CN102944416B - Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades - Google Patents
Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades Download PDFInfo
- Publication number
- CN102944416B CN102944416B CN201210519318.1A CN201210519318A CN102944416B CN 102944416 B CN102944416 B CN 102944416B CN 201210519318 A CN201210519318 A CN 201210519318A CN 102944416 B CN102944416 B CN 102944416B
- Authority
- CN
- China
- Prior art keywords
- fault
- sorter
- diagnosis
- fuzzy
- class
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000003745 diagnosis Methods 0.000 title claims abstract description 25
- 230000004927 fusion Effects 0.000 title claims abstract description 16
- 238000005516 engineering process Methods 0.000 title claims abstract description 15
- 238000010248 power generation Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 14
- 238000000354 decomposition reaction Methods 0.000 claims description 12
- 238000012549 training Methods 0.000 claims description 11
- 230000010354 integration Effects 0.000 claims description 10
- 238000012706 support-vector machine Methods 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 5
- 238000007500 overflow downdraw method Methods 0.000 claims description 5
- 244000287680 Garcinia dulcis Species 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000002405 diagnostic procedure Methods 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Landscapes
- Wind Motors (AREA)
Abstract
The invention discloses a multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades. According to the method, the problems of lack of fault information and the like caused by the insufficiency of sensors is solved by adopting a plurality of sensors. An independent classifier is used for performing primary diagnosis on information acquired by each sensor, so as to determine the possibility that to-be-diagnosed faults belong to different faults; and the decision fusion diagnosis is performed by adopting a fuzzy integral fusion technology based on that the importance degree of information output by each classifier is adequately considered. According to the fault diagnosis method disclosed by the invention, classified results of all the classifiers are integrated, and the importance degree of each classifier is considered, thus effectively improving the accuracy of the fault diagnosis on the wind turbine blades.
Description
Technical field
The invention belongs to on-line monitoring and fault diagonosing technical field, especially a kind of method of the wind power generation unit blade fault diagnosis based on multiple sensor signals integration technology.
Background technology
In recent years, due to the shortage of resource and the deterioration of environment, to make countries in the world start to pay attention to development and utilization renewable and without the energy of discharge.Wind resource, as the resource of a kind of green, environmental protection, more and more obtains the attention of people.In the world, the operation of a large amount of Wind turbines makes the safe and stable operation of Wind turbines cause showing great attention to of people.Due to Wind turbines long-term work in the wild, to be exposed to the sun and in the rugged surroundings such as thunderstorm, wind field wind regime is complicated and changeable, very easily causes various fault, and therefore, the on-line monitoring and fault diagonosing of Wind turbines has become requisite link.The blade fault type of Wind turbines comprises leaf quality imbalance fault, blade aerodynamic imbalance, driftage and disconnected blade etc., because wind power generation unit blade is expensive, difficult in maintenance after damaging, therefore the condition monitoring and fault diagnosis of blade is seemed particularly important.In the initial stage Timeliness coverage fault that blade fault occurs, processed in time before problem worse affects unit operation, can greatly reduce blade maintenance, upkeep cost and difficulty.
In the process of wind power generation unit blade fault diagnosis, the data of process are all collected by sensor.Because diagnosis object operating condition is complicated, influence factor is numerous, same fault often has different performances, same symptom is usually again the coefficient result of several fault, narrowly, between detection limit and fault signature, be all a kind of Nonlinear Mapping between fault signature and the source of trouble, the fault characteristic value only relying on single-sensor to obtain generally cannot complete fault diagnosis effectively, and one of effective means solved the problem just adopts multiple sensor signals integration technology.
The mode of information fusion, generally in sensor layer, characteristic layer and decision-making level, often uses and merges in decision-making level.The information fusion technology of decision-making level is that two or more sorters is carried out integrated, adopts certain blending algorithm to diagnose.Existing blending algorithm mainly contains bayes method, D-S evidential reasoning method and fuzzy integral method.Bayes method needs prior imformation, and this prior imformation is often difficult to obtain in actual applications; And requiring that the element of decision-making set is separate, this requirement is too harsh.D-S evidential reasoning bill requires that the evidence used must be separate, is generally difficult to meet, in addition, also there will be shot array, events conflict etc.Fuzzy set can describe indeterminacy phenomenon well, and the fusion method therefore based on fuzzy integrals theory is a kind of instrument be most widely used.Fuzzy integral is a kind of non-linear Decision fusion method based on fog-density, and the classification results of integral process not only comprehensive each sorter, also considers the significance level of each sorter, fuzzy integral is applied to fault diagnosis, can reach accurate localizing faults.
Summary of the invention
The object of the invention is to overcome the deficiencies in the prior art, provide a kind of simple, cost is low, effectively can improve wind power generation unit blade safety, the wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology of reliability.
The technical solution used in the present invention is: a kind of wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology, Wind turbines installs multisensor, the failure message shortcoming problem brought because sensor is not enough is solved by adopting multisensor, sorter is adopted to carry out tentative diagnosis to the information that each sensor gathers, determine to treat that tracing trouble is under the jurisdiction of the possibility of different faults, on the basis of correlation degree taking into full account each sorter and different faults type, fuzzy integral fusion method is adopted to carry out Decision fusion diagnosis, the concrete steps of its diagnostic method are:
(1) acceleration transducer by being arranged on wind generator set main shaft seat horizontal direction and vertical direction measures blade at the vibration signal normally and under typical fault type, the corresponding sorter of each acceleration transducer;
(2) utilize empirical mode decomposition to decompose the vibration signal in the horizontal direction gathered and vertical direction respectively, different fault signatures is reacted to different intrinsic mode functions;
(3) energy of several intrinsic mode functions before calculating, the characteristic information of forming reactions fault, to extracted fault characteristic information normalized, obtains fault feature vector, as training sample and test sample book;
(4) training sample in horizontal direction and vertical direction and test sample book is utilized to carry out training and testing to two sorters respectively;
(5) fog-density and fuzzy mearue is determined;
represent the fog-density of a jth information of i-th sorter, t is the number of fault type, and c is the number of sorter; Make Y={y
1, y
2... y
cthe set that forms for c sorter, A
i={ y
1, y
2... y
i, utilize each sorter in testing to the correct recognition rata of each fault as the correlation degree of this sorter to each fault type, i.e. fog-density, then according to fog-density determination fuzzy mearue;
(6) vibration signals measured carried out empirical mode decomposition and extract fault feature vector, utilizing sorter to carry out primary fault diagnosis respectively, the result obtained is p
j=(p
j(y
1), p
j(y
2) ... p
j(y
c)), wherein p
j(y
i) presentation class device y
iexample to be diagnosed is divided into the possibility of jth class;
(7) utilize Choquet fuzzy integral to do fusion operator and fusion treatment is carried out to determine the fault type of wind power generation unit blade to primary fault diagnostic result; According to formula
calculate fuzzy integral value e
j, e
jfor the likelihood of failure index that comprehensive diagnos goes out, then forming fault may index set E={e
1, e
2... e
t, according to its failure judgement type, the classification in E corresponding to maximal value is the fault type of this example.
As preferably, the concrete account form of described step (5) fuzzy mearue is:
According to formula
determine λ
j, then according to formula g
j(A
1)=g
j({ y
1) and formula g
j(A
i)=g
j({ y
i)+g
j(A
i-1)+λ
jg
j(
yi}) g
j(A
i-1), i=1,2 ... c, asks for fuzzy mearue g
j(A
i); λ
jit is an intermediate variable.
As preferably, in described step (6), the likelihood probability that support vector machine exports is as treating in primary diagnosis that tracing trouble is under the jurisdiction of the possibility of certain fault, and it can be used as the result that primary fault is diagnosed, likelihood probability is calculated as follows
In formula: f
ji () is the output of a jth support vector machine in i-th sorter; p
j(y
i) representing the likelihood probability of a jth fault in i-th sorter, likelihood probability calculating is carried out for just identifying sample class; Work as f
ji, during () >0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) > 0.5); Work as f
ji, during () <0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) <0.5); ε is arbitrarily small positive integer.
Beneficial effect: 1, the present invention adopts and extracts fault feature vector based on empirical mode decomposition, can improve the resolution of fault.
2, the present invention adopts the classification results of Fuzzy Integral Fusion not only comprehensive each sorter, also take into account the significance level of each sorter, effectively improves the accuracy of system diagnostics.
3, the present invention can carry out wind power generation unit blade localization of fault exactly, shortens maintenance and searches the time, improve the efficiency of maintenance maintenance.
4, the present invention simple, diagnosis cost low, be a kind of wind power generation unit blade method for diagnosing faults that effectively can improve wind power generation unit blade safety, reliability.
Accompanying drawing explanation
Fig. 1 is the block scheme based on the wind power generation unit blade fault diagnosis of multiple sensor signals integration technology in the present invention;
Fig. 2 is Wind turbines schematic diagram in the present invention;
Fig. 3 is empirical mode decomposition block scheme in the present invention;
Fig. 4 is based on the block scheme that the fault feature vector of empirical mode decomposition extracts in the present invention.
Embodiment
Below in conjunction with the drawings and specific embodiments, the present invention will be further described.
As shown in Figure 1, a kind of wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology, Wind turbines installs multisensor, the failure message shortcoming problem brought because sensor is not enough is solved by adopting multisensor, sorter is adopted to carry out tentative diagnosis to the information that each sensor gathers, determine to treat that tracing trouble is under the jurisdiction of the possibility of different faults, on the basis of correlation degree taking into full account each sorter and different faults type, adopt fuzzy integral fusion method to carry out Decision fusion diagnosis, concrete steps are as follows:
(1) as shown in Figure 2, the wind wheel 1 of Wind turbines is connected with main shaft, main shaft is arranged in spindle drum 2, main shaft is connected with generator 4 by shaft coupling 3, blade is measured at the vibration signal normally and under typical fault type, the corresponding sorter of each acceleration transducer by two acceleration transducers being arranged on wind generator set main shaft seat 2 horizontal direction and vertical direction.
(2) utilize empirical mode decomposition (EMD) to decompose the vibration signal in the horizontal direction gathered and vertical direction respectively, different fault signatures is reacted to different intrinsic mode functions (IMF).
Empirical mode decomposition is a kind of method processing non-stationary, nonlinear properties.Burst is decomposed into intrinsic mode functions (IMF) and a residual volume sum of multiple different frequency range by the method, and can give prominence to the local feature of signal well, its computation process as shown in Figure 3.After the calculating of series, original signal x (t) can decompose as follows
Therefore, any one signal x (t) can be resolved into a n IMF and residual components sum, intrinsic mode functions c
1(t), c
2(t), c
3(t) ..., c
nt the composition of () respectively representation signal different frequency range from high to low, the frequency content that each frequency range comprises is different, and can change along with the change of vibration signal x (t), survival function r
nthe average tendency of (t) representation signal.
(3) energy of several IMF before calculating, the characteristic signal of forming reactions fault, to extracted fault characteristic information normalized, obtains fault feature vector, as training sample and test sample book.
Fig. 4 is the block scheme extracted based on the fault feature vector of empirical mode decomposition, and it is specially:
Step 1: carry out EMD decomposition to vibration signal sequence, obtains IMF component, and the IMF component number of different vibration signals is different, and before selecting, m IMF component is as research object.
Step 2: the energy of m IMF before calculating:
Step 3: the structure of proper vector:
T=[E
1,E
2,…E
m](3)
Because the energy of some IMF is comparatively large, for the ease for the treatment of and analysis, T is normalized.Proper vector is
T′=[E
1/E,E
2/E,…E
m/E](4)
In formula:
(4) training sample in horizontal direction and vertical direction and test sample book is utilized to carry out training and testing to two sorters respectively.
SVM asks optimal classification surface to propose from linear separability situation.So-called optimal separating hyper plane, is exactly require that classification plane not only can be separated faultless for two class samples, and the cluster between two classes will be made maximum.For two class classification situations, its objective function is:
0≤α
i≤C,i=1,2,…1
And decision function is
For multicategory classification problem, adopt one-against-all Combination of Methods two class support vector machines to construct multi classifier in the present invention, two sorters adopt identical combined method.Specific as follows:
To with a t class problem, one-against-all method needs t two class support vector machines, namely t Optimal Separating Hyperplane is adopted to classify, by the tag location+1 of the i-th class, the tag location-1 of all the other all samples, then utilizes training sample and test sample book to carry out training and testing to sorter respectively.
(5) fog-density and fuzzy mearue is determined.
represent the fog-density of a jth information of i-th sorter, t is the number of fault type, and c is the number of sorter.Make Y={y
1, y
2... y
cthe set that forms for c sorter, A
i={ y
1, y
2... y
i, c is 2, utilize each sorter in testing to the correct recognition rata of each fault as the correlation degree of this sorter to each fault type, i.e. fog-density, then according to fog-density determination fuzzy mearue.
According to formula
determine λ
j, then according to formula g
j(A
1)=g
j({ y
1) and formula g
j(A
i)=g
j({ y
i)+g
j(A
i-1)+λ
jg
j({ y
i) g
j(A
i-1), i=1,2 ... c, asks for fuzzy mearue g
j(A
i).λ
jit is an intermediate variable.
(6) vibration signals measured carried out empirical mode decomposition and extract fault feature vector, utilizing sorter to carry out primary fault diagnosis respectively, the result obtained is p
j=(p
j(y
1), p
j(y
2) ... p
j(y
c)), wherein p
j(y
i) presentation class device y
iexample to be diagnosed is divided into the possibility of jth class, wherein
In formula: f
ji () is the output of a jth support vector machine in i-th sorter; p
j(y
i) representing the likelihood probability of a jth fault in i-th sorter, likelihood probability calculating is carried out for just identifying sample class.Work as f
ji, during () > 0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) > 0.5); Work as f
ji, during () <0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) <0.5); ε is arbitrarily small positive integer.
(7) utilize Choquet fuzzy integral to do fusion operator and fusion treatment is carried out to determine the fault type of wind power generation unit blade to primary fault diagnostic result.According to formula
calculate fuzzy integral value e
i, e
jfor the likelihood of failure index that comprehensive diagnos goes out, then forming fault may index set E={e
1, e
2... e
t, according to its failure judgement type, the classification in E corresponding to maximal value is the fault type of this example.
It should be pointed out that for those skilled in the art, under the premise without departing from the principles of the invention, can also make some improvements and modifications, these improvements and modifications also should be considered as protection scope of the present invention.The all available prior art of each ingredient not clear and definite in the present embodiment is realized.
Claims (3)
1. the wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology, it is characterized in that: on Wind turbines, multisensor is installed, sorter is adopted to carry out tentative diagnosis to the information that each sensor gathers, determine to treat that tracing trouble is under the jurisdiction of the possibility of different faults, on the basis of correlation degree taking into full account each sorter and different faults type, adopt fuzzy integral fusion method to carry out Decision fusion diagnosis, the concrete steps of its diagnostic method are:
(1) acceleration transducer by being arranged on wind generator set main shaft seat horizontal direction and vertical direction measures blade at the vibration signal normally and under typical fault type, the corresponding sorter of each acceleration transducer;
(2) utilize empirical mode decomposition to decompose the vibration signal in the horizontal direction gathered and vertical direction respectively, different fault signatures is reacted to different intrinsic mode functions;
(3) energy of several intrinsic mode functions before calculating, the characteristic information of forming reactions fault, to extracted fault characteristic information normalized, obtains fault feature vector, as training sample and test sample book;
(4) training sample in horizontal direction and vertical direction and test sample book is utilized to carry out training and testing to two sorters respectively;
(5) fog-density and fuzzy mearue is determined;
represent the fog-density of a jth information of i-th sorter, t is the number of fault type, and c is the number of sorter; Make Y={y
1, y
2... y
cthe set that forms for c sorter, A
i={ y
1, y
2... y
i, utilize each sorter in testing to the correct recognition rata of each fault as the correlation degree of this sorter to each fault type, i.e. fog-density, then according to fog-density determination fuzzy mearue;
(6) vibration signals measured carried out empirical mode decomposition and extract fault feature vector, utilizing sorter to carry out primary fault diagnosis respectively, the result obtained is p
j=(p
j(y
1), p
j(y
2) ... p
j(y
c)), wherein p
j(y
i) presentation class device y
iexample to be diagnosed is divided into the possibility of jth class;
(7) utilize Choquet fuzzy integral to do fusion operator and fusion treatment is carried out to determine the fault type of wind power generation unit blade to primary fault diagnostic result; According to formula
calculate fuzzy integral value e
j, e
jfor the likelihood of failure index that comprehensive diagnos goes out, then forming fault may index set E={e
1, e
2... e
t, according to its failure judgement type, the classification in E corresponding to maximal value is the fault type of this example.
2. the wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology according to claim 1, is characterized in that: the concrete account form of described step (5) fuzzy mearue is:
According to formula
determine λ
j, then according to formula g
j(A
1)=g
j({ y
1) and formula g
j(A
i)=g
j({ y
i)+g
j(A
i-1)+λ
jg
j({ y
i) g
j(A
i-1), i=1,2 ... c, asks for fuzzy mearue g
j(A
i); λ
jit is an intermediate variable.
3. the wind power generation unit blade method for diagnosing faults based on multiple sensor signals integration technology according to claim 1, it is characterized in that: in described step (6), the likelihood probability that support vector machine exports is as treating in primary diagnosis that tracing trouble is under the jurisdiction of the possibility of certain fault, it can be used as the result that primary fault is diagnosed, likelihood probability is calculated as follows
In formula: f
ji () is the output of a jth support vector machine in i-th sorter; p
j(y
i) representing the likelihood probability of a jth fault in i-th sorter, likelihood probability calculating is carried out for just identifying sample class; Work as f
ji, during () >0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) >0.5); Work as f
ji, during () <0, it is p that sample is assigned to the degree of membership just identifying class
j(y
i) (p
j(y
i) <0.5); ε is arbitrarily small positive integer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210519318.1A CN102944416B (en) | 2012-12-06 | 2012-12-06 | Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210519318.1A CN102944416B (en) | 2012-12-06 | 2012-12-06 | Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102944416A CN102944416A (en) | 2013-02-27 |
| CN102944416B true CN102944416B (en) | 2015-04-01 |
Family
ID=47727378
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210519318.1A Expired - Fee Related CN102944416B (en) | 2012-12-06 | 2012-12-06 | Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102944416B (en) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104236933B (en) * | 2013-06-13 | 2017-12-26 | 同济大学 | A kind of potential faults method for early warning for train traction system |
| CN103364024B (en) * | 2013-07-12 | 2015-10-28 | 浙江大学 | Based on the sensor fault diagnosis method of empirical mode decomposition |
| CN103743477B (en) * | 2013-12-27 | 2016-01-13 | 柳州职业技术学院 | Method and device for detecting and diagnosing mechanical faults |
| WO2016086360A1 (en) * | 2014-12-02 | 2016-06-09 | Abb Technology Ltd | Wind farm condition monitoring method and system |
| CN104515677A (en) * | 2015-01-12 | 2015-04-15 | 华北电力大学 | Failure diagnosing and condition monitoring system for blades of wind generating sets |
| CN104865269A (en) * | 2015-04-13 | 2015-08-26 | 华北理工大学 | Wind turbine blade fault diagnosis method |
| CN105095918B (en) * | 2015-09-07 | 2018-06-26 | 上海交通大学 | A kind of multi-robot system method for diagnosing faults |
| CN108931387B (en) * | 2015-11-30 | 2020-05-12 | 南通大学 | A Fault Diagnosis Method Based on Multi-sensor Signal Analysis to Provide Accurate Diagnosis Decisions |
| CN105784353A (en) * | 2016-03-25 | 2016-07-20 | 上海电机学院 | Fault diagnosis method for gear case of aerogenerator |
| CN106096562B (en) * | 2016-06-15 | 2019-06-04 | 浙江大学 | Wind turbine gearbox fault diagnosis method based on vibration signal blind source separation and sparse component analysis |
| CN106768933A (en) * | 2016-12-02 | 2017-05-31 | 上海电机学院 | A kind of wind power generation unit blade method for diagnosing faults based on genetic algorithm |
| EP3363351B1 (en) * | 2017-02-16 | 2023-08-16 | Tata Consultancy Services Limited | System for detection of coronary artery disease in a person using a fusion approach |
| CN107036808B (en) * | 2017-04-11 | 2019-04-19 | 浙江大学 | A Wind Turbine Gearbox Composite Fault Diagnosis Method Based on Support Vector Machine Probability Estimation |
| CN108278184B (en) * | 2017-12-22 | 2020-02-07 | 浙江运达风电股份有限公司 | Wind turbine generator impeller imbalance monitoring method based on empirical mode decomposition |
| CN110332080B (en) * | 2019-08-01 | 2021-02-12 | 内蒙古工业大学 | A real-time monitoring method for fan blade health based on resonance response |
| CN111504676B (en) * | 2020-04-23 | 2021-03-30 | 中国石油大学(北京) | Equipment fault diagnosis method, device and system based on multi-source monitoring data fusion |
| CN112183499B (en) * | 2020-11-27 | 2021-03-05 | 万鑫精工(湖南)股份有限公司 | Time domain signal diagnosis method based on signal component difference quotient and storage medium |
| CN114839696B (en) * | 2022-07-04 | 2022-09-13 | 武九铁路客运专线湖北有限责任公司 | Multi-source data fusion sensing three-dimensional tunnel unfavorable geology detection method |
| CN115718472A (en) * | 2022-11-17 | 2023-02-28 | 中国长江电力股份有限公司 | Fault scanning and diagnosing method for hydroelectric generating set |
| CN118940115B (en) * | 2024-07-23 | 2025-09-19 | 广东电网有限责任公司 | Transformer fault detection method, device, equipment and medium |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6351713B1 (en) * | 1999-12-15 | 2002-02-26 | Swantech, L.L.C. | Distributed stress wave analysis system |
| CN1920511A (en) * | 2006-08-01 | 2007-02-28 | 东北电力大学 | Fusion diagnosing method of centrifugal pump vibration accidents and vibration signals sampling device |
| CN101178312A (en) * | 2007-12-12 | 2008-05-14 | 南京航空航天大学 | Spacecraft Integrated Navigation Method Based on Multi-Information Fusion |
| CN101387575A (en) * | 2008-10-20 | 2009-03-18 | 兖矿国泰化工有限公司 | Rotor bearing system failure perfect information analytical method and apparatus |
| US7576681B2 (en) * | 2002-03-26 | 2009-08-18 | Lockheed Martin Corporation | Method and system for data fusion using spatial and temporal diversity between sensors |
-
2012
- 2012-12-06 CN CN201210519318.1A patent/CN102944416B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6351713B1 (en) * | 1999-12-15 | 2002-02-26 | Swantech, L.L.C. | Distributed stress wave analysis system |
| US7576681B2 (en) * | 2002-03-26 | 2009-08-18 | Lockheed Martin Corporation | Method and system for data fusion using spatial and temporal diversity between sensors |
| CN1920511A (en) * | 2006-08-01 | 2007-02-28 | 东北电力大学 | Fusion diagnosing method of centrifugal pump vibration accidents and vibration signals sampling device |
| CN101178312A (en) * | 2007-12-12 | 2008-05-14 | 南京航空航天大学 | Spacecraft Integrated Navigation Method Based on Multi-Information Fusion |
| CN101387575A (en) * | 2008-10-20 | 2009-03-18 | 兖矿国泰化工有限公司 | Rotor bearing system failure perfect information analytical method and apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102944416A (en) | 2013-02-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102944416B (en) | Multi-sensor signal fusion technology-based fault diagnosis method for wind turbine blades | |
| Hasan et al. | Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions | |
| CN108181107B (en) | A Mechanical Fault Diagnosis Method for Wind Turbine Bearings Considering Multiple Classification Objectives | |
| CN102944418B (en) | Wind turbine generator group blade fault diagnosis method | |
| CN100485342C (en) | Integrated supporting vector machine mixed intelligent diagnosing method for mechanical fault | |
| CN102768115B (en) | A kind of gearbox of wind turbine health status real-time dynamic monitoring method | |
| CN101382439B (en) | Multi-parameter self-confirming sensor and state self-confirming method thereof | |
| CN101614786B (en) | Online intelligent fault diagnosis method of power electronic circuit based on FRFT and IFSVC | |
| CN109738776A (en) | Open-circuit fault identification method of wind turbine converter based on LSTM | |
| CN114993669B (en) | Multi-sensor information fusion transmission system fault diagnosis method and system | |
| CN107368854A (en) | A kind of circuit breaker failure diagnostic method based on improvement evidence theory | |
| CN102175449B (en) | Blade fault diagnostic method based on strain energy response of wind-driven generator | |
| CN105628425A (en) | Rotation machinery early stage fault diagnosis method based on heredity annealing optimization multi-core support vector machine | |
| CN114936532B (en) | A Fault Diagnosis Method for Offshore Wind Turbines | |
| CN107560844A (en) | A kind of fault diagnosis method and system of gearbox of wind turbine | |
| CN104614179A (en) | Method for monitoring state of gearbox of wind power generation set | |
| Chen et al. | Acoustical damage detection of wind turbine yaw system using Bayesian network | |
| CN118130070A (en) | Escalator fault prediction diagnosis method, device and system | |
| CN109255333A (en) | A kind of large-scale wind electricity unit rolling bearing fault Hybrid approaches of diagnosis | |
| CN103822786A (en) | Wind turbine generator set mechanical equipment state diagnosis method based on multivariate statistical analysis | |
| CN105065212A (en) | Checking method and system of wind generation sets of wind power plant | |
| CN108036940A (en) | A kind of Method for Bearing Fault Diagnosis | |
| CN113821888B (en) | Vibration data fault diagnosis method based on periodic impact feature extraction and echo state network | |
| CN115376302A (en) | Fan blade fault early warning method, system, equipment and medium | |
| Turnbull et al. | Prediction of wind turbine generator failure using two‐stage cluster‐classification methodology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20211206 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |