+

CN103235319A - Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time - Google Patents

Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time Download PDF

Info

Publication number
CN103235319A
CN103235319A CN2013101665718A CN201310166571A CN103235319A CN 103235319 A CN103235319 A CN 103235319A CN 2013101665718 A CN2013101665718 A CN 2013101665718A CN 201310166571 A CN201310166571 A CN 201310166571A CN 103235319 A CN103235319 A CN 103235319A
Authority
CN
China
Prior art keywords
vrsecef
coordinate system
epsiv
coordinates
rovecef
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101665718A
Other languages
Chinese (zh)
Other versions
CN103235319B (en
Inventor
郭际明
章迪
罗年学
巢佰崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201310166571.8A priority Critical patent/CN103235319B/en
Publication of CN103235319A publication Critical patent/CN103235319A/en
Application granted granted Critical
Publication of CN103235319B publication Critical patent/CN103235319B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种实时获取参心坐标系坐标和正常高的网络RTK定位方法,对源节点进行扩展,用于更详尽地传达流动站需求,不需要修改NTRIP协议,只需相应地在NtripCaster软件中加入判断及算法,或在NtripCaster和流动站之间增加NtripProxy中继模块,易于实现;如需实时得到参心坐标系坐标,只需在登录服务器时选择相应的源节点,并在手薄上填入非涉密七参数,其余作业方式不变;流动站需要得到正常高,只需在登录服务器时选择相应的源节点,其余作业方式不变;在符合国家保密政策的前提下,使实时测量、放样参心坐标系坐标和正常高得以实现。

The invention relates to a network RTK positioning method for real-time acquisition of the coordinates of the ginseng coordinate system and the normal height. The source node is expanded to convey the needs of the mobile station in more detail. It does not need to modify the NTRIP protocol, and only needs to be in the NtripCaster software accordingly. It is easy to realize by adding judgment and algorithm in NtripCaster and rover station or by adding NtripProxy relay module; if you need to obtain the coordinates of the ginseng coordinate system in real time, you only need to select the corresponding source node when logging in to the server, and fill in the Enter the non-secret seven parameters, and the other operation methods remain unchanged; the rover needs to obtain the normal height, only need to select the corresponding source node when logging in to the server, and the other operation methods remain unchanged; under the premise of complying with the national confidentiality policy, the real-time measurement , Stakeout ginseng coordinate system coordinates and normal height can be realized.

Description

实时获取参心坐标系坐标和正常高的网络RTK定位方法Real-time acquisition of ginseng coordinate system coordinates and normal height network RTK positioning method

技术领域technical field

本发明涉及测绘地理信息技术领域,尤其是涉及一种实时获取参心坐标系坐标和正常高的网络RTK定位方法。The invention relates to the technical field of surveying and mapping geographic information, in particular to a network RTK positioning method for real-time acquisition of ginseng coordinate system coordinates and normal heights.

背景技术Background technique

GNSS(全球卫星导航系统)技术是当前测绘领域应用最为广泛的一种定位方式,利用单台GNSS设备进行标准单点定位,得到的ECEF(地心地固坐标系,如WGS84)下坐标的精度通常为10-20米(无SA)。而通过构建RTK(载波相位实时动态差分定位)系统,在30km范围内的定位精度可以达到厘米级。GNSS (Global Navigation Satellite System) technology is the most widely used positioning method in the field of surveying and mapping. Using a single GNSS device for standard single-point positioning, the accuracy of the coordinates obtained under ECEF (Earth-centered Earth-fixed coordinate system, such as WGS84) is generally 10-20 meters (no SA). By constructing RTK (carrier phase real-time dynamic differential positioning) system, the positioning accuracy within 30km can reach centimeter level.

RTK主要由参考站和流动站构成,参考站通过数据链路向流动站发送差分电文,其中包含参考站的ECEF坐标和原始观测值,流动站将电文解码后和自身观测值进行相对定位,得到高精度ECEF坐标。RTK is mainly composed of a reference station and a rover. The reference station sends a differential message to the rover through a data link, which contains the ECEF coordinates of the reference station and the original observation value. The rover decodes the message and performs relative positioning with its own observation value to obtain High precision ECEF coordinates.

参考站和流动站之间的数据链路,可采用电台、WIFI或者互联网。目前,以互联网为数据链、基于NTRIP协议(通过互联网进行RTCM网络传输的协议)的CORS(连续运行参考站系统)得到广泛应用,其核心技术是网络RTK技术,即利用流动站周围多个参考站的观测值来拟合该处的误差。系统由在地面以30km-100km为间隔、分布较为均匀的若干连续运行的参考站(真实的参考站)构成,各参考站均配备有GNSS设备,进行连续的高采样(通常为1Hz)观测,并用专用网络与数据中心相连,数据中心的服务器配备NtripCaster(核心软件,如Trimlbe的GPSNet、LEICA的Spider、Topcon的TOPNET等)专用软件实现核心模块,一般将该服务器称为NtripCaster服务器,通过互联网向公众提供服务。The data link between the reference station and the rover can use radio, WIFI or the Internet. At present, CORS (Continuous Operation Reference Station System), which uses the Internet as the data link and is based on the NTRIP protocol (a protocol for RTCM network transmission through the Internet), is widely used. Its core technology is network RTK technology, which uses multiple reference stations around the rover The observed value of the station is used to fit the error there. The system consists of a number of continuously operating reference stations (real reference stations) that are evenly distributed on the ground at an interval of 30km-100km. Each reference station is equipped with GNSS equipment for continuous high-sampling (usually 1Hz) observations. And use a dedicated network to connect with the data center. The server in the data center is equipped with NtripCaster (core software, such as Trimlbe’s GPSNet, LEICA’s Spider, Topcon’s TOPNET, etc.) The public provides services.

如附图1所示,利用CORS进行网络RTK定位的工作流程:①流动站(即客户端NtripClient)通过互联网经防火墙登录CORS服务器,登录参数有源节点、流动站名和密码等,其中源节点用于告知服务器所需要的服务类型、电文格式,并将初始定位得到的ECEF下的坐标(称为“概略坐标”)发往服务器,此过程记为1传送ECEF概略坐标、用户名、密码、源节点。②流动站名和密码通过认证后,服务器端NtripCaster核心软件根据流动站请求的源节点进行判断,如果流动站选择了单参考站模式,则系统将自动选择距离流动站最近的一个真实的参考站;如果流动站选择了多参考站模式,服务器端NtripCaster核心软件将用一定算法拟合出一个参考站(虚拟参考站),将其ECEF坐标和原始观测值编制成电文(电文格式也由源节点指定),发送给流动站,此过程记为2传送差分电文。③流动站接收该电文后,进行载波相位差分定位,得到ECEF下的坐标,此过程记为3RTK定位。As shown in Figure 1, the workflow of using CORS for network RTK positioning: ① The rover (that is, the client NtripClient) logs in to the CORS server through the Internet through the firewall, and the login parameters include source node, rover name and password, etc., where the source node uses To inform the server of the required service type and message format, and send the coordinates under the ECEF obtained from the initial positioning (called "rough coordinates") to the server. This process is recorded as 1. Send the ECEF approximate coordinates, username, password, node. ② After the rover name and password are authenticated, the server-side NtripCaster core software will judge according to the source node requested by the rover. If the rover selects the single reference station mode, the system will automatically select a real reference station closest to the rover; If the rover selects the multi-reference station mode, the server-side NtripCaster core software will use a certain algorithm to fit a reference station (virtual reference station), and compile its ECEF coordinates and original observations into a message (the format of the message is also specified by the source node. ), sent to the rover, this process is recorded as 2 to transmit the differential message. ③ After receiving the message, the rover performs carrier phase differential positioning to obtain the coordinates under ECEF. This process is recorded as 3RTK positioning.

由前述知识可见,利用GNSS技术进行RTK测量,流动站得到的都是ECEF下的坐标,其表达形式可以是XYZ形式的空间直角坐标,也可以是L(大地经度)B(大地纬度)H(大地高,是以椭球面为基准面的高程)形式的大地坐标,还可以将LB进一步投影成为高斯平面直角坐标,三者可以相互转换。但在某些情况下,为使测绘成果能与前期成果正确衔接,需要将坐标成果转换为参心坐标系坐标(其表达形式与ECEF相同)和正常高(以似大地水准面为基准面的高程,我国的法定高程系统),在放样时还必须实时的测出参心坐标系坐标。由ECEF到参心坐标系坐标,需要用到七参数;由大地高转换为正常高,需要用到高程异常。It can be seen from the foregoing knowledge that, using GNSS technology for RTK measurement, the rover obtains coordinates under ECEF, and its expression form can be spatial rectangular coordinates in the form of XYZ, or L (longitude) B (latitude) H ( The geodetic height is the geodetic coordinate in the form of the ellipsoid as the reference plane), and the LB can be further projected into Gaussian plane Cartesian coordinates, and the three can be converted to each other. However, in some cases, in order to make the surveying and mapping results correctly connected with the previous results, it is necessary to convert the coordinate results into the coordinates of the ginseng coordinate system (its expression form is the same as that of ECEF) and the normal height (with quasi-geoid as the datum Elevation, my country's statutory elevation system), the coordinates of the ginseng coordinate system must be measured in real time during stakeout. From ECEF to the coordinates of the ginseng coordinate system, seven parameters are needed; to convert from geodetic height to normal height, elevation anomalies are required.

根据《测绘管理工作国家秘密目录》[1]规定,国家大地坐标系、地心坐标系之间的相互转换参数、精度优于±1米的高程异常成果分别属于绝密级、机密级范围,二者是均不能向公众发布的。没有转换参数,ECEF无法转换为参心坐标系;没有高程异常成果,大地高无法转换为正常高。可见,由于国家保密政策的限制,现有GNSS技术不能实时地测得参心坐标系坐标和正常高,从而严重制约了GNSS网络RTK技术在测绘实际生产中的发展和应用。研究如何在符合国家保密规定的情况下,使流动站能实时得到参心坐标系坐标和正常高,对于扩展GNSS技术的应用范围、提高测绘生产效率,具有十分重要的意义。According to the "National Secret Catalog of Surveying and Mapping Management" [1], the mutual conversion parameters between the national geodetic coordinate system and the geocentric coordinate system, and the elevation anomaly results with an accuracy better than ±1 meter belong to the top secret level and confidential level respectively. None of them can be released to the public. Without conversion parameters, ECEF cannot be converted into a ginseng coordinate system; without elevation anomaly results, geodetic height cannot be converted into normal height. It can be seen that due to the restriction of the national security policy, the existing GNSS technology cannot measure the coordinates and normal height of the ginseng coordinate system in real time, which seriously restricts the development and application of GNSS network RTK technology in the actual production of surveying and mapping. It is of great significance to study how to enable the rover to obtain the coordinates of the ginseng coordinate system and the normal height in real time under the condition of complying with the national confidentiality regulations, for expanding the application range of GNSS technology and improving the production efficiency of surveying and mapping.

为使流动站获取参心坐标系坐标,有3种常规的方法:1)由流动站将测量得到的WGS84坐标以书面形式提交国家测绘局批准的测绘成果保管单位,经审批后由后者进行事后坐标转换,将结果回函给流动站,该模式保密性好、成果的精度和可靠性有保障,但程序繁琐、工作效率低、不具实时性,不能满足实时放样参心坐标系坐标的需要。2)由国家测绘局批准的测绘成果保管单位建立坐标转换网络服务系统[2][3],授权流动站可通过网络在线提交测量得到的WGS84坐标,服务系统在线完成坐标转换后将结果通过网络反馈给流动站,该模式的优点是流动站使用方便、成果规范,但仍只能在测量结束后进行,不能满足实时放样参心坐标系坐标的需要。3)流动站通过联测已知点自行求取参数,测区附近须有已知点分布、外业工作量大、数据处理相对复杂、对流动站素质要求高、作业效率低,成果的精度和可靠性没有保障。In order for the mobile station to obtain the coordinates of the ginseng coordinate system, there are three conventional methods: 1) The mobile station submits the measured WGS84 coordinates in written form to the surveying and mapping results storage unit approved by the State Bureau of Surveying and Mapping. Coordinate conversion after the event, and the result will be sent back to the mobile station. This mode has good confidentiality, and the accuracy and reliability of the results are guaranteed, but the procedure is cumbersome, the work efficiency is low, and it is not real-time, which cannot meet the needs of real-time stakeout ginseng coordinate system coordinates . 2) The surveying and mapping results storage unit approved by the State Bureau of Surveying and Mapping establishes a coordinate conversion network service system [2] [3], authorized mobile stations can submit the measured WGS84 coordinates online through the network, and the service system completes the coordinate conversion online and sends the results through the network Feedback to the mobile station. The advantage of this mode is that the mobile station is easy to use and the results are standardized, but it can only be carried out after the measurement is completed, and it cannot meet the needs of real-time stakeout ginseng coordinate system coordinates. 3) The mobile station obtains parameters by itself through the joint measurement of known points. There must be known point distribution near the survey area, the field workload is heavy, the data processing is relatively complicated, the quality requirements of the mobile station are high, the operation efficiency is low, and the accuracy of the results is low. and reliability are not guaranteed.

为使RTK流动站实时获取参心坐标系坐标,目前有一些学者提出了几种解决方案,大致可以分为5种:1)将转换参数以软件模块的方式存放在流动站的测量设备(PDA)中[4],此方法最大的缺点是无法确保参数不泄密,且不同品牌或型号的设备要单独开发模块,不仅涉及到各个地方的不同坐标系间的海量转换参数,还涉及到不同生产厂家的研发,实际使用和推广非常困难。2)将保密七参数通过差分电文发送给流动站[5],流动站设备从差分电文中获取坐标转换参数,目前仅少数差分电文(如RTCM3.1)和极少数品牌的最新型设备支持这种模式,因差分电文的编码方式是公开的,任何人都可以通过解码获取,因此其保密性几乎为零,在中国尤其不适用。3)将差分电文中的参考站坐标转换到参心坐标系坐标后再发送给流动站[6],因为同一点的ECEF坐标和参心坐标系坐标,差值可能达到100m左右甚至更大,而参考站坐标是流动站进行基线解算的起算点坐标,通常超过30m误差的起算点坐标会造成较大的基线解算误差,且基线越长影响越大;同时这种模式忽略了同名点间基线在WGS84坐标系下和参心坐标系坐标系下的差异,在参考站(虚拟的或实际的)与流动站相隔距离较远(如在单参考站模式下,流动站与参考站可相距数十公里)、或七参数中的旋转角、缩放比的数值较大的情况下,以及这两个因素同时存在的情况下,忽略此差异有可能造成极大的误差。4)专利申请CN102223709A提出在CORS服务器和移动站之间增设中间服务器,将选定的地理空间划分为若干立方体[7],对于各立方体的八个顶点,计算出对应于某个特定基准(如北京54)的坐标,并与相应的伪基准(利用最小二乘方法求出)的坐标求差(以下简称“坐标差”),将坐标差存储于数据库;根据VRS差分电文中的虚拟参考站坐标,确定出移动站落入哪个立方体,根据该立方体的八个顶点的坐标差内插出流动站的概略位置处的坐标差,对差分电文中的VRS参考站坐标进行改化,再发送给移动站;移动站手薄上设置伪参数,首先解算出伪基准下的XYZ,再通过高斯投影得到特定基准的坐标。该发明申请未提供理论和公式推导,伪基准和立方体均没有给出明确的确定方法,也没有说明如何保证伪基准投影之后能保持和特定基准一致;实际上基准通常有多种(如北京54、西安80等),流动站可能在不同的项目中需要不同的基准,而该算法只能针对某一种基准,这将使该算法未能应对同一地区有多个基准的情况;根据VRS差分电文中的参考站坐标来判定移动站概略位置,也是不严密的。5)张黎等对增设中间服务器和“另一坐标系”的保密模式进行了探讨[8],但是没有给出“另一坐标系”到地方坐标系的转换参数的具体计算公式,停留在模式的探讨层面,且没有探讨“另一坐标系”应遵循的规则,忽视了“另一坐标系”对流动站定位结果的影响。In order to enable the RTK rover to obtain the coordinates of the ginseng coordinate system in real time, some scholars have proposed several solutions, which can be roughly divided into five types: 1) Store the conversion parameters in the form of software modules in the measuring device of the rover (PDA ) in [4], the biggest disadvantage of this method is that it cannot ensure that the parameters are not leaked, and different brands or models of equipment need to develop modules separately, which not only involves massive conversion parameters between different coordinate systems in various places, but also involves different production Manufacturers' research and development, actual use and promotion are very difficult. 2) Send the seven confidential parameters to the rover via a differential message [5], and the equipment of the rover obtains the coordinate conversion parameters from the differential message. At present, only a few differential messages (such as RTCM3.1) and the latest equipment of a very small number of brands support this This mode, because the encoding method of the differential message is open, anyone can obtain it through decoding, so its confidentiality is almost zero, especially not applicable in China. 3) Convert the coordinates of the reference station in the differential message to the coordinates of the ginseng coordinate system and then send it to the rover[6], because the difference between the ECEF coordinates and the coordinates of the ginseng coordinate system at the same point may reach about 100m or even greater, The coordinates of the reference station are the coordinates of the starting point of the rover for baseline calculation. Usually, the coordinates of the starting point with an error of more than 30m will cause a large baseline calculation error, and the longer the baseline, the greater the impact; at the same time, this mode ignores the point with the same name The difference between the baseline in the WGS84 coordinate system and the ginseng coordinate system is that the reference station (virtual or actual) is far away from the rover (for example, in the single reference station mode, the rover and the reference station can tens of kilometers away), or when the values of the rotation angle and zoom ratio in the seven parameters are large, and when these two factors exist at the same time, ignoring this difference may cause a huge error. 4) The patent application CN102223709A proposes to add an intermediate server between the CORS server and the mobile station, divide the selected geographic space into several cubes [7], and calculate the eight vertices corresponding to a specific benchmark (such as Beijing 54) coordinates, and calculate the difference (hereinafter referred to as "coordinate difference") with the coordinates of the corresponding pseudo datum (obtained by the method of least squares), and store the coordinate difference in the database; according to the virtual reference station in the VRS differential message coordinates, determine which cube the rover falls into, and interpolate the coordinate difference at the rough position of the rover according to the coordinate differences of the eight vertices of the cube, modify the coordinates of the VRS reference station in the differential message, and then send it to Mobile station: Set pseudo parameters on the handbook of the mobile station, first solve the XYZ under the pseudo datum, and then obtain the coordinates of the specific datum through Gaussian projection. The invention application did not provide theory and formula derivation, neither the pseudo-datum nor the cube gave a clear determination method, nor did it explain how to ensure that the pseudo-datum can be kept consistent with the specific datum after projection; in fact, there are usually many kinds of datums (such as Beijing 54 , Xi’an 80, etc.), the rover may need different datums in different projects, and the algorithm can only target a certain kind of datum, which will make the algorithm unable to cope with the situation where there are multiple datums in the same area; according to VRS difference It is also imprecise to determine the approximate position of the mobile station by using the coordinates of the reference station in the message. 5) Zhang Li and others discussed the security mode of adding an intermediate server and "another coordinate system" [8], but did not give specific calculation formulas for the conversion parameters from "another coordinate system" to the local coordinate system, and stayed at The research level of the model is not discussed, and the rules that the "another coordinate system" should follow are not discussed, and the influence of the "another coordinate system" on the positioning results of the rover is ignored.

总的说来,方案1)和2)因为保密性的问题明显不适用,在此不再讨论。方案3)至5)除了各自的一些缺点之外,还有一个共同点:均没有提出RTK实时测定正常高的解决方案。In general, schemes 1) and 2) are obviously not applicable because of confidentiality issues, so they will not be discussed here. Schemes 3) to 5) have one thing in common in addition to their respective shortcomings: none of them proposes a solution for real-time measurement of normal height by RTK.

涉及的主要参考文献如下:The main references involved are as follows:

[1]国家测绘局、国家保密局,《测绘管理工作国家秘密范围的规定》国测办字〔2003〕17号[1] State Bureau of Surveying and Mapping, State Bureau of Secrets, "Regulations on the Scope of State Secrets in Surveying and Mapping Management" Guo Ji Ban Zi [2003] No. 17

[2]陈豪,李剑,杨华先等.CORS服务中在线坐标转换系统的设计与实现[J],测绘通报,2012,(10):48-54[2] Chen Hao, Li Jian, Yang Huaxian, etc. Design and Implementation of Online Coordinate Transformation System in CORS Service [J], Surveying and Mapping Bulletin, 2012, (10): 48-54

[3]潘国富,鲍志雄,吴文志.具备兼容性的在线坐标转换系统设计[J].地理空间信息,2012,10(6):39-41.[3] Pan Guofu, Bao Zhixiong, Wu Wenzhi. Design of Compatible Online Coordinate Transformation System [J]. Geospatial Information, 2012,10(6):39-41.

[4]王健,杨艳锋.CORS-RTK测量中的坐标转换方法探讨[J].地矿测绘,2010,26(3):26~28[4] Wang Jian, Yang Yanfeng. Discussion on Coordinate Transformation Method in CORS-RTK Surveying [J]. Geological and Mineral Surveying and Mapping, 2010, 26(3): 26~28

[5]

Figure BDA00003160591700042
The New RTCM3.1Transformation Messages–Declaration,Generationfrom Reference Transformations and Implementation as a Server-Client-Concept for GNSSServices[C].3rd International Conference and3rd Trade Fair of Geodesy,Cartography,Navigationand Geoinformatics.Prague,27th–28th February2008[5]
Figure BDA00003160591700042
The New RTCM3.1 Transformation Messages–Declaration,Generation from Reference Transformations and Implementation as a Server-Client-Concept for GNSSServices[C].3rd International Conference and 3rd Trade Fair of Geodesy,Cartography,Navigation and Geoinformatics.Prague,27th–28th February2008

[6]范昆飞,周怀许,方振华.基于服务器端CORS实时地方坐标测量模式的探讨[J],地理空间信息,2012,10(5):89-92[6] Fan Kunfei, Zhou Huaixu, Fang Zhenhua. Discussion on real-time local coordinate measurement mode based on server-side CORS [J], Geospatial Information, 2012,10(5):89-92

[7]罗灵军,张泽烈等.基于CORS系统实时获取特定基准的高斯平面直角坐标的方法,发明专利申请CN102223709A,中华人民共和国知识产权局,2011,10,申请号:201110154844.8[8]张黎,蒲德祥,夏定辉等.CORS系统实时地方坐标测量的保密模式研究,城市勘测,2010,(4):90-92[7] Luo Lingjun, Zhang Zelie, etc. The method of obtaining the Cartesian coordinates of the Gaussian plane of a specific benchmark in real time based on the CORS system, invention patent application CN102223709A, Intellectual Property Office of the People's Republic of China, 2011, October, application number: 201110154844.8 [8] Zhang Li, Pu Dexiang , Xia Dinghui et al. Research on the Security Mode of CORS System Real-time Local Coordinate Measurement, Urban Survey, 2010, (4): 90-92

发明内容Contents of the invention

本发明要解决的问题是,在不泄露ECEF到参心坐标系的保密七参数和似大地水准面精化成果的前提下,不论差分信息中的参考站坐标是一个虚拟的、或是一个真实的参考站,均能保证RTK流动站可以实时地测出参心坐标系坐标和正常高。The problem to be solved by the present invention is, under the premise of not disclosing the secret seven parameters of the ECEF to the ginseng coordinate system and the refinement results of the quasi-geoid, no matter whether the reference station coordinates in the difference information is a virtual or a real The reference station can ensure that the RTK rover can measure the coordinates and normal height of the ginseng coordinate system in real time.

本发明的技术方案为一种实时获取参心坐标系坐标和正常高的网络RTK定位方法。在NtripCaster服务器和流动站之间插入一个NtripProxy中继模块,NtripProxy中继模块所在服务器记为NtripProxy服务器;定位过程包括以下步骤,The technical solution of the invention is a network RTK positioning method for real-time acquisition of the coordinates of the ginseng coordinate system and the normal height. Insert an NtripProxy relay module between the NtripCaster server and the rover, and the server where the NtripProxy relay module is located is recorded as the NtripProxy server; the positioning process includes the following steps,

步骤1,定义源节点和辅助七参数,计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数;Step 1, define the source node and the auxiliary seven parameters, and calculate the conversion parameters from the auxiliary coordinate system to the paracentric coordinate system as the non-secret seven parameters;

所述辅助七参数,是指能将ECEF转换到某一辅助坐标系下的七个参数,包括3个平移量ΔX1、ΔY1、ΔZ1,3个旋转参数εX1、εY1、εZ1,1个尺度缩放因子m1,得到下述布尔莎模型,The auxiliary seven parameters refer to the seven parameters that can convert the ECEF to a certain auxiliary coordinate system, including 3 translations ΔX 1 , ΔY 1 , ΔZ 1 , and 3 rotation parameters ε X1 , ε Y1 , ε Z1 , 1 scaling factor m 1 , the following Bursa model is obtained,

Xx YY ZZ FZFZ == (( 11 ++ mm 11 )) 11 ϵϵ ZZ 11 11 ϵϵ YY 11 -- ϵϵ ZZ 11 11 ϵϵ Xx 11 ϵϵ YY 11 -- ϵϵ Xx 11 11 Xx YY ZZ ECEFECEF ++ ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 ,,

其中, X Y Z FZ 表示辅助坐标系中的坐标, X Y Z ECEF 表示ECEF坐标系中的坐标,ECEF坐标系表示地心地固坐标系;in, x Y Z FZ represents the coordinates in the auxiliary coordinate system, x Y Z ECEF Represents the coordinates in the ECEF coordinate system, and the ECEF coordinate system represents the earth-centered earth-fixed coordinate system;

所述计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数,包括设ECEF坐标系到参心坐标系的转化参数为ΔX0、ΔY0、ΔZ0、εX0、εY0、εZ0、m0,定义辅助坐标系到参心坐标系的转换参数为ΔX、ΔY、ΔZ、εX、εY、εZ、m,通过下式计算,The calculation of the conversion parameters from the auxiliary coordinate system to the ginseng coordinate system as non-confidential seven parameters includes setting the conversion parameters from the ECEF coordinate system to the ginseng coordinate system as ΔX 0 , ΔY 0 , ΔZ 0 , ε X0 , ε Y0 , ε Z0 , m 0 , define the conversion parameters from the auxiliary coordinate system to the paracentric coordinate system as ΔX, ΔY, ΔZ, ε X , ε Y , ε Z , m, calculated by the following formula,

ΔXΔX ΔYΔY ΔZΔZ == ΔXΔX 00 ΔYΔY 00 ΔZΔZ 00 ++ (( 11 ++ mm )) 11 ϵϵ ZZ -- ϵϵ YY -- ϵϵ ZZ 11 ϵϵ Xx ϵϵ YY -- ϵϵ Xx 11 ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 mm == mm 00 -- mm 11 11 ++ mm 11 ϵϵ Xx == ϵϵ Xx 00 -- ϵϵ Xx 11 ϵϵ YY == ϵϵ YY 00 -- ϵϵ YY 11 ϵϵ ZZ == ϵϵ ZZ 00 -- ϵϵ ZZ 11

步骤2,生成网络RTK差分电文,包含以下子步骤,Step 2, generate network RTK differential message, including the following sub-steps,

步骤2.1,流动站登录NtripProxy服务器,连接时选取源节点,并将初步定位得到的ECEF坐标系下的流动站概略位置 X rovECEF = X rovECEF Y rovECEF Z rovECEF 发往NtripProxy服务器,Step 2.1, the rover logs in to the NtripProxy server, selects the source node when connecting, and initially locates the rough position of the rover in the ECEF coordinate system x rovECEF = x rovECEF Y rovECEF Z rovECEF sent to the NtripProxy server,

NtripProxy服务器将XrovECEF转发给NtripCaster服务器,The NtripProxy server forwards XrovECEF to the NtripCaster server,

NtripCaster服务器计算出VRS(虚拟参考站)的ECEF坐标 X vrsECEF = X vrsECEF Y vrsECEF Z vrsECEF , 生成相应的GNSS观测值,并将二者编制为电文并发送给NtripProxy服务器;NtripCaster server calculates ECEF coordinates of VRS (Virtual Reference Station) x vrsECEF = x vrsECEF Y vrsECEF Z vrsECEF , Generate the corresponding GNSS observation value, compile the two into a message and send it to the NtripProxy server;

步骤2.2,NtripProxy服务器执行以下操作,Step 2.2, the NtripProxy server performs the following operations,

步骤2.2.1,将ECEF坐标系下的流动站概略位置XrovECEF和从电文中解码所得虚拟参考站的ECEF坐标XvrsECEF按下述公式分别转换为流动站的概略ECEF大地坐标 Φ rovECEF = L rovECEF B rovECEF H rovECEF 和虚拟参考站的ECEF大地坐标 Φ vrsECEF = L vrsECEF B vrsECEF H vrsECEF , Step 2.2.1, convert the rough position X rovECEF of the rover in the ECEF coordinate system and the ECEF coordinate X vrsECEF of the virtual reference station decoded from the message into the rough ECEF geodetic coordinates of the rover respectively according to the following formula Φ rovECEF = L rovECEF B rovECEF h rovECEF and the ECEF geodetic coordinates of the virtual reference station Φ vrsECEF = L vrsECEF B vrsECEF h vrsECEF ,

LL == arctanarctan (( YY Xx )) BB == arctanarctan (( ZZ ++ ee ′′ 22 bb sinsin 33 θθ (( Xx 22 ++ YY 22 )) -- ee 22 aa coscos 33 θθ )) Hh == Xx 22 ++ YY 22 coscos BB -- NN

其中 N = a 1 - e 2 sin 2 B , θ = arctan ( aZ b X 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a为ECEF椭球长半轴长,b为椭球短半轴长;X、Y、Z取XrovECEF的坐标时,L、B、H为LrovECEF、BrovECEF、HrovECEF;X、Y、Z取XvrsECEF的坐标时,L、B、H为LvrsECEF、BvrsECEF、HvrsECEFin N = a 1 - e 2 sin 2 B , θ = arctan ( Z b x 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a is the length of the semi-major axis of the ECEF ellipsoid, b is the length of the semi-minor axis of the ellipsoid; when X, Y, and Z take the coordinates of X rovECEF , L, B, and H are L rovECEF , B rovECEF , H rovECEF ; X, Y, When Z takes the coordinates of X vrsECEF , L, B, and H are L vrsECEF , B vrsECEF , and H vrsECEF ;

步骤2.2.2,利用LrovECEF和BrovECEF,结合似大地水准面精化的成果,内插得到ΦrovECEF处的高程异常值ξrovECEF;计算虚拟参考站的伪大地高

Figure BDA00003160591700069
,将虚拟参考站的伪大地坐标 Φ vrsECEF ′ = L vrsECEF B vrsECEF H vrsECEF ′ 转换为空间直角坐标如下,Step 2.2.2, using L rovECEF and B rovECEF , combined with the result of similar geoid refinement, interpolated to obtain the elevation anomaly ξ rovECEF at Φ rovECEF ; calculate the pseudo-geoid of the virtual reference station
Figure BDA00003160591700069
, the pseudo-geodetic coordinates of the virtual reference station Φ vrsECEF ′ = L vrsECEF B vrsECEF h vrsECEF ′ Converted to spatial Cartesian coordinates as follows,

Xx vrsECEFvrsECEF ′′ == Xx ′′ YY ′′ ZZ ′′ == (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF coscos LL vrsECEFvrsECEF (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF sinsin LL vrsECEFvrsECEF [[ NN (( 11 -- ee 22 )) ++ Hh vrsECEFvrsECEF ′′ ]] sinsin BB vrsECEFvrsECEF

采用步骤1中的布尔莎模型计算虚拟参考站的伪空间直角坐标

Figure BDA000031605917000610
在辅助坐标系下的坐标XvrsFZ,作为改化后的参考站坐标;Calculate the pseudo-space Cartesian coordinates of the virtual reference station using the Bursa model in step 1
Figure BDA000031605917000610
The coordinate X vrsFZ in the auxiliary coordinate system is used as the coordinate of the modified reference station;

步骤2.2.3,将原电文中虚拟参考站的ECEF坐标XvrsECEF替换为改化后的参考站坐标XvrsFZ,并保持相应的GNSS观测值不变,重新编制为电文并发送给流动站;Step 2.2.3, replace the ECEF coordinate X vrsECEF of the virtual reference station in the original message with the modified reference station coordinate X vrsFZ , and keep the corresponding GNSS observation value unchanged, recompile it into a message and send it to the rover;

步骤3,流动站完成定位,包括在接收NtripProxy服务器发来的电文后,根据改化后的参考站坐标XvrsFZ解算出当前流动站在辅助坐标系下的坐标XrovFZ,根据步骤1所得非涉密七参数得到流动站参心坐标系下的坐标以及正常高,通过投影可进一步得到流动站参心坐标系下的高斯平面直角坐标;Step 3, the rover completes the positioning, including after receiving the message sent by the NtripProxy server , it calculates the coordinate X rovFZ of the current rover in the auxiliary coordinate system according to the modified coordinate X vrsFZ of the reference station. The coordinates and normal height of the mobile station’s ginseng coordinate system can be obtained by the Miqi parameter, and the Gaussian plane Cartesian coordinates of the roving station’s ginseng coordinate system can be further obtained through projection;

而且,定义源节点时,源节点名称中包含的信息有参考站类型、测量模式、差分电文格式、测量成果坐标系和测量成果的高程系统。Moreover, when defining the source node, the information contained in the source node name includes the reference station type, survey mode, differential message format, coordinate system of the measurement result and the elevation system of the measurement result.

相比现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1)对源节点进行扩展,用于更详尽地传达流动站需求,不需要修改NTRIP协议,只需相应地在NtripCaster软件中加入判断及算法,或在NtripCaster和流动站之间增加某个模块,易于实现;1) Expand the source node to convey the needs of the rover in more detail, without modifying the NTRIP protocol, just add judgment and algorithms to the NtripCaster software accordingly, or add a certain module between NtripCaster and the rover, Easy to implement;

2)需要实时得到参心坐标系坐标,只需在登录服务器时选择相应的源节点,并在手薄上填入非涉密七参数,其余作业方式不变;2) If you need to obtain the coordinates of the ginseng coordinate system in real time, you only need to select the corresponding source node when logging in to the server, and fill in the non-confidential seven parameters in the handbook, and the rest of the operation methods remain unchanged;

3)流动站需要得到正常高,只需在登录服务器时选择相应的源节点,其余作业方式不变;3) The rover needs to get a normal height, just select the corresponding source node when logging in to the server, and the rest of the operation methods remain unchanged;

4)在符合国家保密政策的前提下,显著提高了测绘生产效率,使实时放样参心坐标系坐标和正常高得以实现。4) Under the premise of complying with the national confidentiality policy, the production efficiency of surveying and mapping has been significantly improved, and real-time stakeout of the coordinates of the ginseng coordinate system and the normal height can be realized.

附图说明Description of drawings

图1为现有技术中的CORS常规工作模式图;Fig. 1 is a CORS conventional working mode diagram in the prior art;

图2为本发明实施例的加入中继软件之后工作模式图;Fig. 2 is the working mode diagram after adding the relay software according to the embodiment of the present invention;

图3为本发明实施例的RTK获取参心坐标系坐标和正常高示意图。Fig. 3 is a schematic diagram of obtaining ginseng coordinate system coordinates and normal height by RTK according to the embodiment of the present invention.

具体实施方式Detailed ways

本发明所述ECEF包括WGS84、ITRS、PE-90、CGCS2000等,参心坐标系包括1954年北京坐标系(简称“北京54”)、1980西安坐标系(简称“西安80”)、新1954北京坐标系等,高程基准包括如波罗的海高程、吴凇高程系统、广州高程、珠江高程、1956年黄海高程系统、1985国家高程基准等,实现方式相同。以下结合附图和实施例详细说明本发明技术方案。The ECEF described in the present invention includes WGS84, ITRS, PE-90, CGCS2000, etc., and the ginseng coordinate system includes the 1954 Beijing coordinate system (referred to as "Beijing 54"), the 1980 Xi'an coordinate system (referred to as "Xi'an 80"), the new 1954 Beijing coordinate system Coordinate system, etc. Elevation benchmarks include Baltic Sea elevation, Wu Song elevation system, Guangzhou elevation, Pearl River elevation, Yellow Sea elevation system in 1956, National elevation datum in 1985, etc. The realization methods are the same. The technical solution of the present invention will be described in detail below in conjunction with the drawings and embodiments.

实施例中,某省建立了含100个参考站的CORS系统,NtripCaster(CORS服务软件)使用的是trimble公司研制的GPSNet软件,流动站利用该CORS系统直接测得的坐标属于WGS84,而该省WGS84到参心坐标的转换参数为绝密、厘米级的似大地水准面精化成果为机密,欲使测量流动站通过网络RTK技术能实时地测得1954年北京坐标系和正常高(1956年黄海高程系),参见图3,其步骤如下:In the example, a certain province established a CORS system with 100 reference stations. NtripCaster (CORS service software) uses the GPSNet software developed by Trimble Company. The coordinates directly measured by the rover using the CORS system belong to WGS84. The conversion parameters from WGS84 to ginseng coordinates are top secret, and the centimeter-level quasi-geoid refinement results are confidential. It is intended that the survey rover can measure the Beijing coordinate system and normal height in 1954 (Yellow Sea in 1956) in real time through network RTK technology Elevation system), see Fig. 3, its steps are as follows:

步骤1,定义源节点和辅助七参数,计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数;该步骤包含以下子步骤,Step 1, define the source node and the auxiliary seven parameters, and calculate the conversion parameters from the auxiliary coordinate system to the paracentric coordinate system as the non-secret seven parameters; this step includes the following sub-steps,

1.1定义一种mountpoint(源节点)1.1 Define a mountpoint (source node)

建议按预设规则设定源节点名称,实施例的规则为名称包含五层含义:①参考站类型,如R表示真实参考站(也称为单参考站)、V表示虚拟参考站;②测量模式,如K表示RTK、D表示RTD;③差分电文格式,如RTCM2.x,CMR,RTCM3.x等;④测量成果坐标系,如84表示WGS84、54表示北京54、80表示西安80等、2K表示国家2000;⑤测量成果的高程系统,如H表示④中定义的坐标系对应椭球的大地高、h56表示1956黄海高程系、h85表示1985国家高程基准。A1~A5的顺序可以调换,中间可以选用合法字符分隔,且应简洁明了。源节点可以有多个,由服务器向公众发布,供流动站登录时选择。It is recommended to set the name of the source node according to the preset rules. The rule of the embodiment is that the name contains five meanings: ① type of reference station, such as R means a real reference station (also known as a single reference station), and V means a virtual reference station; ② measurement Mode, such as K for RTK, D for RTD; ③ differential message format, such as RTCM2.x, CMR, RTCM3.x, etc.; ④ coordinate system of measurement results, such as 84 for WGS84, 54 for Beijing 54, 80 for Xi’an 80, etc. 2K means the country 2000; ⑤ the elevation system of the measurement results, such as H means the geodetic height corresponding to the ellipsoid of the coordinate system defined in ④, h56 means the 1956 Yellow Sea elevation system, and h85 means the 1985 national elevation datum. The order of A1~A5 can be exchanged, and legal characters can be used to separate them, and it should be concise and clear. There can be multiple source nodes, which are released to the public by the server for selection when the rover logs in.

例如在GPSNet软件中定义源节点VK_RT23_54h56,其中“VK”表示网络RTK模式,“RT31”表示电文格式为RTCM3.1,“54”代表北京54坐标系,“h56”代表1956年黄海高程系。For example, the source node VK_RT23_54h56 is defined in the GPSNet software, where "VK" indicates the network RTK mode, "RT31" indicates that the message format is RTCM3.1, "54" indicates the Beijing 54 coordinate system, and "h56" indicates the 1956 Yellow Sea elevation system.

1.2定义一套辅助七参数1.2 Define a set of auxiliary seven parameters

实施例定义的一套辅助七参数,包括3个平移量ΔX1、ΔY1、ΔZ1,3个旋转参数εX1、εY1、εZ1,1个尺度缩放因子m1,使WGS84能根据下述布尔莎模型转换到一个辅助坐标系,A set of auxiliary seven parameters defined in the embodiment includes 3 translations ΔX 1 , ΔY 1 , ΔZ 1 , 3 rotation parameters ε X1 , ε Y1 , ε Z1 , and 1 scale factor m 1 , so that WGS84 can be based on the following The Bursa model described above is transformed into an auxiliary coordinate system,

Xx YY ZZ FZFZ == (( 11 ++ mm 11 )) 11 ϵϵ ZZ 11 -- ϵϵ YY 11 -- ϵϵ ZZ 11 11 ϵϵ Xx 11 ϵϵ YY 11 -- ϵϵ Xx 11 11 Xx YY ZZ ECEFECEF ++ ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 ,,

其中, X Y Z FZ 表示辅助坐标系中的坐标, X Y Z ECEF 表示ECEF坐标系中的坐标,ECEF坐标系表示地心地固坐标系,in, x Y Z FZ represents the coordinates in the auxiliary coordinate system, x Y Z ECEF Represents the coordinates in the ECEF coordinate system, and the ECEF coordinate system represents the earth-centered earth-fixed coordinate system,

实施例的ECEF采用GPS的WGS84,因此相关公式中的下标ECEF采用WGS84代替如下:The ECEF of the embodiment adopts WGS84 of GPS, so the subscript ECEF in the relevant formula adopts WGS84 to replace as follows:

Xx YY ZZ FZFZ == (( 11 ++ mm 11 )) 11 ϵϵ ZZ 11 -- ϵϵ YY 11 -- ϵϵ ZZ 11 11 ϵϵ Xx 11 ϵϵ YY 11 -- ϵϵ Xx 11 11 Xx YY ZZ WGSWGS 8484 ++ ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 ,,

其中, X Y Z FZ 表示辅助坐标系中的坐标, X Y Z WGS 84 表示WGS84坐标系中的坐标。in, x Y Z FZ represents the coordinates in the auxiliary coordinate system, x Y Z WGS 84 Represents coordinates in the WGS84 coordinate system.

1.3计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数1.3 Calculate the conversion parameters from the auxiliary coordinate system to the ginseng coordinate system as seven non-confidential parameters

实施例计算辅助坐标系到北京54坐标系的转换参数:The embodiment calculates the conversion parameters from the auxiliary coordinate system to the Beijing 54 coordinate system:

设WGS84到北京54坐标系的转换参数(“保密七参数”)为ΔX0、ΔY0、ΔZ0、εX0、εY0、εZ0、m0。定义辅助坐标系到北京54坐标系的转换参数(“非涉密七参数”)为:3个平移量ΔX、ΔY、ΔZ,3个旋转量εX、εY、εZ,1个尺度缩放因子m,其数值通过下式计算:Assume the conversion parameters from WGS84 to Beijing 54 coordinate system ("seven confidential parameters") are ΔX 0 , ΔY 0 , ΔZ 0 , ε X0 , ε Y0 , ε Z0 , m 0 . Define the conversion parameters from the auxiliary coordinate system to the Beijing 54 coordinate system (“seven non-confidential parameters”) as follows: 3 translations ΔX, ΔY, ΔZ, 3 rotations ε X , ε Y , ε Z , and 1 scaling The factor m, whose value is calculated by the following formula:

ΔXΔX ΔYΔY ΔZΔZ == ΔXΔX 00 ΔYΔY 00 ΔZΔZ 00 ++ (( 11 ++ mm )) 11 ϵϵ ZZ -- ϵϵ YY -- ϵϵ ZZ 11 ϵϵ Xx ϵϵ YY -- ϵϵ Xx 11 ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 mm == mm 00 -- mm 11 11 ++ mm 11 ϵϵ Xx == ϵϵ Xx 00 -- ϵϵ Xx 11 ϵϵ YY == ϵϵ YY 00 -- ϵϵ YY 11 ϵϵ ZZ == ϵϵ ZZ 00 -- ϵϵ ZZ 11

并检验:该套非涉密七参数应与保密七参数明显不同,否则应该重新设计辅助七参数。实施例求取满足要求的非涉密七参数,CORS服务系统在流动站开始测量工作之前将此非涉密七参数告知测量流动站。And check: this set of non-secret seven parameters should be obviously different from the secret seven parameters, otherwise the auxiliary seven parameters should be redesigned. The embodiment obtains the seven non-confidential parameters that meet the requirements, and the CORS service system informs the measuring rover of the seven non-confidential parameters before the rover starts the measurement work.

步骤2,生成网络RTK差分电文,实施例在NtripCaster服务器(此时为GPSNet服务器)和流动站之间插入一个NtripProxy中继模块。这样流动站不再和GPSNet相连,由NtripProxy中继模块与GPSNet服务器、流动站进行交互。具体实施时,NtripProxy中继模块可以单独采用一个服务器设置,也可以和NtripCaster核心模块设置在一个硬件服务器上,工作原理实际相同。本领域技术人员可采用计算机软件技术实现NtripProxy中继模块,提供TCP/IP双向收发功能,所开发的NtripProxy中继软件可单独安装,也可集成到GPSNet等NtripCaster软件中。Step 2, generating network RTK differential messages, the embodiment inserts an NtripProxy relay module between the NtripCaster server (GPSNet server at this time) and the rover. In this way, the rover is no longer connected to GPSNet, and the NtripProxy relay module interacts with the GPSNet server and the rover. In specific implementation, the NtripProxy relay module can be set up on a separate server, or it can be set up on a hardware server with the NtripCaster core module, and the working principle is actually the same. Those skilled in the art can use computer software technology to implement the NtripProxy relay module to provide TCP/IP two-way transceiver function. The developed NtripProxy relay software can be installed separately or integrated into NtripCaster software such as GPSNet.

如图2所示,实施例将NtripProxy中继模块设置在单独的一个服务器上,记为NtripProxy服务器。实际实施时,以下NtripProxy服务器的操作即通过运行NtripProxy软件实现,可视为由中继模块工作实现,GPSNet服务器的操作即通过运行GPSNet软件实现,可视为由核心模块工作实现。As shown in FIG. 2, the embodiment sets the NtripProxy relay module on a single server, which is recorded as the NtripProxy server. In actual implementation, the following operations of the NtripProxy server are realized by running the NtripProxy software, which can be regarded as being realized by the relay module. The operation of the GPSNet server is realized by running the GPSNet software, which can be regarded as being realized by the core module.

该步骤包含以下子步骤:This step contains the following substeps:

2.1经过防火墙后,流动站通过数据链路登录NtripProxy服务器,连接时选取源节点“VK_RT23_54h56”,并将初步定位得到的ECEF坐标系下的流动站概略位置 X rovECEF = X rovECEF Y rovECEF Z rovECEF 发往NtripProxy服务器。实施例的ECEF采用GPS的WGS84,因此相关公式中的下标rovECEF采用rov84代替,即将初步定位得到的WGS84下的流动站概略位置 X rov 84 = X rov 84 Y rov 84 Z rov 84 发往NtripProxy服务器。2.1 After passing through the firewall, the rover logs in to the NtripProxy server through the data link, selects the source node "VK_RT23_54h56" when connecting, and initially locates the rough position of the rover in the ECEF coordinate system x rovECEF = x rovECEF Y rovECEF Z rovECEF Sent to the NtripProxy server. The ECEF of the embodiment adopts the WGS84 of GPS, so the subscript rovECEF in the relevant formula is replaced by rov84, which is about the rough position of the rover under WGS84 obtained by preliminary positioning x rov 84 = x rov 84 Y rov 84 Z rov 84 Sent to the NtripProxy server.

NtripProxy服务器将流动站概略位置 X rovECEF = X rovECEF Y rovECEF Z rovECEF 记录在变量中并转发给GPSNet服务器。The NtripProxy server sends the rough location of the rover x rovECEF = x rovECEF Y rovECEF Z rovECEF Recorded in variable and forwarded to GPSNet server.

GPSNet服务器选择三个距离Xrov84最近的参考站,利用现有技术中的的网络RTK算法,计算出虚拟参考站的ECEF坐标 X vrsECEF = X vrsECEF Y vrsECEF Z vrsECEF 。实施例的ECEF采用GPS的WGS84,因此相关公式中的下标vrsECEF采用vrs84代替,即计算出 X vrs 84 = X vrs 84 Y vrs 84 Z vrs 84 (Xvrs84与Xrov84可能相等,也可能相距1~5km)作为初步参考站坐标,并生成该处的GNSS观测值(可根据CORS参考站网数据利用现有算法得到),将二者编制为RTCM3.1格式的电文,发送给NtripProxy服务器。The GPSNet server selects three reference stations closest to Xrov84 , and uses the network RTK algorithm in the prior art to calculate the ECEF coordinates of the virtual reference station x vrsECEF = x vrsECEF Y vrsECEF Z vrsECEF . The ECEF of the embodiment adopts the WGS84 of GPS, so the subscript vrsECEF in the relevant formula adopts vrs84 to replace, promptly calculates x vrs 84 = x vrs 84 Y vrs 84 Z vrs 84 (X vrs84 and X rov84 may be equal, or may be 1-5km apart) as the initial reference station coordinates, and generate the GNSS observation value (can be obtained according to the CORS reference station network data using the existing algorithm), and compile the two as The message in RTCM3.1 format is sent to the NtripProxy server.

2.2NtripProxy服务器执行以下操作:2.2 The NtripProxy server performs the following operations:

(1)将记录的概略位置Xrov84和从电文中解码所得虚拟参考站的ECEF坐标Xvrs84按下述公式分别转换为别转换为流动站的ECEF大地坐标 Φ rovECEF = L rovECEF B rovECEF H rovECEF 和虚拟参考站的ECEF大地坐标 Φ vrsECEF = L vrsECEF B vrsECEF H vrsECEF 。实施例是转换为流动站的WGS84大地坐标 Φ rov 84 = L rov 84 B rov 84 H rov 84 和虚拟参考站的WGS84大地坐标 Φ vrs 84 = L vrs 84 B vrs 84 H vrs 84 , (1) Convert the recorded approximate position X rov84 and the ECEF coordinate X vrs84 of the virtual reference station decoded from the message into the ECEF geodetic coordinates of the rover respectively according to the following formula Φ rovECEF = L rovECEF B rovECEF h rovECEF and the ECEF geodetic coordinates of the virtual reference station Φ vrsECEF = L vrsECEF B vrsECEF h vrsECEF . Example is converted to WGS84 geodetic coordinates of the rover Φ rov 84 = L rov 84 B rov 84 h rov 84 and WGS84 geodetic coordinates of the virtual reference station Φ vrs 84 = L vrs 84 B vrs 84 h vrs 84 ,

LL == arctanarctan (( YY Xx )) BB == arctanarctan (( ZZ ++ ee ′′ 22 bb sinsin 33 θθ (( Xx 22 ++ YY 22 )) -- ee 22 aa coscos 33 θθ )) Hh == Xx 22 ++ YY 22 coscos BB -- NN

其中 N = a 1 - e 2 sin 2 B , θ = arctan ( aZ b X 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a为WGS84椭球长半轴长,b为椭球短半轴长。即X、Y、Z取Xrov84的坐标时,L、B、H为Lrov84、Brov84、Hrov84;X、Y、Z取Xvrs84的坐标时,L、B、H为Lvrs84、Bvrs84、Hvrs84in N = a 1 - e 2 sin 2 B , θ = arctan ( Z b x 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a is the length of the semi-major axis of the WGS84 ellipsoid, and b is the length of the semi-minor axis of the ellipsoid. That is, when X, Y, Z take the coordinates of X rov84 , L, B, H are L rov84 , B rov84 , H rov84 ; when X, Y, Z take the coordinates of X vrs84 , L, B, H are L vrs84 , B vrs84 , H vrs84 .

(2)利用LrovECEF和BrovECEF,结合似大地水准面精化的成果,内插得到ΦrovECEF处的高程异常值ξrovECEF;令虚拟参考站的伪大地高

Figure BDA000031605917001113
,将虚拟参考站的伪大地坐标 Φ vrsECEF ′ = L vrsECEF B vrsECEF H vrsECEF ′ 转换为空间直角坐标如下,(2) Using L rovECEF and B rovECEF , combined with the result of quasi-geoid refinement, interpolate to obtain the elevation anomaly ξ rovECEF at Φ rovECEF ; let the pseudo-geoid of the virtual reference station
Figure BDA000031605917001113
, the pseudo-geodetic coordinates of the virtual reference station Φ vrsECEF ′ = L vrsECEF B vrsECEF h vrsECEF ′ Converted to spatial Cartesian coordinates as follows,

Xx vrsECEFvrsECEF ′′ == Xx ′′ YY ′′ ZZ ′′ == (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF coscos LL vrsECEFvrsECEF (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF sinsin LL vrsECEFvrsECEF [[ NN (( 11 -- ee 22 )) ++ Hh vrsECEFvrsECEF ′′ ]] sinsin BB vrsECEFvrsECEF

采用步骤1中的布尔莎模型计算虚拟参考站的伪空间直角坐标在辅助坐标系下的坐标XvrsFZ,作为改化后的参考站坐标。Calculate the pseudo-space Cartesian coordinates of the virtual reference station using the Bursa model in step 1 The coordinate X vrsFZ in the auxiliary coordinate system is used as the coordinate of the modified reference station.

实施例中,利用Lrov84、Brov84,结合似大地水准面精化的成果,内插得到Φrov84处的高程异常值ξrov84。令虚拟参考站的伪大地高

Figure BDA00003160591700119
将虚拟参考站的伪大地坐标 Φ vrs 84 ′ = L vrs 84 B vrs 84 H vrs 84 ′ 转换为空间直角坐标:In the embodiment, using L rov84 , B rov84 , combined with the result of quasi-geoid refinement, the elevation anomaly value ξ rov84 at Φ rov84 is interpolated. Let the pseudo-geodetic height of the virtual reference station
Figure BDA00003160591700119
Pseudo-geodetic coordinates of the virtual reference station Φ vrs 84 ′ = L vrs 84 B vrs 84 h vrs 84 ′ Convert to spatial Cartesian coordinates:

Xx vrs84vrs84 ′′ == Xx ′′ YY ′′ ZZ ′′ == (( NN ++ Hh vrsvrs 8484 ′′ )) coscos BB vrsvrs 8484 coscos LL vrsvrs 8484 (( NN ++ Hh vrsvrs 8484 ′′ )) coscos BB vrsvrs 8484 sinsin LL vrsvrs 8484 [[ NN (( 11 -- ee 22 )) ++ Hh vrsvrs 8484 ′′ ]] sinsin BB vrsvrs 8484

再利用1.2中公式计算虚拟参考站的伪空间直角坐标

Figure BDA000031605917001112
在辅助坐标系下的坐标XvrsFZ,作为改化后的参考站坐标。即将 X vrs 84 ′ = X ′ Y ′ Z ′ 作为 X Y Z WGS 84 代入布尔莎模型计算,所得结果 X Y Z FZ 记为XvrsFZ。Then use the formula in 1.2 to calculate the pseudo-space Cartesian coordinates of the virtual reference station
Figure BDA000031605917001112
The coordinate X vrsFZ in the auxiliary coordinate system is used as the coordinate of the modified reference station. about to x vrs 84 ′ = x ′ Y ′ Z ′ as x Y Z WGS 84 Substituting into Bursa model calculation, the result obtained x Y Z FZ Denote it as XvrsFZ .

(3)将原电文中虚拟参考站的ECEF坐标XvrsECEF替换为改化后的参考站坐标XvrsFZ。实施例将原电文中虚拟参考站的ECEF坐标Xvrs84替换为改化后的参考站坐标XvrsFZ,并保持相应的GNSS观测值不变,重新编码生成为RTCM3.1格式的电文,通过数据链路(互联网)发送给流动站。(3) Replace the ECEF coordinate X vrsECEF of the virtual reference station in the original message with the modified reference station coordinate X vrsFZ . The embodiment replaces the ECEF coordinate X vrs84 of the virtual reference station in the original message with the modified reference station coordinate X vrsFZ , and keeps the corresponding GNSS observation value unchanged, re-encodes and generates the message in RTCM3.1 format, and passes the data link route (Internet) to the rover.

步骤3,流动站完成定位:Step 3, the rover completes the positioning:

流动站接收NtripProxy服务器发来的RTCM3.1电文,通过现有技术中的RTK方式根据改化后的参考站坐标XvrsFZ解算出当前流动站在辅助坐标系下的坐标:The rover station receives the RTCM3.1 message sent by the NtripProxy server, and calculates the coordinates of the current rover station in the auxiliary coordinate system according to the modified reference station coordinate X vrsFZ through the RTK method in the prior art:

Xx rovFZrovFZ == Xx rovFZrovFZ YY rovFZrovFZ ZZ rovFZrovFZ ,,

然后可以利用现有技术提供的测量手薄软件:Then you can use the measurement software provided by the existing technology:

在测量手薄软件中,设置好基准为克拉索夫斯基椭球(北京54椭球),在基准转换参数中输入1.3中计算得到的非涉密七参数(3个平移量ΔX、ΔY、ΔZ,3个旋转量εX、εY、εZ,1个尺度缩放因子m),则流动站可以实时得到北京54基准下的坐标,将空间直角坐标转换为大地坐标,其中的大地高的数值即等于流动站的正常高(1956年黄海高程系)。In the measurement handbook software, set the benchmark as the Krasovsky ellipsoid (Beijing 54 ellipsoid), and input the non-secret seven parameters calculated in 1.3 in the benchmark conversion parameters (3 translations ΔX, ΔY, ΔZ , 3 rotation quantities ε X , ε Y , ε Z , and 1 scaling factor m), then the rover can obtain the coordinates under the Beijing 54 datum in real time, convert the spatial Cartesian coordinates into geodetic coordinates, and the value of geodetic height That is, it is equal to the normal height of the mobile station (Yellow Sea Elevation System in 1956).

在测量手薄软件中进一步设置投影方式:高斯投影,中央子午线:XXX°E,原点纬度:0°,东坐标加常数:500000m,北坐标加常数:0m,可以得到北京54坐标系下的高斯平面直角坐标。Further set the projection method in the measurement handbook software: Gaussian projection, central meridian: XXX°E, latitude of origin: 0°, east coordinate plus constant: 500000m, north coordinate plus constant: 0m, and the Gaussian plane under the Beijing 54 coordinate system can be obtained Cartesian coordinates.

本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.

Claims (2)

1.一种实时获取参心坐标系坐标和正常高的网络RTK定位方法,其特征在于:在NtripCaster服务器和流动站之间插入一个NtripProxy中继模块,NtripProxy中继模块所在服务器记为NtripProxy服务器;定位过程包括以下步骤,1. a kind of network RTK positioning method that obtains ginseng coordinate system coordinates and normal height in real time is characterized in that: insert an NtripProxy relay module between NtripCaster server and mobile station, the NtripProxy relay module place server is recorded as NtripProxy server; The positioning process includes the following steps, 步骤1,定义源节点和辅助七参数,计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数;Step 1, define the source node and the auxiliary seven parameters, and calculate the conversion parameters from the auxiliary coordinate system to the paracentric coordinate system as the non-secret seven parameters; 所述辅助七参数,是指能将ECEF转换到某一辅助坐标系下的七个参数,包括3个平移量ΔX1、ΔY1、ΔZ1,3个旋转参数εX1、εY1、εZ1,1个尺度缩放因子m1,得到下述布尔莎模型,The auxiliary seven parameters refer to the seven parameters that can convert the ECEF to a certain auxiliary coordinate system, including 3 translations ΔX 1 , ΔY 1 , ΔZ 1 , and 3 rotation parameters ε X1 , ε Y1 , ε Z1 , 1 scaling factor m 1 , the following Bursa model is obtained, Xx YY ZZ FZFZ == (( 11 ++ mm 11 )) 11 ϵϵ ZZ 11 -- ϵϵ YY 11 -- ϵϵ ZZ 11 11 ϵϵ Xx 11 ϵϵ YY 11 -- ϵϵ Xx 11 11 Xx YY ZZ ECEFECEF ++ ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 ,, 其中, X Y Z FZ 表示辅助坐标系中的坐标, X Y Z ECEF 表示ECEF坐标系中的坐标,ECEF坐标系表示地心地固坐标系;in, x Y Z FZ represents the coordinates in the auxiliary coordinate system, x Y Z ECEF Represents the coordinates in the ECEF coordinate system, and the ECEF coordinate system represents the earth-centered earth-fixed coordinate system; 所述计算辅助坐标系到参心坐标系的转换参数作为非涉密七参数,包括设ECEF坐标系到参心坐标系的转化参数为ΔX0、ΔY0、ΔZ0、εX0、εY0、εZ0、m0,定义辅助坐标系到参心坐标系的转换参数为ΔX、ΔY、ΔZ、εX、εY、εZ、m,通过下式计算,The calculation of the conversion parameters from the auxiliary coordinate system to the ginseng coordinate system as non-confidential seven parameters includes setting the conversion parameters from the ECEF coordinate system to the ginseng coordinate system as ΔX 0 , ΔY 0 , ΔZ 0 , ε X0 , ε Y0 , ε Z0 , m 0 , define the conversion parameters from the auxiliary coordinate system to the paracentric coordinate system as ΔX, ΔY, ΔZ, ε X , ε Y , ε Z , m, calculated by the following formula, ΔXΔX ΔYΔY ΔZΔZ == ΔXΔX 00 ΔYΔY 00 ΔZΔZ 00 ++ (( 11 ++ mm )) 11 ϵϵ ZZ -- ϵϵ YY -- ϵϵ ZZ 11 ϵϵ Xx ϵϵ YY -- ϵϵ Xx 11 ΔXΔX 11 ΔYΔY 11 ΔZΔZ 11 mm == mm 00 -- mm 11 11 ++ mm 11 ϵϵ Xx == ϵϵ Xx 00 -- ϵϵ Xx 11 ϵϵ YY == ϵϵ YY 00 -- ϵϵ YY 11 ϵϵ ZZ == ϵϵ ZZ 00 -- ϵϵ ZZ 11 步骤2,生成网络RTK差分电文,包含以下子步骤,Step 2, generate network RTK differential message, including the following sub-steps, 步骤2.1,流动站登录NtripProxy服务器,连接时选取源节点,并将初步定位得到的ECEF坐标系下的流动站概略位置 X rovECEF = X rovECEF Y rovECEF Z rovECEF 发往NtripProxy服务器,Step 2.1, the rover logs in to the NtripProxy server, selects the source node when connecting, and initially locates the rough position of the rover in the ECEF coordinate system x rovECEF = x rovECEF Y rovECEF Z rovECEF sent to the NtripProxy server, NtripProxy服务器将XrovECEF转发给NtripCaster服务器,The NtripProxy server forwards XrovECEF to the NtripCaster server, NtripCaster服务器计算出VRS(虚拟参考站)的ECEF坐标 X vrsECEF = X vrsECEF Y vrsECEF Z vrsECEF , 生成相应的GNSS观测值,并将二者编制为电文并发送给NtripProxy服务器;NtripCaster server calculates ECEF coordinates of VRS (Virtual Reference Station) x vrsECEF = x vrsECEF Y vrsECEF Z vrsECEF , Generate the corresponding GNSS observation value, compile the two into a message and send it to the NtripProxy server; 步骤2.2,NtripProxy服务器执行以下操作,Step 2.2, the NtripProxy server performs the following operations, 步骤2.2.1,将ECEF坐标系下的流动站概略位置XrovECEF和从电文中解码所得虚拟参考站的ECEF坐标XvrsECEF按下述公式分别转换为流动站的概略ECEF大地坐标 Φ rovECEF = L rovECEF B rovECEF H rovECEF 和虚拟参考站的ECEF大地坐标 Φ vrsECEF = L vrsECEF B vrsECEF H vrsECEF , Step 2.2.1, convert the rough position X rovECEF of the rover in the ECEF coordinate system and the ECEF coordinate X vrsECEF of the virtual reference station decoded from the message into the rough ECEF geodetic coordinates of the rover respectively according to the following formula Φ rovECEF = L rovECEF B rovECEF h rovECEF and the ECEF geodetic coordinates of the virtual reference station Φ vrsECEF = L vrsECEF B vrsECEF h vrsECEF , LL == arctanarctan (( YY Xx )) BB == arctanarctan (( ZZ ++ ee ′′ 22 bb sinsin 33 θθ (( Xx 22 ++ YY 22 )) -- ee 22 aa coscos 33 θθ )) Hh == Xx 22 ++ YY 22 coscos BB -- NN 其中 N = a 1 - e 2 sin 2 B , θ = arctan ( aZ b X 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a为ECEF椭球长半轴长,b为椭球短半轴长;X、Y、Z取XrovECEF的坐标时,L、B、H为LrovECEF、BrovECEF、HrovECEF;X、Y、Z取XvrsECEF的坐标时,L、B、H为LvrsECEF、BvrsECEF、HvrsECEFin N = a 1 - e 2 sin 2 B , θ = arctan ( Z b x 2 + Y 2 ) , e 2 = a 2 - b 2 a 2 , e ′ 2 = a 2 - b 2 b 2 , a is the length of the semi-major axis of the ECEF ellipsoid, b is the length of the semi-minor axis of the ellipsoid; when X, Y, and Z take the coordinates of X rovECEF , L, B, and H are L rovECEF , B rovECEF , H rovECEF ; X, Y, When Z takes the coordinates of X vrsECEF , L, B, and H are L vrsECEF , B vrsECEF , and H vrsECEF ; 步骤2.2.2,利用LrovECEF和BrovECEF,结合似大地水准面精化的成果,内插得到ΦrovECEF处的高程异常值ξrovECEF;计算虚拟参考站的伪大地高将虚拟参考站的伪大地坐标 Φ vrsECEF ′ = L vrsECEF B vrsECEF H vrsECEF ′ 转换为空间直角坐标如下,Step 2.2.2, using L rovECEF and B rovECEF , combined with the result of similar geoid refinement, interpolated to obtain the elevation anomaly ξ rovECEF at Φ rovECEF ; calculate the pseudo-geoid of the virtual reference station Pseudo-geodetic coordinates of the virtual reference station Φ vrsECEF ′ = L vrsECEF B vrsECEF h vrsECEF ′ Converted to spatial Cartesian coordinates as follows, Xx vrsECEFvrsECEF ′′ == Xx ′′ YY ′′ ZZ ′′ == (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF coscos LL vrsECEFvrsECEF (( NN ++ Hh vrsECEFvrsECEF ′′ )) coscos BB vrsECEFvrsECEF sinsin LL vrsECEFvrsECEF [[ NN (( 11 -- ee 22 )) ++ Hh vrsECEFvrsECEF ′′ ]] sinsin BB vrsECEFvrsECEF 采用步骤1中的布尔莎模型计算虚拟参考站的伪空间直角坐标X′vrsECEF在辅助坐标系下的坐标XvrsFZ,作为改化后的参考站坐标;Using the Bursa model in step 1 to calculate the pseudo-space Cartesian coordinates X' vrsECEF of the virtual reference station in the auxiliary coordinate system X vrsFZ , as the modified reference station coordinates; 步骤2.2.3,将原电文中虚拟参考站的ECEF坐标XvrsECEF替换为改化后的参考站坐标XvrsFZ,并保持相应的GNSS观测值不变,重新编制为电文并发送给流动站;Step 2.2.3, replace the ECEF coordinate X vrsECEF of the virtual reference station in the original message with the modified reference station coordinate X vrsFZ , and keep the corresponding GNSS observation value unchanged, recompile it into a message and send it to the rover; 步骤3,流动站完成定位,包括在接收NtripProxy服务器发来的电文后,根据改化后的参考站坐标XvrsFZ解算出当前流动站在辅助坐标系下的坐标XrovFZ,根据步骤1所得非涉密七参数得到流动站参心坐标系下的坐标以及正常高,通过投影可进一步得到流动站参心坐标系下的高斯平面直角坐标。Step 3, the rover completes the positioning, including after receiving the message sent by the NtripProxy server , it calculates the coordinate X rovFZ of the current rover in the auxiliary coordinate system according to the modified coordinate X vrsFZ of the reference station. The coordinates and the normal height in the ginseng coordinate system of the rover can be obtained from the Mi7 parameter, and the Cartesian coordinates of the Gaussian plane in the ginseng coordinate system of the rover can be further obtained through projection. 2.根据权利要求1所述实时获取参心坐标系坐标和正常高的网络RTK定位方法,其特征在于:定义源节点时,源节点名称中包含的信息有参考站类型、测量模式、差分电文格式、测量成果坐标系和测量成果的高程系统。2. according to claim 1, obtain the network RTK positioning method of ginseng coordinate system coordinates and normal height in real time, it is characterized in that: when defining source node, the information contained in the source node name has reference station type, measurement mode, differential message format, coordinate system of survey results, and elevation system of survey results.
CN201310166571.8A 2013-05-08 2013-05-08 Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time Expired - Fee Related CN103235319B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310166571.8A CN103235319B (en) 2013-05-08 2013-05-08 Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310166571.8A CN103235319B (en) 2013-05-08 2013-05-08 Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time

Publications (2)

Publication Number Publication Date
CN103235319A true CN103235319A (en) 2013-08-07
CN103235319B CN103235319B (en) 2015-03-11

Family

ID=48883370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310166571.8A Expired - Fee Related CN103235319B (en) 2013-05-08 2013-05-08 Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time

Country Status (1)

Country Link
CN (1) CN103235319B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260203A (en) * 2016-12-28 2018-07-06 华为技术有限公司 For the method and apparatus of network RTK positioning
CN108710140A (en) * 2018-04-19 2018-10-26 广州南方卫星导航仪器有限公司 The position coordinates bearing calibration at fixed reference station and system, modified RTK method for fast measuring and system
CN109143297A (en) * 2018-09-12 2019-01-04 东南大学 A kind of real-time network RTK localization method of compatible geoid model
CN109884676A (en) * 2019-01-03 2019-06-14 自然资源部第三大地测量队 A kind of real-time positioning service method of Local coordinates based on CORS system
CN111314848A (en) * 2020-02-21 2020-06-19 北京化工大学 Wireless terminal positioning method and system
CN114322926A (en) * 2021-12-29 2022-04-12 湖南省测绘科技研究所 CORS normal height positioning method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135056A1 (en) * 2007-05-31 2009-05-28 Dai Liwen L Distance dependant error mitigation in real-time kinematic (RTK) positioning
CN101581774A (en) * 2009-06-26 2009-11-18 山东正元地理信息工程有限责任公司 High-precision point positioning method and system for global navigation satellite system (GNSS)
US20100235094A1 (en) * 2006-03-21 2010-09-16 Global Locate, Inc. Method And Apparatus For Generating And Using A Regional-Terrain Model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100235094A1 (en) * 2006-03-21 2010-09-16 Global Locate, Inc. Method And Apparatus For Generating And Using A Regional-Terrain Model
US20090135056A1 (en) * 2007-05-31 2009-05-28 Dai Liwen L Distance dependant error mitigation in real-time kinematic (RTK) positioning
CN101581774A (en) * 2009-06-26 2009-11-18 山东正元地理信息工程有限责任公司 High-precision point positioning method and system for global navigation satellite system (GNSS)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范士杰等: "TEQC在GPS数据预处理中的应用与分析", 《测绘信息与工程》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260203A (en) * 2016-12-28 2018-07-06 华为技术有限公司 For the method and apparatus of network RTK positioning
CN108710140A (en) * 2018-04-19 2018-10-26 广州南方卫星导航仪器有限公司 The position coordinates bearing calibration at fixed reference station and system, modified RTK method for fast measuring and system
CN108710140B (en) * 2018-04-19 2022-07-05 广州南方卫星导航仪器有限公司 Position coordinate correction method and system of fixed reference station and improved RTK rapid measurement method and system
CN109143297A (en) * 2018-09-12 2019-01-04 东南大学 A kind of real-time network RTK localization method of compatible geoid model
CN109884676A (en) * 2019-01-03 2019-06-14 自然资源部第三大地测量队 A kind of real-time positioning service method of Local coordinates based on CORS system
CN111314848A (en) * 2020-02-21 2020-06-19 北京化工大学 Wireless terminal positioning method and system
CN111314848B (en) * 2020-02-21 2020-12-18 北京化工大学 Wireless terminal positioning method and system
CN114322926A (en) * 2021-12-29 2022-04-12 湖南省测绘科技研究所 CORS normal height positioning method and system
CN114322926B (en) * 2021-12-29 2024-05-31 湖南省测绘科技研究所 CORS normal high positioning method and system

Also Published As

Publication number Publication date
CN103235319B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
CN103235319B (en) Network RTK (Real-Time Kinematic) positioning method for obtaining coordinate and normal height of reference-ellipsoid-centric coordinate system in real time
CN106569239B (en) A kind of broadcast type network RTK location technology
CN101295014B (en) Distant-range high-precision real-time/fast positioning method and system based on GNSS
US20230073769A1 (en) Spatial Data Abrupt Change Inspection Method, Application System and Cloud Platform in National Territory Development Planning
CN104007457A (en) Parameter-free real-time locating method based on CORS
CN101105524B (en) Fast cadastral survey and data processing method based on real-time dynamic positioning technology
CN113050138A (en) Grid-based high-precision satellite navigation positioning service method
CN113050139B (en) High-precision satellite navigation positioning service system based on grid
CN105160197A (en) Comprehensive geographical spatial data coordinate conversion method and system
CN114322926B (en) CORS normal high positioning method and system
CN110297259A (en) Base station net positioning enhancement information availability monitoring method and system based on grid
CN101493324A (en) Region quasi-geoid refining method based on CQG2000
CN102223709B (en) Method for acquiring specific reference Gaussian plane rectangular coordinate based on continuous operational reference system (CORS) in real time
CN103885069A (en) Long-distance pipeline GPS control measurement method based on CORS
CN117055083B (en) A normal high security service method, system and data broadcast server
CN103293541B (en) Method based on NTRIP for measuring RTD of arbitrary coordinate system result
CN103185885B (en) A kind of CORS coordinate real time conversion method and system
CN102411872A (en) Method for generating line element buffer zone on earth elliposoid based on GIS (geographic information system) component
Li et al. Research into GNSS levelling using network RTK in Taiwan
CN109520522B (en) Control point stability determination method based on three-dimensional baseline
CN105300374A (en) Three-dimensional coordinate conversion method and system
Jaud et al. Georeferencing within IFC: A Novel Approach for Infrastructure Objects
Tsakiri Evaluation of GPS/Galileo RTK network configuration: Case study in Greece
El-Mowafy et al. Real-time determination of orthometric heights accurate to the centimeter level using a single GPS receiver: Case study
Kim et al. A primary study on methodology of 3D construction information model for smart construction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150311

Termination date: 20150508

EXPY Termination of patent right or utility model
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载