sexual cloning plasmid, after transfecting suitable mammalian cells (such as human liver-derived cells HepG2 cells, huh7 cells, etc.), has the ability to express HBV viral proteins and virus particles. HBsAg is the membrane protein of HBV. By detecting the content of HBsAg protein in the cell supernatant, it can reflect the expression level of viral protein and virus particles, and it is also positively correlated with the virus titer. Therefore, siRNA expression plasmids can be co-transfected with HBV infectious cloning plasmids (pN31-N10 plasmids, or other HBV infectious cloning plasmids) in Huh-7 cells, and HBsAg in cells after co-transfection can be detected. The protein expression level was used to test the efficiency of different siRNAs in inhibiting HBV expression and replication.

Huh-7细胞(Japanese Collection of Research Bioresources,JCRB0403)培养于24孔细胞培养板中,培养基为DMEM培养基(添加10%FBS,2mM L-glutamine,0.1mM MEM Non-Essential Amino Acids及1%penicillin-streptomycin),汇合率约为70%。12h后每孔细胞转染0.1μg pN31-N10质粒和1μg的siRNA表达质粒,转染试剂为Lipofectamine2000(Invitrogen Cat.No11668-027),转染方法参见该试剂的操作指南。在共转染48h后分别收集细胞培养上清,经梯度稀释后用HBsAg蛋白检测试剂盒(北京万泰、国药准字S10980090)或HBeAg蛋白检测试剂盒(北京万泰、国药准字S10980088)检测细胞培养上清中HBsAg或HBeAg蛋白的活性。以共转染了对照siRNA表达质粒和HBV感染性克隆质粒的Huh-7细胞的培养上清中的HBsAg或HBeAg蛋白的活性为对照,计算各siRNA对HBV的抑制效率。通过比较,获得了42个可抑制HBV的RNA干扰靶点。附图2显示了分别以这42个RNA干扰靶点序列构建获得的siRNA表达质粒在转染入细胞后对HBV病毒基因表达的抑制效率。Huh-7 cells (Japanese Collection of Research Bioresources, JCRB0403) were cultured in 24-well cell culture plates, and the medium was DMEM medium (adding 10% FBS, 2mM L-glutamine, 0.1mM MEM Non-Essential Amino Acids and 1% penicillin-streptomycin), the confluence rate was about 70%. After 12 hours, each well of cells was transfected with 0.1 μg pN31-N10 plasmid and 1 μg siRNA expression plasmid. The transfection reagent was Lipofectamine2000 (Invitrogen Cat. No. 11668-027). For the transfection method, refer to the operation guide of the reagent. After 48 hours of co-transfection, the cell culture supernatants were collected separately, and after serial dilution, they were detected by HBsAg protein detection kit (Beijing Wantai, Guoyao Zhunzi S10980090) or HBeAg protein detection kit (Beijing Wantai, Guoyao Zhunzi S10980088) HBsAg or HBeAg protein activity in cell culture supernatants. Taking the activity of HBsAg or HBeAg protein in the culture supernatant of Huh-7 cells co-transfected with the control siRNA expression plasmid and the HBV infectious cloning plasmid as a control, the inhibitory efficiency of each siRNA on HBV was calculated. By comparison, 42 RNA interference targets that can inhibit HBV were obtained. Accompanying drawing 2 shows the inhibition efficiency of HBV viral gene expression after transfection into cells by the siRNA expression plasmids constructed with these 42 RNA interference target sequences respectively.

下面是我们获得的可用于抑制HBV的RNA干扰靶点序列:The following are the RNA interference target sequences that we have obtained that can be used to inhibit HBV:

siHBV1:    AGGACCCCTGCTCGTGTTACA    (SEQ ID NO.1)siHBV1: AGGACCCCTGCTCGTGTTACA (SEQ ID NO.1)

siHBV2:    GGACCCCTGCTCGTGTTACAG    (SEQ ID NO.2)siHBV2: GGACCCCTGCTCGTGTTACAG (SEQ ID NO.2)

siHBV3:    GACCCCTGCTCGTGTTACAGG    (SEQ ID NO.3)siHBV3: GACCCCTGCTCGTGTTACAGG (SEQ ID NO.3)

siHBV4:    ACCCCTGCTCGTGTTACAGGC    (SEQ ID NO.4)siHBV4: ACCCCTGCTCGTGTTACAGGC (SEQ ID NO.4)

siHBV5:     AGAGTCTAGACTCGTGGTGGA    (SEQ ID NO.5)siHBV5: AGAGTCTAGACTCGTGGTGGA (SEQ ID NO.5)

siHBV6:     AGTCTAGACTCGTGGTGGACT    (SEQ ID NO.6)siHBV6: AGTCTAGACTCGTGGTGGACT (SEQ ID NO. 6)

siHBV7:     GAGTCTAGACTCGTGGTGGAC    (SEQ ID NO.7)siHBV7: GAGTCTAGACTCGTGGTGGAC (SEQ ID NO. 7)

siHBV8:     GTCTAGACTCGTGGTGGACTT    (SEQ ID NO.8)siHBV8: GTCTAGACTCGTGGTGGACTT (SEQ ID NO.8)

siHBV9:     AGACTCGTGGTGGACTTCTCT    (SEQ ID NO.9)siHBV9: AGACTCGTGGTGGACTTCTCT (SEQ ID NO. 9)

siHBV10:    GACTCGTGGTGGACTTCTCTC    (SEQ ID NO.10)siHBV10: GACTCGTGGTGGACTTCTCTC (SEQ ID NO. 10)

siHBV11:    ACTCGTGGTGGACTTCTCTCA    (SEQ ID NO.11)siHBV11: ACTCGTGGTGGACTTCTCTCA (SEQ ID NO. 11)

siHBV12:    GATGTGTCTGCGGCGTTTTAT    (SEQ ID NO.12)siHBV12: GATGTGTCTGCGGCGTTTTAT (SEQ ID NO. 12)

siHBV13:    GGATGTGTCTGCGGCGTTTTA    (SEQ ID NO.13)siHBV13: GGATGTGTCTGCGGCGTTTTA (SEQ ID NO. 13)

siHBV14:    ATGTGTCTGCGGCGTTTTATC    (SEQ ID NO.14)siHBV14: ATGTGTCTGCGGCGTTTTTATC (SEQ ID NO. 14)

siHBV15:    GTGTCTGCGGCGTTTTATCAT    (SEQ ID NO.15)siHBV15: GTGTCTGCGGCGTTTTTATCAT (SEQ ID NO. 15)

siHBV16:    ATCCTGCTGCTATGCCTCATC    (SEQ ID NO.16)siHBV16: ATCCTGCTGCTATGCCTCATC (SEQ ID NO. 16)

siHBV17:    GCTGCTATGCCTCATCTTCTT    (SEQ ID NO.17)siHBV17: GCTGCTATGCCTCATCTTCTT (SEQ ID NO. 17)

siHBV18:    AAGGTATGTTGCCCGTTTGTC    (SEQ ID NO.18)siHBV18: AAGGTATGTTGCCCGTTTGTC (SEQ ID NO. 18)

siHBV19:    AGGTATGTTGCCCGTTTGTCC    (SEQ ID NO.19)siHBV19: AGGTATGTTGCCCGTTTGTCC (SEQ ID NO. 19)

siHBV20:    GGTATGTTGCCCGTTTGTCCT    (SEQ ID NO.20)siHBV20: GGTATGTTGCCCGTTTGTCCT (SEQ ID NO. 20)

siHBV21:    GTATGTTGCCCGTTTGTCCTC    (SEQ ID NO.21)siHBV21: GTATGTTGCCCGTTTGTCCTC (SEQ ID NO. 21)

siHBV22:    ATGTTGCCCGTTTGTCCTCTA    (SEQ ID NO.22)siHBV22: ATGTTGCCCGTTTGTCCTCTA (SEQ ID NO. 22)

siHBV23:    GCCGATCCATACTGCGGAACT    (SEQ ID NO.23)siHBV23: GCCGATCCATACTGCGGAACT (SEQ ID NO. 23)

siHBV24:    GTGTGCACTTCGCTTCACCTC    (SEQ ID NO.24)siHBV24: GTGTGCACTTCGCTTCACCTC (SEQ ID NO. 24)

siHBV25:    GTGCACTTCGCTTCACCTCTG    (SEQ ID NO.25)siHBV25: GTGCACTTCGCTTCACCTCTG (SEQ ID NO. 25)

siHBV26:    GCACTTCGCTTCACCTCTGCA    (SEQ ID NO.26)siHBV26: GCACTTCGCTTCACCTCTGCA (SEQ ID NO. 26)

siHBV27:    ACTTCGCTTCACCTCTGCACG    (SEQ ID NO.27)siHBV27: ACTTCGCTTCACCTCTGCACG (SEQ ID NO. 27)

siHBV28:    GGAGGCTGTAGGCATAAATTG    (SEQ ID NO.28)siHBV28: GGAGGCTGTAGGCATAAATTG (SEQ ID NO. 28)

siHBV29:    GAGGCTGTAGGCATAAATTGG    (SEQ ID NO.29)siHBV29: GAGGCTGTAGGCATAAATTGG (SEQ ID NO. 29)

siHBV30:    AGGCTGTAGGCATAAATTGGT    (SEQ ID NO.30)siHBV30: AGGCTGTAGGCATAAATTGGT (SEQ ID NO. 30)

siHBV31:    AAGCCTCCAAGCTGTGCCTTG    (SEQ ID NO.31)siHBV31: AAGCCTCCAAGCTGTGCCTTG (SEQ ID NO. 31)

siHBV32:    AGCCTCCAAGCTGTGCCTTGG    (SEQ ID NO.32)siHBV32: AGCCTCCAAGCTGTGCCTTGG (SEQ ID NO. 32)

siHBV33:    AGAAGAAGAACTCCCTCGCCT    (SEQ ID NO.33)siHBV33: AGAAGAAGAACTCCCTCGCCT (SEQ ID NO. 33)

siHBV34:    GAAGAAGAACTCCCTCGCCTC    (SEQ ID NO.34)siHBV34: GAAGAAGAACTCCCTCGCCTC (SEQ ID NO. 34)

siHBV35:    AAGAAGAACTCCCTCGCCTCG    (SEQ ID NO.35)siHBV35: AAGAAGAACTCCCTCGCCTCG (SEQ ID NO. 35)

siHBV36:    AGAAGAACTCCCTCGCCTCGC    (SEQ ID NO.36)siHBV36: AGAAGAACTCCCTCGCCTCGC (SEQ ID NO. 36)

siHBV37:    GAAGAAGAACTCCCTCGCCTC    (SEQ ID NO.37)siHBV37: GAAGAAGAACTCCCTCGCCTC (SEQ ID NO. 37)

siHBV38:    AAGAACTCCCTCGCCTCGCAG    (SEQ ID NO.38)siHBV38: AAGAACTCCCTCGCCTCGCAG (SEQ ID NO. 38)

siHBV39:    AGAACTCCCTCGCCTCGCAGA    (SEQ ID NO.39)siHBV39: AGAACTCCCTCGCCTCGCAGA (SEQ ID NO. 39)

siHBV40:    GAACTCCCTCGCCTCGCAGAC    (SEQ ID NO.40)siHBV40: GAACTCCCTCGCCTCGCAGAC (SEQ ID NO. 40)

siHBV41:    GATCCATACTGCGGAACTCCT    (SEQ ID NO.41)siHBV41: GATCCATACTGCGGAACTCCT (SEQ ID NO. 41)

siHBV42:    AACTCCCTCGCCTCGCAGACG    (SEQ ID NO.42)siHBV42: AACTCCCTCGCCTCGCAGACG (SEQ ID NO. 42)

通过上面的实验,我们证明了本发明的42个RNA干扰靶点可用于抑制HBV基因的表达。Through the above experiments, we have proved that the 42 RNA interference targets of the present invention can be used to inhibit the expression of HBV genes.

在以下的实验中,我们从上述RNA干扰靶点选取了siHBV7,siHBV12为例,进一步分别构建可表达靶向siHBV7,siHBV12的siRNA的重组病毒载体。我们以构建可表达靶向siHBV7,siHBV12的siRNA的重组慢病毒为例,构建方法见实施例3和实施例4。In the following experiments, we selected siHBV7 and siHBV12 from the above-mentioned RNA interference targets as examples, and further constructed recombinant virus vectors capable of expressing siRNA targeting siHBV7 and siHBV12. We take the construction of a recombinant lentivirus capable of expressing siRNA targeting siHBV7 and siHBV12 as an example. See Example 3 and Example 4 for the construction method.

实施例3.表达siRNA的重组病毒表达载体的构建Example 3. Construction of recombinant viral expression vector expressing siRNA

我们以构建可表达靶向siHBV7,siHBV12的siRNA的重组慢病毒表达载体为例。We take the construction of a recombinant lentiviral expression vector that can express siRNA targeting siHBV7 and siHBV12 as an example.

表达载体:在该实施例中,我们使用的慢病毒系统的表达载体pDEST-MR(专利申请号:200510112917.1;公开号:CN1948475)包含了由H1启动子控制的可用于表达siRNA的表达框。Expression vector: In this example, the expression vector pDEST-MR of the lentiviral system we used (patent application number: 200510112917.1; publication number: CN1948475) contains an expression cassette that can be used to express siRNA controlled by the H1 promoter.

表达载体pDEST-siHBV7、pDEST-siHBV12的构建方法:The construction method of expression vector pDEST-siHBV7, pDEST-siHBV12:

分别合成siHBV7、siHBV12基因片段(这里分别包括了实施例2中所示的RNA干扰靶点序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ IDNO:12)作为示例,但是也可以包括其他本发明提供的RNA干扰靶点序列),片段的5’端添加Age I位点,3’端添加Sma I位点;基因片段经Age I、Sma I酶切后与经同样酶切的pDEST-MR质粒连接,构建获得表达载体pDEST-siHBV7、pDEST-siHBV12。Synthesize siHBV7 and siHBV12 gene fragments respectively (the RNA interference target sequence siHBV7 (SEQ ID NO: 7) and siHBV12 (SEQ ID NO: 12) shown in Example 2 are included here as examples, but other inventions can also be included RNA interference target sequence provided), the 5' end of the fragment was added with an Age I site, and the 3' end was added with a Sma I site; the gene fragment was digested with Age I and Sma I and then digested with the pDEST-MR plasmid Connection, construction of expression vectors pDEST-siHBV7, pDEST-siHBV12.

实施例4.表达siRNA的重组病毒的构建Example 4. Construction of recombinant virus expressing siRNA

我们以构建可表达靶向siHBV7,siHBV12的siRNA的重组慢病毒为例。Let's take the construction of recombinant lentivirus that can express siRNA targeting siHBV7 and siHBV12 as an example.

除可表达靶向HBV的siRNA的表达载体质粒,构建重组慢病毒所需的其它质粒为pLP1、pLP2、VSVG,从Invitrogen公司购买,品名为:pLenti4/V5-DEST Gateway Vector Kit,货号:V469-10。In addition to the expression vector plasmid that can express siRNA targeting HBV, other plasmids required for the construction of recombinant lentivirus are pLP1, pLP2, and VSVG, purchased from Invitrogen, the product name is: pLenti4/V5-DEST Gateway Vector Kit, product number: V469- 10.

重组慢病毒的制备方法:Preparation method of recombinant lentivirus:

(1)用氯化铯-溴化乙锭密度梯度离心法大量提取四种质粒pVSVG、pLP1、pLP2、表达载体质粒(如该实施例中作为示例的pDEST-siHBV7质粒、pDEST-siHBV12质粒)(提取方法参见《分子克隆实验指南》,J.萨姆布鲁克D.W.拉塞尔著,科学出版社,2002);(1) Use the cesium chloride-ethidium bromide density gradient centrifugation method to extract a large number of four plasmids pVSVG, pLP1, pLP2, and expression vector plasmids (such as the pDEST-siHBV7 plasmid and pDEST-siHBV12 plasmid used as examples in this example) ( For the extraction method, please refer to "Molecular Cloning Experiment Guide", written by J. Sambrook and D.W. Russell, Science Press, 2002);

(2)293FT细胞(Invitrogen,Catalog#R700-07)培养于DMEM培养基中(添加10%FBS,2mM L-glutamine,0.1mM MEM Non-EssentialAmino Acids及1%penicillin-streptomycin);(2) 293FT cells (Invitrogen, Catalog#R700-07) were cultured in DMEM medium (adding 10% FBS, 2mM L-glutamine, 0.1mM MEM Non-Essential Amino Acids and 1% penicillin-streptomycin);

(3)将293FT细胞培养于直径10cm的细胞培养板上,汇合率约70%。12h后用磷酸钙转染方法介导10μg pLP1、10μg pLP2、10μgpVSVG、20μg表达载体质粒共4种质粒进行共转染(方法参见《分子克隆实验指南》,J.萨姆布鲁克D.W.拉塞尔著,科学出版社,2002);(3) Culture 293FT cells on a cell culture plate with a diameter of 10 cm, and the confluence rate is about 70%. After 12 hours, the calcium phosphate transfection method was used to mediate the co-transfection of 4 plasmids including 10 μg pLP1, 10 μg pLP2, 10 μg pVSVG, and 20 μg expression vector plasmid (for the method, refer to "Molecular Cloning Experiment Guide", written by J. Sambrook D.W. Russell , Science Press, 2002);

(4)转染48h后收集细胞培养上清,0.45μm的滤膜过滤;用SW28转头(BECKMAN公司)以25,000rpm在4℃离心90min;(4) Collect the cell culture supernatant 48 hours after transfection, filter it through a 0.45 μm filter membrane; centrifuge at 25,000 rpm at 4°C for 90 minutes with a SW28 rotor (BECKMAN);

(5)弃去上清,加500μL PBS溶解沉淀;(5) Discard the supernatant, add 500 μL PBS to dissolve the precipitate;

(6)分装病毒收集液,贮存于-80℃备用。(6) Aliquot the virus collection solution and store it at -80°C for later use.

由此获得可分别表达靶向siHBV7、siHBV12的siRNA的重组慢病毒,分别称为Lenti-siHBV7、Lenti-siHBV12。Thus, recombinant lentiviruses capable of expressing siRNAs targeting siHBV7 and siHBV12 were obtained, respectively called Lenti-siHBV7 and Lenti-siHBV12.

实施例5.靶向HBV的siRNA通过表达载体质粒导入HepG2-N10细胞株对HBV的抑制作用Embodiment 5. Inhibitory effect of siRNA targeting HBV introduced into HepG2-N10 cell line through expression vector plasmid

HepG2-N10细胞株(潘金水等,世界华人消化杂志,2006年,14卷:1172-1177页)为人肝细胞来源,携带有HBV基因组,可表达HBV抗原蛋白和HBV病毒粒子。我们应用HepG2-N10细胞验证siRNA对HBV的抑制效果。The HepG2-N10 cell line (Pan Jinshui et al., World Chinese Journal of Digestion, 2006, Volume 14: 1172-1177) is derived from human hepatocytes, carries the HBV genome, and can express HBV antigenic proteins and HBV virions. We applied HepG2-N10 cells to verify the inhibitory effect of siRNA on HBV.

我们以可表达靶向HBV的siRNA的表达载体质粒为例(在本实施例中,我们以可分别表达靶向siHBV7、siHBV12的siRNA的表达载体质粒pSUPER-siHBV7、pSUPER-siHBV12作为示例,但是也可以包括其他可表达靶向本发明提供的RNA干扰靶点的siRNA的表达载体质粒),说明靶向HBV的siRNA通过表达载体质粒转染细胞的方式,改造细胞使细胞获得抑制HBV基因表达和复制的能力。We take the expression vector plasmids that can express siRNA targeting HBV as an example (in this example, we take the expression vector plasmids pSUPER-siHBV7 and pSUPER-siHBV12 that can express siRNA targeting siHBV7 and siHBV12 respectively as an example, but also Can include other expression vector plasmids that can express siRNA targeting the RNA interference target provided by the present invention), indicating that the siRNA targeting HBV is transfected with the expression vector plasmid to transform the cells so that the cells can obtain inhibition of HBV gene expression and replication Ability.

实验方法:将siRNA表达质粒pSUPER-siHBV7、pSUPER-siHBV12在HepG2-N10中进行转染实验,通过检测转染后细胞上清中的HBsAg与HBeAg蛋白活性和HBV DNA拷贝数来对不同siRNA抑制HBV表达复制的效率进行检验。HepG2-N10培养于24孔细胞培养板,培养基为DMEM培养基(添加10%FBS,2mM L-glutamine,0.1mM MEM Non-EssentialAmino Acids及1%penicillin-streptomycin),汇合率约为80%。12h后每孔细胞转染2μg的siRNA表达质粒,转染试剂为Lipofectamine2000(Invitrogen Cat.No11668-027),转染方法参见该试剂的操作指南。在转染48h后分别收集细胞培养上清,经梯度稀释后用HBsAg检测试剂盒检测细胞培养上清中HBsAg蛋白的活性,及应用乙型肝炎病毒(HBV)核酸扩增(PCR)荧光定量试剂盒(上海科华生物工程股份有限公司、国药准字S20030059)检测细胞培养上清中HBV DNA的拷贝量。实验对照为未转染的HepG2-N10细胞和转染了对照siRNA表达质粒pSUPER-Nk的HepG2-N10细胞。Experimental method: The siRNA expression plasmids pSUPER-siHBV7 and pSUPER-siHBV12 were transfected in HepG2-N10, and the HBsAg and HBeAg protein activities and HBV DNA copy numbers in the supernatant of the transfected cells were detected to inhibit HBV with different siRNAs. The efficiency of expression replication was tested. HepG2-N10 was cultured in a 24-well cell culture plate in DMEM medium (supplemented with 10% FBS, 2mM L-glutamine, 0.1mM MEM Non-Essential Amino Acids and 1% penicillin-streptomycin), and the confluence rate was about 80%. After 12 hours, each well of cells was transfected with 2 μg of siRNA expression plasmid. The transfection reagent was Lipofectamine2000 (Invitrogen Cat. No11668-027). For the transfection method, refer to the operation guide of the reagent. After 48 hours of transfection, the cell culture supernatants were collected respectively, and after serial dilution, the HBsAg protein activity in the cell culture supernatant was detected by the HBsAg detection kit, and the hepatitis B virus (HBV) nucleic acid amplification (PCR) fluorescent quantitative reagent was used The copy amount of HBV DNA in the cell culture supernatant was detected with a kit (Shanghai Kehua Bioengineering Co., Ltd., S20030059). Experimental controls were untransfected HepG2-N10 cells and HepG2-N10 cells transfected with the control siRNA expression plasmid pSUPER-Nk.

结果如图3、图4所示,pSUPER-siHBV7、pSUPER-siHBV12转染后的HepG2-N10细胞均可显示出抑制HBV表达和复制的能力。这表明在携带有靶向HBV的siRNA表达序列的表达载体质粒转染后的细胞中抗HBV的siRNA在这些细胞中获得了表达,从而抑制HBV的表达和复制。The results are shown in Figure 3 and Figure 4, HepG2-N10 cells transfected with pSUPER-siHBV7 and pSUPER-siHBV12 can all show the ability to inhibit the expression and replication of HBV. This indicated that the anti-HBV siRNA was expressed in the cells transfected with the expression vector plasmid carrying the HBV-targeted siRNA expression sequence, thereby inhibiting the expression and replication of HBV.

实施例6.靶向HBV的siRNA通过重组病毒导入HepG2-N10细胞株对HBV的抑制作用Embodiment 6. Inhibitory effect of siRNA targeting HBV introduced into HepG2-N10 cell line by recombinant virus

我们以可表达靶向HBV的siRNA的重组慢病毒为例(在本实施例中,我们以可分别表达靶向siHBV7、siHBV12的siRNA的重组慢病毒Lenti-siHBV7、Lenti-siHBV12作为示例,但是也可以包括其他可表达靶向本发明提供的RNA干扰靶点的siRNA的重组病毒),说明靶向HBV的siRNA通过重组病毒转导细胞的方式,改造细胞使细胞获得抑制HBV基因表达和复制的能力。Let’s take the recombinant lentivirus that can express siRNA targeting HBV as an example (in this example, we take the recombinant lentivirus Lenti-siHBV7 and Lenti-siHBV12 that can express siRNA targeting siHBV7 and siHBV12 respectively as an example, but also Can include other recombinant viruses that can express siRNA targeting the RNA interference target provided by the present invention), indicating that the siRNA targeting HBV transduces cells through recombinant viruses, transforming cells so that cells obtain the ability to inhibit HBV gene expression and replication .

实验方法:慢病毒Lenti-siHBV7、Lenti-siHBV12以moi=40分别转导HepG2-N10细胞,600g离心60min后换液;带有靶向luciferase基因的siRNA表达元件的对照重组慢病毒Lenti-luc(靶向lucifezase基因的siRNA表达元件序列同实施例1;按照实施例3和4的方法制备该对照病毒)以moi=40转导HepG2-N10细胞,600g离心60min后换液;转导后的HepG2-N10细胞在37℃培养,在72h后采集细胞培养上清,用HBsAg蛋白检测试剂盒检测细胞培养上清中HBsAg蛋白的含量。同时,应用乙型肝炎病毒核酸扩增(PCR)荧光定量试剂盒检测细胞培养上清中HBV DNA的拷贝量。实验对照为未转导的HepG2-N10细胞和对照重组慢病毒Lenti-luc转导的HepG2-N10细胞。Experimental method: HepG2-N10 cells were transduced with lentiviruses Lenti-siHBV7 and Lenti-siHBV12 at moi=40, centrifuged at 600g for 60min and then changed; the control recombinant lentivirus Lenti-luc with siRNA expression elements targeting luciferase gene ( The sequence of the siRNA expression element targeting the lucifezase gene is the same as that in Example 1; the control virus was prepared according to the methods in Examples 3 and 4) HepG2-N10 cells were transduced at moi=40, centrifuged at 600g for 60min and then changed; the transduced HepG2 -N10 cells were cultured at 37° C., and the cell culture supernatant was collected after 72 hours, and the HBsAg protein content in the cell culture supernatant was detected with an HBsAg protein detection kit. At the same time, the hepatitis B virus nucleic acid amplification (PCR) fluorescent quantitative kit was used to detect the copy amount of HBV DNA in the cell culture supernatant. Experimental controls were untransduced HepG2-N10 cells and HepG2-N10 cells transduced by recombinant lentivirus Lenti-luc.

结果如图5、图6所示,重组慢病毒Lenti-siHBV7、Lenti-siHBV12转导后的HepG2-N10细胞均可显示出抑制HBV表达和复制的能力。这表明在携带有靶向HBV的siRNA表达序列的重组慢病毒转导后的细胞中抗HBV的siRNA在这些细胞中进行了表达,从而抑制HBV的表达和复制。The results are shown in Figure 5 and Figure 6, HepG2-N10 cells transduced by recombinant lentiviruses Lenti-siHBV7 and Lenti-siHBV12 can all show the ability to inhibit HBV expression and replication. This indicated that the anti-HBV siRNA was expressed in the cells transduced by the recombinant lentivirus carrying the HBV-targeting siRNA expression sequence, thereby inhibiting the expression and replication of HBV.

实施例7.靶向HBV的siRNA在小鼠模型体内对HBV的抑制作用Embodiment 7. Inhibitory effect of siRNA targeting HBV on HBV in mouse model

实验动物:SPF级Balb/c小鼠,为7~8周龄,体重约为18~22g。每组6只,重复3次。Experimental animals: SPF grade Balb/c mice, 7-8 weeks old, weighing about 18-22 g. 6 in each group, repeat 3 times.

在本实施例中,我们以可分别表达靶向siHBV7、siHBV12的siRNA的表达载体pSUPER-siHBV7、pSUPER-siHBV12作为示例,说明靶向HBV的siRNA导入活体小鼠细胞后,可使细胞获得抑制HBV的能力。In this example, we take the expression vectors pSUPER-siHBV7 and pSUPER-siHBV12, which can respectively express siRNA targeting siHBV7 and siHBV12, as an example to illustrate that after the siRNA targeting HBV is introduced into living mouse cells, the cells can obtain the ability to inhibit HBV Ability.

实验方法:将siRNA表达质粒pSUPER-siHBV7(40μg/只)、pSUPER-siHBV12(40μg/只),对照质粒pSUPER-Nk(40μg/只)分别与pN31-N10质粒(20μg/只)通过小鼠尾静脉高压注射方法(hydrodynamic transfection)进行共注射,注射总体积约2ml,在5秒内注射完毕。在注射前及注射后每天采集小鼠血清,用HBsAg蛋白检测试剂盒检测小鼠血清中HBsAg蛋白的含量,用乙型肝炎病毒核酸扩增(PCR)荧光定量试剂盒检测小鼠血清中HBV DNA的拷贝量。实验对照为正常的Balb/c小鼠和仅注射pN31-N10质粒的Balb/c小鼠和共注射pN31-N10质粒与对照siRNA表达质粒pSUPER-Nk的Balb/c小鼠。Experimental method: siRNA expression plasmids pSUPER-siHBV7 (40 μg/mouse), pSUPER-siHBV12 (40 μg/mouse), control plasmid pSUPER-Nk (40 μg/mouse) and pN31-N10 plasmid (20 μg/mouse) were passed through the mouse tail Intravenous high-pressure injection method (hydrodynamic transfection) for co-injection, the total injection volume is about 2ml, and the injection is completed within 5 seconds. Collect mouse serum every day before and after injection, use HBsAg protein detection kit to detect the content of HBsAg protein in mouse serum, and use hepatitis B virus nucleic acid amplification (PCR) fluorescent quantitative kit to detect HBV DNA in mouse serum copy amount. Experimental controls were normal Balb/c mice, Balb/c mice injected only with pN31-N10 plasmid, and Balb/c mice co-injected with pN31-N10 plasmid and control siRNA expression plasmid pSUPER-Nk.

检测结果(图7、图8)显示,注射表达靶向HBV的siRNA的表达质粒的小鼠可抑制HBsAg的表达,同时也抑制了小鼠血清中的HBV DNA载量。这表明在携带有靶向HBV的siRNA表达序列的表达载体转导后的体内细胞中产生的抗HBV的siRNA可抑制HBV的表达和复制。The test results (Figure 7, Figure 8) showed that injection of expression plasmids expressing siRNA targeting HBV into mice could inhibit the expression of HBsAg, and also inhibited the HBV DNA load in mouse serum. This indicates that anti-HBV siRNA produced in in vivo cells transduced with an expression vector carrying an HBV-targeted siRNA expression sequence can inhibit the expression and replication of HBV.

实施例8.化学合成的siRNA对HBV的抑制效果Example 8. The inhibitory effect of chemically synthesized siRNA on HBV

我们从上述RNA干扰靶点选取了siHBV7,siHBV12为例(这里分别包括了实施例2中所示的RNA干扰靶点序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ ID NO:12)作为示例,但是也可以包括其他本发明提供的RNA干扰靶点序列),合成了可分别靶向siHBV7、siHBV12的siRNA,siRNA的正义RNA片段分别包含本发明靶序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ ID NO:12)所编码的RNA序列,反义RNA片段可与正义RNA片段互补形成双链RNA(在本实施例中反义链与正义链完全互补,但是也可以允许反义链和正义链有少量的错配,如1个或2个或3个或4个),在正义RNA片段和反义RNA片段的3’末端分别添加dTdT。上述siRNA分别命名为siR-HBV7和siR-HBV12。同时,合成了靶向不与HBV和人类基因相匹配的无关RNA干扰靶点siRNA-Nk的siRNA(siR-Nk)(siRNA-Nk的序列同实施例1)作为对照。We selected siHBV7 and siHBV12 from the above RNA interference targets as examples (the RNA interference target sequences siHBV7 (SEQ ID NO: 7) and siHBV12 (SEQ ID NO: 12) shown in Example 2 are included here as examples , but can also include other RNA interference target sequences provided by the present invention), synthesized siRNAs that can target siHBV7 and siHBV12 respectively, and the positive-sense RNA fragments of the siRNAs respectively contain the target sequences siHBV7 (SEQ ID NO: 7) and siHBV12 of the present invention (SEQ ID NO: 12) encoded RNA sequence, the antisense RNA fragment can be complementary to the sense RNA fragment to form double-stranded RNA (in this embodiment, the antisense strand is completely complementary to the sense strand, but it is also possible to allow the antisense strand and The sense strand has a small number of mismatches, such as 1 or 2 or 3 or 4), and dTdT is added to the 3' ends of the sense RNA fragment and the antisense RNA fragment, respectively. The above siRNAs were named siR-HBV7 and siR-HBV12, respectively. At the same time, siRNA (siR-Nk) targeting an irrelevant RNA interference target siRNA-Nk that does not match HBV and human genes was synthesized (siRNA-Nk sequence is the same as that in Example 1) as a control.

siRNA的合成方法简述如下:采用β-乙腈亚磷酸胺化学合成法,使用全自动DNA合成仪分别合成siRNA的正义RNA片段和反义RNA片段,合成好的正义RNA片段和反义RNA片段等摩尔比混合,在PCR仪上经过变性、退火过程,得到所需的siRNA。The synthesis method of siRNA is briefly described as follows: the sense RNA fragment and the antisense RNA fragment of the siRNA are synthesized respectively by using the β-acetonitrile phosphorous acid amine chemical synthesis method, and the synthesized sense RNA fragment and the antisense RNA fragment are synthesized by using an automatic DNA synthesizer. The molar ratio is mixed, and the desired siRNA is obtained through denaturation and annealing processes on a PCR machine.

实验方法:将合成的siR-HBV7、siR-HBV12和siR-Nk分别转染HepG2-N10细胞,通过检测转染后细胞上清中的HBsAg与HBeAg蛋白活性和HBV DNA拷贝数来对不同siRNA抑制HBV表达复制的效率进行检验。HepG2-N10细胞培养于24孔细胞培养板,汇合率约为80%。12h后每孔细胞转染50pM的siRNA,转染试剂为Lipofectamine2000,转染方法参见该试剂的操作指南。在转染48h后分别收集细胞培养上清,用HBsAg检测试剂盒检测细胞培养上清中HBsAg蛋白的活性,及应用乙型肝炎病毒核酸扩增(PCR)荧光定量试剂盒检测细胞培养上清中HBV DNA的拷贝量。实验对照为未转染的HepG2-N10细胞和转染了对照siR-Nk的HepG2-N10细胞。Experimental method: The synthetic siR-HBV7, siR-HBV12 and siR-Nk were transfected into HepG2-N10 cells respectively, and different siRNAs were inhibited by detecting the HBsAg and HBeAg protein activities and the HBV DNA copy number in the supernatant of the transfected cells. The efficiency of HBV expression replication was tested. HepG2-N10 cells were cultured in 24-well cell culture plates with a confluence of about 80%. After 12 hours, each well of cells was transfected with 50pM siRNA, and the transfection reagent was Lipofectamine2000. For the transfection method, refer to the operation guide of the reagent. The cell culture supernatants were collected 48 hours after transfection, and the activity of HBsAg protein in the cell culture supernatant was detected by the HBsAg detection kit, and the HBsAg protein activity in the cell culture supernatant was detected by the hepatitis B virus nucleic acid amplification (PCR) fluorescence quantitative kit. The copy amount of HBV DNA. Experimental controls were untransfected HepG2-N10 cells and HepG2-N10 cells transfected with control siR-Nk.

结果如图9、图10所示,合成的siR-HBV7、siR-HBV12转染HepG2-N10细胞后,均可抑制HBV表达和复制。The results are shown in Fig. 9 and Fig. 10, after the synthetic siR-HBV7 and siR-HBV12 were transfected into HepG2-N10 cells, both of them could inhibit the expression and replication of HBV.

实施例9.化学合成并经修饰的siRNA对HBV的抑制效果Example 9. The inhibitory effect of chemically synthesized and modified siRNA on HBV

我们从上述RNA干扰靶点选取了siHBV7,siHBV12为例(这里分别包括了实施例2中所示的RNA干扰靶点序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ ID NO:12)作为示例,但是也可以包括其他本发明提供的RNA干扰靶点序列),合成了可分别靶向siHBV7、siHBV12的siRNA,siRNA的正义RNA片段分别包含本发明靶序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ ID NO:12)所编码的RNA序列,反义RNA片段和正义RNA片段互补形成双链RNA(在本实施例中反义链与正义链完全互补,但是也可以允许反义链和正义链有少量的错配,如1个或2个或3个或4个),在正义RNA片段和反义RNA片段的3’末端分别添加dTdT。同时合成过程中分别采用了不同的修饰方式。其中,siRpo-HBV7和siRpo-HBV12为经过2’-OMe修饰(2’-甲氧基修饰)和磷酸化修饰的分别靶向siHBV7、siHBV12的siRNA(合成方法:采用β-乙腈亚磷酸胺化学合成法,使用全自动DNA合成仪分别合成siRNA的正义RNA片段和反义RNA片段,其中正义RNA片段和反义RNA片段的5’端三个碱基和3’端dTdT前面的三个碱基用2’-0Me修饰的单核苷酸合成,反义RNA片段的5’末端碱基进行磷酸化处理。合成好的正义RNA片段和反义RNA片段等摩尔比混合,在PCR仪上经过变性、退火过程,得到所需的siRNA);siRpoC-HBV7和siRpoC-HBV12为经过2’-OMe修饰和磷酸化修饰和固醇修饰的分别靶向siHBV7、siHBV12的siRNA(合成方法同上,不同的地方是在合成正义RNA片段时,3’端dTdT前面的三个碱基不进行2’-0Me修饰,用含有胆固醇-氨基己酸-吡咯烷(cholesterol-aminocaproic-acid-pyrrolidine)接头的Glass担体作为合成支持物,在3’端dTdT前面的碱基通过硫代磷酸酯连接胆固醇基团。其余步骤均与上述合成siRpo-HBV7和siRpo-HBV12的方法相同)。同时,分别合成了靶向不与HBV和人类基因相匹配的无关RNA干扰靶点siRNA-Nk的并经同样修饰的siRNA(siRpo-Nk和siRpoC-Nk)作为对照。这里分别包括了对靶向实施例2中所示的RNA干扰靶点序列siHBV7(SEQ ID NO:7)、siHBV12(SEQ ID NO:12)的合成的siRNA进行2’-OMe修饰和/或磷酸化修饰和/或固醇修饰作为示例,但是也可以包括对靶向其他本发明提供的RNA干扰靶点序列的合成的siRNA进行其它不同方式的修饰。We selected siHBV7 and siHBV12 from the above RNA interference targets as examples (the RNA interference target sequences siHBV7 (SEQ ID NO: 7) and siHBV12 (SEQ ID NO: 12) shown in Example 2 are included here as examples , but can also include other RNA interference target sequences provided by the present invention), synthesized siRNAs that can target siHBV7 and siHBV12 respectively, and the positive-sense RNA fragments of the siRNAs respectively contain the target sequences siHBV7 (SEQ ID NO: 7) and siHBV12 of the present invention (SEQ ID NO: 12) encoded RNA sequence, antisense RNA fragments and sense RNA fragments are complementary to form double-stranded RNA (in this embodiment, the antisense strand is completely complementary to the sense strand, but it is also possible to allow the antisense strand and sense strand has a small number of mismatches, such as 1 or 2 or 3 or 4), add dTdT to the 3' ends of the sense RNA fragment and the antisense RNA fragment, respectively. At the same time, different modification methods were used in the synthesis process. Among them, siRpo-HBV7 and siRpo-HBV12 are siRNA targeting siHBV7 and siHBV12 respectively after 2'-OMe modification (2'-methoxy modification) and phosphorylation modification (synthetic method: using β-acetonitrile phosphoramidite chemistry Synthesis method, using a fully automatic DNA synthesizer to synthesize the sense RNA fragment and antisense RNA fragment of siRNA respectively, in which the three bases at the 5' end of the sense RNA fragment and the antisense RNA fragment and the three bases in front of the 3' end dTdT Use 2'-OMe modified single nucleotide synthesis, phosphorylate the 5' terminal base of the antisense RNA fragment. The synthesized positive sense RNA fragment and antisense RNA fragment are mixed in equimolar ratio and denatured on the PCR machine , annealing process to obtain the required siRNA); siRpoC-HBV7 and siRpoC-HBV12 are siRNAs targeting siHBV7 and siHBV12 respectively after 2'-OMe modification, phosphorylation modification and sterol modification (synthetic method is the same as above, different places When synthesizing positive-sense RNA fragments, the three bases in front of dTdT at the 3' end are not modified with 2'-OMe, and the Glass carrier containing cholesterol-aminocaproic-acid-pyrrolidine (cholesterol-aminocaproic-acid-pyrrolidine) linker is used as Synthesize the support, and the base in front of dTdT at the 3' end is connected to the cholesterol group through phosphorothioate. The rest of the steps are the same as the method for synthesizing siRpo-HBV7 and siRpo-HBV12 above). At the same time, the same modified siRNAs (siRpo-Nk and siRpoC-Nk) targeting irrelevant RNA interference target siRNA-Nk that did not match HBV and human genes were synthesized as controls. This includes the 2'-OMe modification and/or phosphorylation of the synthetic siRNAs targeting the RNA interference target sequences siHBV7 (SEQ ID NO: 7) and siHBV12 (SEQ ID NO: 12) shown in Example 2, respectively. Bl modification and/or sterol modification are used as examples, but may also include modifications in other different ways to synthetic siRNA targeting other RNA interference target sequences provided by the present invention.

实验方法:将合成的siRpo-HBV7、siRpo-HBV12、siRpoC-HBV7、siRpoC-HBV12、siRpo-Nk、siRpoC-Nk分别转染HepG2-N10细胞,通过检测转染后细胞上清中的HBsAg与HBeAg蛋白活性和HBV DNA拷贝数来对不同siRNA抑制HBV表达复制的效率进行检验。HepG2-N10细胞培养于24孔细胞培养板,汇合率约为80%。12h后每孔细胞转染50pM的siRNA,转染试剂为Lipofectamine2000,转染方法参见该试剂的操作指南。在转染48h后分别收集细胞培养上清,用HBsAg检测试剂盒检测细胞培养上清中HBsAg的活性,及应用乙型肝炎病毒核酸扩增(PCR)荧光定量试剂盒检测细胞培养上清中HBV DNA的拷贝量。实验对照为未转染的HepG2-N10细胞和转染了对照siRpo-Nk、siRpoC-Nk的HepG2-N10细胞。Experimental method: The synthetic siRpo-HBV7, siRpo-HBV12, siRpoC-HBV7, siRpoC-HBV12, siRpo-Nk, siRpoC-Nk were transfected into HepG2-N10 cells respectively, and the HBsAg and HBeAg in the supernatant of the transfected cells were detected Protein activity and HBV DNA copy number were used to test the efficiency of different siRNAs in inhibiting HBV expression and replication. HepG2-N10 cells were cultured in 24-well cell culture plates with a confluence of about 80%. After 12 hours, each well of cells was transfected with 50pM siRNA, and the transfection reagent was Lipofectamine2000. For the transfection method, refer to the operation guide of the reagent. The cell culture supernatants were collected 48 hours after transfection, the HBsAg activity in the cell culture supernatant was detected with the HBsAg detection kit, and the HBV in the cell culture supernatant was detected with the hepatitis B virus nucleic acid amplification (PCR) fluorescence quantitative kit The number of copies of DNA. Experimental controls were untransfected HepG2-N10 cells and HepG2-N10 cells transfected with control siRpo-Nk and siRpoC-Nk.

结果如图11、图12所示,合成的siRpo-HBV7、siRpo-HBV12、siRpoC-HBV7、siRpoC-HBV12转染入HepG2-N10细胞后,均可抑制HBV表达和复制。The results are shown in Fig. 11 and Fig. 12. After the synthetic siRpo-HBV7, siRpo-HBV12, siRpoC-HBV7, and siRpoC-HBV12 were transfected into HepG2-N10 cells, they all inhibited the expression and replication of HBV.

本领域的技术人员应当明了,尽管为了举例说明的目的本文描述了本发明的具体实施方案,但可以对其进行各种修改而不偏离本发明的精神和范围。因此,本发明的具体实施方案和实施例不应当视为限制本发明的范围。本发明仅受所附权利要求的限制。本申请中引用的所有文献均完整地并入本文作为参考。Those skilled in the art will appreciate that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications can be made therein without departing from the spirit and scope of the invention. Therefore, the specific embodiments and examples of the invention should not be considered as limiting the scope of the invention. The invention is limited only by the appended claims. All documents cited in this application are hereby incorporated by reference in their entirety.

Figure IDA00003058654600031
Figure IDA00003058654600031

Figure IDA00003058654600041
Figure IDA00003058654600041

Figure IDA00003058654600051
Figure IDA00003058654600051

Figure IDA00003058654600061
Figure IDA00003058654600061

Claims (21)

1.靶向HBV的RNA干扰靶点,其序列选自:1. The RNA interference target of targeting HBV, its sequence is selected from: (1)SEQ ID NO.12的序列;或者(1) the sequence of SEQ ID NO.12; or (2)上述序列的互补序列。(2) The complementary sequence of the above sequence. 2.包含权利要求1的RNA干扰靶点的核酸构建体。2. A nucleic acid construct comprising the RNA interference target of claim 1. 3.包含权利要求1的RNA干扰靶点的载体。3. A vector comprising the RNA interference target of claim 1. 4.依据权利要求1所述的RNA干扰靶点获得的、能够抑制HBV相应基因的表达和/或HBV的复制和/或感染的siRNA,其序列是GAUGUGUCUGCGGCGUUUUAU UUCAAGAGA AUAAAACGCCGCAGACACAUC UU。4. obtain according to the RNA interference target spot described in claim 1, can suppress the expression of HBV corresponding gene and/or the replication of HBV and/or the siRNA of infection, its sequence is GAUGUGUCUGCGGCGUUUUAU UUCAAGAGA AUAAAACGCCGCAGACACAUC UU. 5.一种重组表达载体,其可表达权利要求4的siRNA。5. A recombinant expression vector capable of expressing the siRNA of claim 4. 6.权利要求5的重组表达载体,其包含靶向HBV的siRNA的编码核酸序列,这些编码核酸序列与表达控制序列可操作地连接,使得可在动物细胞中表达所述的siRNA。6. The recombinant expression vector according to claim 5, which comprises coding nucleic acid sequences of siRNA targeting HBV, and these coding nucleic acid sequences are operably linked with expression control sequences, so that said siRNA can be expressed in animal cells. 7.权利要求6的重组表达载体,其中所述动物细胞是哺乳动物细胞。7. The recombinant expression vector of claim 6, wherein said animal cell is a mammalian cell. 8.权利要求7的重组表达载体,其中所述哺乳动物细胞是人细胞。8. The recombinant expression vector of claim 7, wherein said mammalian cells are human cells. 9.权利要求6的重组表达载体,其中所述动物细胞是肝细胞。9. The recombinant expression vector of claim 6, wherein said animal cells are hepatocytes. 10.权利要求5的重组表达载体,其是质粒载体或病毒载体。10. The recombinant expression vector of claim 5, which is a plasmid vector or a viral vector. 11.权利要求10的重组表达载体,其中所述病毒载体是逆转录病毒载体。11. The recombinant expression vector of claim 10, wherein said viral vector is a retroviral vector. 12.权利要求11的重组表达载体,其中所述逆转录病毒载体是慢病毒载体。12. The recombinant expression vector of claim 11, wherein the retroviral vector is a lentiviral vector. 13.转化或转染或转导了权利要求5-12任一项的重组表达载体的分离的细胞。13. An isolated cell transformed or transfected or transduced with the recombinant expression vector of any one of claims 5-12. 14.一种分离的改造的细胞,其可表达或包含有权利要求4的siRNA。14. An isolated engineered cell expressing or comprising the siRNA of claim 4. 15.权利要求14的改造的细胞,其在基因组中或者基因组外携带权利要求1中所述的RNA干扰靶点的编码核酸序列,这些编码核酸序列与表达控制序列可操作地连接,使得可在该细胞中表达所述siRNA。15. The transformed cell of claim 14, which carries the coding nucleic acid sequence of the RNA interference target site described in claim 1 in the genome or outside the genome, and these coding nucleic acid sequences are operably linked with the expression control sequence, so that the The siRNA is expressed in the cells. 16.权利要求15的改造的细胞,其中所述细胞是哺乳动物细胞。16. The engineered cell of claim 15, wherein said cell is a mammalian cell. 17.权利要求16的改造的细胞,其中所述哺乳动物细胞是人细胞。17. The engineered cell of claim 16, wherein said mammalian cell is a human cell. 18.权利要求15的改造的细胞,其中所述细胞是肝细胞。18. The engineered cell of claim 15, wherein said cell is a hepatocyte. 19.制备权利要求13-18任一项的细胞的方法,包括用权利要求5-12任一项的重组表达载体转化或转染或转导细胞。19. A method for preparing the cell according to any one of claims 13-18, comprising transforming or transfecting or transducing the cell with the recombinant expression vector according to any one of claims 5-12. 20.权利要求4的siRNA、或权利要求5-12任一项的重组表达载体、或权利要求13-18任一项的细胞在制备治疗HBV感染或者HBV患者的药物中的用途。20. Use of the siRNA according to claim 4, or the recombinant expression vector according to any one of claims 5-12, or the cell according to any one of claims 13-18 in the preparation of medicines for treating HBV infection or HBV patients. 21.权利要求4的siRNA、或权利要求5-12任一项的重组表达载体、或权利要求13-18任一项的细胞在制备抑制HBV复制或者HBV基因表达的药物中的用途。21. Use of the siRNA according to claim 4, or the recombinant expression vector according to any one of claims 5-12, or the cell according to any one of claims 13-18 in the preparation of drugs for inhibiting HBV replication or HBV gene expression.
CN2013101317546A 2008-06-13 2008-06-13 RNA interference targets for hepatitis b virus (HBV) infection treatment Pending CN103275971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101317546A CN103275971A (en) 2008-06-13 2008-06-13 RNA interference targets for hepatitis b virus (HBV) infection treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101317546A CN103275971A (en) 2008-06-13 2008-06-13 RNA interference targets for hepatitis b virus (HBV) infection treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008101106864A Division CN101603042B (en) 2008-06-13 2008-06-13 RNA interference target for treating hepatitis B virus infection

Publications (1)

Publication Number Publication Date
CN103275971A true CN103275971A (en) 2013-09-04

Family

ID=49058592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101317546A Pending CN103275971A (en) 2008-06-13 2008-06-13 RNA interference targets for hepatitis b virus (HBV) infection treatment

Country Status (1)

Country Link
CN (1) CN103275971A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077321A1 (en) * 2014-11-10 2016-05-19 Alnylam Pharmaceuticals, Inc. Hepatitis b virus (hbv) irna compositions and methods of use thereof
WO2016078572A1 (en) * 2014-11-17 2016-05-26 江苏命码生物科技有限公司 Novel precursor mirna and application thereof in tumor treatment
CN106729753A (en) * 2016-12-16 2017-05-31 谭旭 The delivery system and biological agent of anti-hepatitis B virus
CN107921147A (en) * 2015-05-05 2018-04-17 江苏命码生物科技有限公司 A kind of new precursor miRNA and its application in oncotherapy
EA039127B1 (en) * 2015-03-24 2021-12-08 Элнилэм Фармасьютикалз, Инк. HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
JP2022068222A (en) * 2016-08-04 2022-05-09 アローヘッド ファーマシューティカルズ インコーポレイテッド RNAi AGENTS FOR HEPATITIS B VIRUS INFECTION
US11324820B2 (en) 2017-04-18 2022-05-10 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (HBV) infection
US11492623B2 (en) 2018-08-13 2022-11-08 Alnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) dsRNA agent compositions and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667120A (en) * 2004-12-30 2005-09-14 中山大学 RNA Interference Target Sequence of HBV and Its Application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667120A (en) * 2004-12-30 2005-09-14 中山大学 RNA Interference Target Sequence of HBV and Its Application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X.-R. REN ET AL: "Inhibition of hepatitis B virus replication in 2.2.15 cells by expressed shRNA", 《JOURNAL OF VIRAL HEPATITIS》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060091B2 (en) 2014-11-10 2021-07-13 Alnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) iRNA compositions and methods of use thereof
JP2020172506A (en) * 2014-11-10 2020-10-22 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
JP7426973B2 (en) 2014-11-10 2024-02-02 アルナイラム ファーマシューティカルズ, インコーポレイテッド Hepatitis B virus (HBV) iRNA composition and method of use thereof
WO2016077321A1 (en) * 2014-11-10 2016-05-19 Alnylam Pharmaceuticals, Inc. Hepatitis b virus (hbv) irna compositions and methods of use thereof
JP2022003055A (en) * 2014-11-10 2022-01-11 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
JP2017538679A (en) * 2014-11-10 2017-12-28 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) iRNA composition and method of use thereof
US10640770B2 (en) 2014-11-10 2020-05-05 Alnylam Pharmaceuticals, Inc. Hepatitis D virus (HDV) iRNA compositions and methods of use thereof
US10513703B2 (en) 2014-11-10 2019-12-24 Alnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) iRNA compositions and methods of use thereof
WO2016078572A1 (en) * 2014-11-17 2016-05-26 江苏命码生物科技有限公司 Novel precursor mirna and application thereof in tumor treatment
CN107109406A (en) * 2014-11-17 2017-08-29 江苏命码生物科技有限公司 A kind of new precursor miRNA and its application in oncotherapy
CN106177990A (en) * 2014-11-17 2016-12-07 江苏命码生物科技有限公司 A kind of new precursor miRNA and the application in oncotherapy thereof
EA039127B1 (en) * 2015-03-24 2021-12-08 Элнилэм Фармасьютикалз, Инк. HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN107921147A (en) * 2015-05-05 2018-04-17 江苏命码生物科技有限公司 A kind of new precursor miRNA and its application in oncotherapy
JP2022068222A (en) * 2016-08-04 2022-05-09 アローヘッド ファーマシューティカルズ インコーポレイテッド RNAi AGENTS FOR HEPATITIS B VIRUS INFECTION
JP2023123469A (en) * 2016-08-04 2023-09-05 アローヘッド ファーマシューティカルズ インコーポレイテッド RNAi agents for hepatitis B virus infection
JP7625637B2 (en) 2016-08-04 2025-02-03 アローヘッド ファーマシューティカルズ インコーポレイテッド RNAi Agents for Hepatitis B Virus Infection
CN106729753A (en) * 2016-12-16 2017-05-31 谭旭 The delivery system and biological agent of anti-hepatitis B virus
US11324820B2 (en) 2017-04-18 2022-05-10 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (HBV) infection
US11492623B2 (en) 2018-08-13 2022-11-08 Alnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) dsRNA agent compositions and methods of use thereof
US12173289B2 (en) 2018-08-13 2024-12-24 Alnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) dsRNA agent compositions and methods of use thereof

Similar Documents

Publication Publication Date Title
CN101603042B (en) RNA interference target for treating hepatitis B virus infection
Baldassarre et al. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5’UTR of SARS-CoV-2
KR101012595B1 (en) Small Interference RNA and Pharmaceutical Composition for Treating Hepatitis B Virus comprising the Same
CN103275971A (en) RNA interference targets for hepatitis b virus (HBV) infection treatment
CN107365785B (en) A gene expression vector for regulating intracellular NF-κB activity and its regulation method and application
US9222090B2 (en) RNA interference target for treating AIDS
JP4545091B2 (en) Oligoribonucleotide or peptide nucleic acid that inhibits the function of hepatitis C virus
US8957199B2 (en) Oligoribonucleotide or peptide nucleic acid capable of inhibiting activity of hepatitis C virus
WO2010075101A2 (en) Treating picornavirus infection by targeting microrna mir-141
CN101333525B (en) siRNA sequence and application for HCMV UL86 gene
CN101333527A (en) siRNA sequence and application of human cytomegalovirus UL122 gene
CN101333529B (en) siRNA Sequence and Application of Anti-HCMV UL122 Gene
CN101748122B (en) Disturbing molecule for inhibiting expression of TM4SF4 and application thereof
CN101333528B (en) SiRNA sequence for HCMV UL122 gene and applications
JP4505566B2 (en) Lung cancer therapeutic agent
CN102604938B (en) RNA (ribonucleic acid) interference target points for inducing hepatocellular injury
CN101962642B (en) Interference RNA for targeting CCP22 gene, medicament composition containing interference RNA and application thereof
Ren et al. Construction, modification and evaluation of apolipoprotein AI promoter-driven shRNA expression vectors against hTERT
WO2019000148A1 (en) Sirna of human abcb6 gene and use thereof
Dreyfus et al. Gene silencing in the therapy of influenza and other respiratory diseases: Targeting to RNase P by use of External Guide Sequences (EGS)
CN116515833A (en) Use of ACVR1C inhibitors in the treatment of colorectal cancer
Kim et al. Adenovirus VA RNAs impair maturation of primary microRNA
JP5263729B2 (en) Preventive and therapeutic agent for feline infectious peritonitis virus (FIPV)
WO2012020836A1 (en) Therapeutic agent for hepatitis c containing rrm2 antagonist as active ingredient
JP2004261026A (en) Double-stranded RNA oligonucleotide having cyclin B gene expression-suppressing action

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130904

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载