CN102722166A - Intelligent vision detection system and state detection method of transformer substation device - Google Patents
Intelligent vision detection system and state detection method of transformer substation device Download PDFInfo
- Publication number
- CN102722166A CN102722166A CN2012102224436A CN201210222443A CN102722166A CN 102722166 A CN102722166 A CN 102722166A CN 2012102224436 A CN2012102224436 A CN 2012102224436A CN 201210222443 A CN201210222443 A CN 201210222443A CN 102722166 A CN102722166 A CN 102722166A
- Authority
- CN
- China
- Prior art keywords
- module
- image
- equipment
- state
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Alarm Systems (AREA)
Abstract
本发明公开了一种变电站巡检机器人视觉系统及状态检测方法,它包括运动控制模块,所述运动控制模块上设有云台控制模块,云台控制模块通过视觉伺服模块与图像采集模块相连,图像采集模块通过图像传输模块与图像智能分析系统相连,图像智能分析系统包括设备分类模块、刀闸状态识别模块、高压断路器识别模块、仪表读数模块和外观异常识别模块,图像智能分析系统的各模块与综合分析模块连接,综合分析模块与变电站信息控制系统接口模块相连。本发明自动分析设备当前状态,涵盖了变电站设备日常巡视工作的所有检测内容;实现周期巡检方式到基于状态的巡检方式的转变;完成对变电站设备状态的自动识别和记录,大大降低工作人员的参与度。
The invention discloses a substation inspection robot vision system and a state detection method, which includes a motion control module, the motion control module is provided with a pan-tilt control module, and the pan-tilt control module is connected with an image acquisition module through a visual servo module. The image acquisition module is connected with the image intelligent analysis system through the image transmission module. The image intelligent analysis system includes the equipment classification module, the knife switch status identification module, the high-voltage circuit breaker identification module, the instrument reading module and the abnormal appearance identification module. The module is connected with the comprehensive analysis module, and the comprehensive analysis module is connected with the substation information control system interface module. The present invention automatically analyzes the current state of the equipment, covering all the detection content of the daily inspection work of the substation equipment; realizes the transition from the periodic inspection mode to the state-based inspection mode; completes the automatic identification and recording of the status of the substation equipment, greatly reducing the number of staff participation.
Description
the
技术领域 technical field
本发明涉及一种智能视觉检测系统及检测方法。尤其涉及一种变电站设备智能视觉检测系统及状态检测方法。 The present invention relates to an intelligent visual detection system and detection method. In particular, it relates to an intelligent visual detection system and a state detection method for substation equipment.
背景技术 Background technique
近些年来,中国的国民经济的高速持续发展,电力作为各行业发展的基础,输电线路长度和变电站数量紧跟着急剧上升。传统的电力设备巡检工作,依靠人工定期巡视设备状态,保证变电站日常安全运行。随着用电量日益增加,变电站数量的增多,人工巡检效率低下、检测质量分散、与现有信息系统无连接等矛盾日益显著,显然人工巡检已经不能满足时代发展的需求。 In recent years, with the rapid and continuous development of China's national economy, electricity is the basis for the development of various industries, and the length of transmission lines and the number of substations have followed a sharp increase. The traditional power equipment inspection work relies on manual inspection of equipment status on a regular basis to ensure the daily safe operation of substations. With the increasing power consumption and the number of substations, the contradictions such as low efficiency of manual inspection, scattered detection quality, and no connection with the existing information system are becoming more and more obvious. Obviously, manual inspection can no longer meet the needs of the development of the times.
特别是在高原、戈壁等特殊地理条件或如大风、雾天、冰雪、冰雹、雷雨等极端天气发生后,造成人工无法及时巡检,并且受条件限制巡检存在较大安全风险,此时变电站一旦发生意外事故,决策者因无法及时获取直观的现场信息,往往会贻误最佳处理事故的时机,造成不必要的经济损失甚至人员伤亡等重大的事故。电力设备的运维自动化和现代化已日益显示出其迫切性。 Especially after special geographical conditions such as plateaus and Gobi or extreme weather such as strong winds, fog, ice and snow, hail, thunderstorms, etc., manual inspections cannot be performed in time, and there are greater safety risks in inspections due to limited conditions. At this time, the substation In the event of an accident, decision makers will often delay the best time to deal with the accident because they cannot obtain intuitive on-site information in time, causing unnecessary economic losses and even casualties and other major accidents. The automation and modernization of power equipment operation and maintenance has increasingly shown its urgency.
随着科学技术的发展,智能变电站建设技术越来越成熟,无人值守变电站成为可能。电力机器人能代替或辅助人工进行巡检,提高工作效率,降低劳动强度,减少作业风险,已经成为国家电网对智能变电站建设的规范内容之一。 With the development of science and technology, the construction technology of intelligent substation is becoming more and more mature, and unattended substation becomes possible. Electric robots can replace or assist manual inspections, improve work efficiency, reduce labor intensity, and reduce operational risks. It has become one of the normative contents of the State Grid for the construction of smart substations.
视觉检测系统作为机器人的重要组成部分,在代替人工巡视过程中,占据了十分重要的地位。视觉检测系统,主要基于视觉传感器,如CCD、CMOS等,获取电力设备的图像信息,通过对图像进行处理、分析,检测出设备当前的状态。 As an important part of the robot, the visual inspection system occupies a very important position in the process of replacing manual inspection. The visual inspection system is mainly based on visual sensors, such as CCD, CMOS, etc., to obtain image information of power equipment, and to detect the current state of the equipment by processing and analyzing the image.
现有的基于变电站巡检机器人的视觉检测系统,存在以下几个特点: The existing visual inspection system based on substation inspection robot has the following characteristics:
(1)功能单一。现有的电力设备视觉检测系统,往往只具备几个特殊设备的检测功能,如中国专利申请号200610080730.2-电力高压断路器开关合分状态的自动图像识别与监测方法、中国专利申请号201110216378.1-基于红外检测的变电站刀闸模式识别方法,等专门针对断路器与刀闸的状态检测方法。显然,上述几个特殊设备的状态检测,无法满足实现对变电站所有设备状态的检测,继而也无法实现完全代替人工巡视的功能。 (1) Single function. Existing visual inspection systems for power equipment often only have the detection functions of a few special equipments, such as Chinese Patent Application No. Infrared detection method for substation knife switch pattern recognition, and other state detection methods specifically for circuit breakers and knife switches. Obviously, the state detection of the above-mentioned special equipment cannot satisfy the detection of the state of all equipment in the substation, and then cannot completely replace the function of manual inspection.
(2)仅依靠单幅图像检测结果判断设备状态,可靠性差。现有的视觉检测模块,只将单幅图像的设备状态检测结果给出,并没有参考人工巡检时,从多个角度确认设备状态的巡检方式。因此,图像检测的结果就直接影响了机器人状态检测的可靠性,而由于室外环境下,图像质量、光照影响等多种因素导致,较难实现图像检测的完全可靠。因此,单纯依靠单幅图像处理结果,现有的视觉检测系统的可靠性无法保证。 (2) Judging the status of the device only by the detection result of a single image has poor reliability. The existing visual inspection module only gives the detection result of the equipment status of a single image, and does not refer to the inspection method of confirming the equipment status from multiple angles during manual inspection. Therefore, the results of image detection directly affect the reliability of robot state detection, and due to various factors such as image quality and lighting effects in outdoor environments, it is difficult to achieve complete reliability of image detection. Therefore, relying solely on the results of single image processing, the reliability of the existing visual inspection system cannot be guaranteed.
(3)图像信息采集方式对机器人定位精度依赖性大。现有的视觉检测方式,大都采用固定点检测,即机器人每次巡检都会停靠在固定位置,设定云台到固定位置进行设备图像的采集,由于机器人移动平台机械误差、云台重复定位误差等因素,目标设备不能保证准确的出现在图像视野范围内,这是导致视觉检测失败的一个重要因素。 (3) The image information collection method is highly dependent on the positioning accuracy of the robot. Most of the existing visual detection methods use fixed point detection, that is, the robot will stop at a fixed position every time it inspects, and set the pan/tilt to a fixed position to collect equipment images. And other factors, the target device cannot be guaranteed to appear accurately within the image field of view, which is an important factor leading to the failure of visual inspection.
(4)缺少智能分析功能。现有的视觉检测系统,大都采用状态检测完成功后,仍需要人工根据工作票信息与历史记录判断状态是否正确,且与变电站信息管理系统结合度不高,无法实现现场检测结果到信息管理系统的自动更新。 (4) Lack of intelligent analysis function. Most of the existing visual inspection systems use status inspection. After the status inspection is completed, it is still necessary to manually judge whether the status is correct based on the work ticket information and historical records, and the degree of integration with the substation information management system is not high, and the on-site inspection results cannot be sent to the information management system. automatic update of .
由于现有视觉检测系统的上述问题,较难实现变电站所有设备的状态的可靠的自动检测工作,检测精度和稳定性都有待提高,使得变电站设备状态依赖机器人检测的可靠性无法保证,从而对变电站安全运行埋下了隐患。如何解决上述缺陷,实现一套具备变电站所有设备自动检测功能、且具有高可靠性、高精度的视觉检测系统,成为一个十分迫切的课题。 Due to the above-mentioned problems of the existing visual detection system, it is difficult to realize reliable automatic detection of the state of all equipment in the substation, and the detection accuracy and stability need to be improved, so that the reliability of the detection of the state of the substation equipment by robots cannot be guaranteed, thus affecting the substation Hidden dangers have been buried in safe operation. How to solve the above defects and realize a set of visual detection system with automatic detection function of all substation equipment, and with high reliability and high precision has become a very urgent issue.
发明内容 Contents of the invention
本发明的目的是为克服上述现有技术的不完整,提供一种基于变电站巡检机器人平台的变电站设备智能视觉检测系统及检测方法。它功能全面,涵盖了所有变电站重要设备的自动巡检功能;具备视觉伺服功能,不依赖于云台和移动设备系统精度;还可以根据历史信息和关联设备状态进行综合分析,直接给出报警信息,无需工作人员通过实时监控、手动记录等方式巡视变电站设备。 The purpose of the present invention is to overcome the incompleteness of the above-mentioned prior art, and provide an intelligent visual detection system and detection method for substation equipment based on a substation inspection robot platform. It has comprehensive functions, covering the automatic inspection function of all important substation equipment; it has a visual servo function, which does not depend on the system accuracy of the pan/tilt and mobile equipment; it can also conduct comprehensive analysis based on historical information and related equipment status, and directly give alarm information , without the need for staff to inspect substation equipment through real-time monitoring, manual recording, etc.
为实现上述目的,本发明采用下述技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种变电站巡检机器人视觉系统,它包括运动控制模块,所述运动控制模块上设有云台控制模块,云台控制模块通过视觉伺服模块与图像采集模块相连,图像采集模块通过图像传输模块与图像智能分析系统相连,图像智能分析系统包括设备分类模块、刀闸状态识别模块、高压断路器识别模块、仪表读数模块和外观异常识别模块,图像智能分析系统的各模块与综合分析模块连接,综合分析模块与变电站信息控制系统接口模块相连。 A substation inspection robot vision system, which includes a motion control module, the motion control module is provided with a pan-tilt control module, the pan-tilt control module is connected to an image acquisition module through a visual servo module, and the image acquisition module communicates with an image acquisition module through an image transmission module The image intelligent analysis system is connected. The image intelligent analysis system includes the equipment classification module, the knife switch state identification module, the high voltage circuit breaker identification module, the instrument reading module and the abnormal appearance identification module. The modules of the image intelligent analysis system are connected with the comprehensive analysis module. The analysis module is connected with the interface module of the substation information control system.
所述图像智能分析系统通过设备类型识别模块自动识别设备类型,并将图像输入到对应的识别模块中;在对应识别模块状态检测完成后,将结果输入到综合分析模块中,通过与历史数据对比分析、关联设备状态对比分析,得到最终检测结果和预警信息,最后将设备状态信息和状态是否正常的判断结果,通过变电站信息系统接口模块与变电站自有信息系统中,供变电站工作人员使用。 The image intelligent analysis system automatically identifies the equipment type through the equipment type identification module, and inputs the image into the corresponding identification module; after the state detection of the corresponding identification module is completed, the result is input into the comprehensive analysis module, and compared with the historical data Analyze and compare the status of related equipment to obtain the final detection results and early warning information. Finally, the equipment status information and the judgment result of whether the status is normal are provided to the substation staff through the substation information system interface module and the substation's own information system.
所述仪表读数模块,对图像信号采集设备获取的仪表图像采用类圆形指针式仪表读数方法,自动提取类圆形区域,提取仪表指针位置,给出仪表当前指数。 The instrument reading module adopts a quasi-circular pointer instrument reading method for the instrument image acquired by the image signal acquisition device, automatically extracts the quasi-circular area, extracts the position of the instrument pointer, and gives the current index of the instrument.
所述刀闸状态识别模块,对图像信号采集设备获取的刀闸图像信心进行处理与分析,自动识别刀闸的闭合、断开、闭合不到位三种情况; The knife switch state identification module processes and analyzes the confidence of the knife switch image acquired by the image signal acquisition device, and automatically recognizes the three situations of the knife switch being closed, disconnected, and not in place;
所述高压断路器识别模块,通过图像信号采集设备获取的断路器图像进行识别,主要利用基于模板匹配的方法来判断断路器的分、合状态; The high-voltage circuit breaker recognition module recognizes the circuit breaker image obtained by the image signal acquisition device, and mainly uses a method based on template matching to judge the opening and closing state of the circuit breaker;
所述外观异常识别模块,主要对设备上具有悬挂物、设备表面存在放电痕迹、油渍类情况进行检测。 The abnormal appearance identification module mainly detects hanging objects on the equipment, discharge traces and oil stains on the surface of the equipment.
所述运动控制模块还包括移动平台和控制移动平台移动的运动控制器;所述云台控制模块包括云台和云台控制器,云台控制器控制云台转动角度;所述视觉伺服模块利用图像信号采集设备获取的当前图像与预先采集的模板图像进行对比分析,获得云台调整量,继而调整云台姿态,保证设备图像完整出现在图像中,为后续的设备状态识别提供充分的信息;图像传输模块包括无线路由器、信号接收基站,将压缩编码后的图像信息通过无线网络传输到的后台处理模块中。 The motion control module also includes a mobile platform and a motion controller that controls the movement of the mobile platform; the cloud platform control module includes a cloud platform and a cloud platform controller, and the cloud platform controller controls the rotation angle of the platform; the visual servo module utilizes The current image acquired by the image signal acquisition device is compared and analyzed with the pre-acquired template image to obtain the adjustment amount of the pan/tilt, and then adjust the attitude of the pan/tilt to ensure that the equipment image appears completely in the image and provide sufficient information for subsequent equipment status identification; The image transmission module includes a wireless router and a signal receiving base station, and transmits the compressed and coded image information to the background processing module through the wireless network.
一种利用变电站巡检机器人视觉系统的状态检测方法,步骤如下: A state detection method using the vision system of a substation inspection robot, the steps are as follows:
(1)控制基于变电站巡检机器人运动控制平台移动到指定位置,通过视觉伺服模块对图像采集模块进行调整以保证设备图像完整出现在图像中,然后通过图像采集模块获取待检测设备的清晰图像; (1) Control the motion control platform based on the substation inspection robot to move to the designated position, adjust the image acquisition module through the visual servo module to ensure that the equipment image appears in the image completely, and then obtain a clear image of the equipment to be detected through the image acquisition module;
(2)将采集到的图像信息,先进行压缩编码,再通过图像传输模块传输到图像智能分析系统中; (2) Compress and encode the collected image information first, and then transmit it to the image intelligent analysis system through the image transmission module;
(3)图像智能分析系统的设备类型识别模块根据刀闸、高压断路器、仪表,对图像进行分类,并自动将设备的图像送入对应的识别模块; (3) The equipment type identification module of the image intelligent analysis system classifies the images according to the knife switch, high-voltage circuit breaker, and instrument, and automatically sends the equipment image to the corresponding identification module;
(4)刀闸状态识别模块、高压断路器识别模块、仪表读数模块以及变压器外观异常识别模块分别将各自的当前图像与相关联的设备历史图像通过综合分析模块进行一致性分析,最终将设备状态信息和预警信息传输至变电站信息系统接口模块; (4) The knife switch state identification module, high-voltage circuit breaker identification module, instrument reading module, and transformer appearance abnormality identification module respectively conduct consistency analysis on their current images and associated equipment historical images through the comprehensive analysis module, and finally the equipment status The information and early warning information are transmitted to the substation information system interface module;
(5)变电站信息系统接口模块将检测和分析结果转换成变电站信息系统识别的数据类型,传输至上位机的变电站信息管理系统中; (5) The substation information system interface module converts the detection and analysis results into the data type recognized by the substation information system, and transmits them to the substation information management system of the upper computer;
(6)工作人员直接对判断结果进行监控。 (6) The staff directly monitors the judgment results.
所述步骤(3)中,设备分类模块的自动分类主要通过机器停靠位置的配置信息,获取当前待检测的设备类型,从而自动确定要进入的检测模块。该方法简单、可靠、易实现。 In the step (3), the automatic classification of the device classification module mainly obtains the current device type to be detected through the configuration information of the machine docking position, so as to automatically determine the detection module to be entered. The method is simple, reliable and easy to implement.
所述步骤(4)中,刀闸状态识别模块判断刀闸状态,自动识别刀闸的闭合、断开、闭合不到位三种情况; In the step (4), the knife switch state identification module judges the knife switch state, and automatically recognizes the three situations of the knife switch being closed, disconnected, and not in place;
高压断路器识别模块判断高压断路器状态,判断高压断路器的分、合状态; The high-voltage circuit breaker identification module judges the state of the high-voltage circuit breaker, and judges the opening and closing state of the high-voltage circuit breaker;
仪表读数模块判断仪表状态,自动识别仪表的指针位置,给出仪表当前指数; The meter reading module judges the state of the meter, automatically recognizes the pointer position of the meter, and gives the current index of the meter;
外观异常识别模块识别设备是否具有悬挂物、设备表面存在放电痕迹、油渍等情况外观异常状态。 The abnormal appearance identification module identifies whether the equipment has hanging objects, discharge traces, oil stains, etc. on the surface of the equipment.
所述仪表读数模块判断仪表状态的具体过程为: The specific process of the meter reading module judging the state of the meter is:
(1)把移动机器人采集的仪表图像灰度化,二值化; (1) Grayscale and binarize the instrument image collected by the mobile robot;
(2)利用Canny算法提取设备二值图像的边缘信息;利用边缘点使用最小二乘法拟合椭圆;对获得的椭圆进行过滤,剔除掉被拟合成椭圆的非椭圆图像,得到表盘区域及表盘圆心位置; (2) Use the Canny algorithm to extract the edge information of the binary image of the device; use the edge points to fit the ellipse using the least squares method; filter the obtained ellipse, remove the non-ellipse image that is fitted into an ellipse, and obtain the dial area and dial Center position;
(3)在获得表盘图像区域内使用基于Hough变换的直线提取算法提取指针,参考表盘圆心,进而得到指针的角度; (3) Use the straight line extraction algorithm based on Hough transform to extract the pointer in the obtained dial image area, refer to the center of the dial, and then obtain the angle of the pointer;
(4)提取数据库中对应目标仪表的指针角度与示数之间的关系计算步骤(3)所得角度对应的示数。 (4) Extract the relationship between the pointer angle and the indication corresponding to the target instrument in the database and calculate the indication corresponding to the angle obtained in step (3).
所述步骤(4)中,综合分析模块的分析过程为:利用变电站设备分布信息,自动将相关联的设备的状态记录,保存,并进行一致性分析;通过该模块,将当前设备状态纵向的与历史状态对比,横向的与相连设备进行状态比对,综合分析该设备的状态,并给出分析结果,对于出现状态异常的设备进行报警提示,其具体步骤为: In the step (4), the analysis process of the comprehensive analysis module is: using the substation equipment distribution information, automatically record and save the status of the associated equipment, and perform consistency analysis; through this module, the current equipment status is longitudinally Compared with the historical state, the state is compared with the connected equipment horizontally, the state of the equipment is comprehensively analyzed, and the analysis results are given, and the equipment with abnormal state is given an alarm prompt. The specific steps are as follows:
(1)根据变电站日常巡检任务,将相关联的设备巡视内容进行关联; (1) According to the daily inspection tasks of the substation, associate the inspection content of the associated equipment;
(2)根据相关设备状态顺序控制关系,在关联的末端任务执行完成后,对关联任务中各个设备的一致性进行判断; (2) According to the state sequence control relationship of related equipment, after the execution of the associated terminal task is completed, the consistency of each equipment in the associated task is judged;
(3)对于产生异常的设备状态,与前二次检测的历史数据进行对比,结合工作票顺序,进行一致性分析,确定是否发生异常。 (3) For the status of abnormal equipment, compare it with the historical data of the previous two inspections, and combine the sequence of work tickets to conduct consistency analysis to determine whether an abnormality occurs.
本发明的有益效果: Beneficial effects of the present invention:
(1)该系统首次涵盖了变电站所有巡检设备的状态检测功能,并提出了仪表自动检测算法,提出了一种设备类型自动识别算法,自动识别设备类型,真正实现完全自动化检测变电站内各种设备状态; (1) For the first time, the system covers the status detection function of all inspection equipment in substations, and proposes an automatic detection algorithm for instruments, an automatic identification algorithm for equipment types, automatic identification of equipment types, and truly realizes fully automated detection of various types of equipment in substations. device status;
(2)提出了一种基于图像的视觉伺服算法,自动根据目标图像位置,实现云台的自动伺服,保证目标图像完整的出现在视野范围内,提高了整体的检测精度; (2) An image-based visual servo algorithm is proposed, which automatically realizes the automatic servo of the pan/tilt according to the position of the target image, ensures that the target image appears completely within the field of view, and improves the overall detection accuracy;
(3)提出了将检测结果自动与历史数据和相关联的设备状态一致性检验算法,增加了状态检测的可靠性,并直接给出报警信息,真正实现了向基于状态的巡检方式的转变; (3) A device state consistency inspection algorithm that automatically correlates detection results with historical data and associated equipment state is proposed, which increases the reliability of state detection, and directly gives alarm information, and truly realizes the transformation to the state-based inspection method ;
(4)基于本智能视觉检测系统提出的设备状态综合分析模块,变电站日常设备巡检任务,完全可由机器人代替,工作人员的工作内容从全部日常检测转换到只对出现预警的设备进行排查,大大提高了工作效率; (4) Based on the equipment status comprehensive analysis module proposed by this intelligent visual inspection system, the daily inspection tasks of substation equipment can be completely replaced by robots. Improve work efficiency;
(5)基于该智能视觉检测系统,变电站巡检机器人具备高精度、高可靠性的自动巡检方式,为变电站安全运行,减少安全事故,给予了稳固的技术保障,为电力行业安全、稳定发展奠定了基础。 (5) Based on the intelligent visual inspection system, the substation inspection robot has a high-precision, high-reliability automatic inspection method, which provides a solid technical guarantee for the safe operation of the substation and reduces safety accidents, and provides a safe and stable development for the power industry Foundation.
附图说明 Description of drawings
图1为变电站设备智能视觉检测系统的结构示意图。 Figure 1 is a schematic structural diagram of an intelligent visual inspection system for substation equipment.
其中,1.图像采集模块,2.云台控制模块,3.视觉伺服模块,4.图像传输模块,5. 图像智能分析系统,6.设备类型识别模块,7.刀闸状态识别模块,8.高压断路器识别模块,9. 仪表读数模块,10.外观异常识别模块,11.综合分析模块,12.变电站信息系统接口模块,13.运动控制模块。 Among them, 1. Image acquisition module, 2. PTZ control module, 3. Visual servo module, 4. Image transmission module, 5. Image intelligent analysis system, 6. Equipment type identification module, 7. Knife gate status identification module, 8 .High-voltage circuit breaker identification module, 9. Instrument reading module, 10. Abnormal appearance identification module, 11. Comprehensive analysis module, 12. Substation information system interface module, 13. Motion control module.
具体实施方式 Detailed ways
下面结合附图与实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种变电站巡检机器人智能视觉检测系统,包括图像采集模块1,云台控制模块2,视觉伺服模块3,图像传输模块4,综合分析模块11,变电站信息系统接口模块12,运动控制模块13;其中,运动控制模块13上设有云台控制模块2,云台控制模块2经视觉伺服模块3与图像采集模块1连接,图像采集模块1与图像传输模块4连接,图像传输模块4与图像智能分析系统5连接,图像智能分析系统5与综合分析模块11连接,综合分析模块11与变电站信息系统接口12连接。图像信息经图像采集模块1采集后通过图像传输模块4与图像智能分析系统5相连。所述图像智能分析系统5包括设备类型识别模块6,刀闸状态识别模块7、高压断路器识别模块8、仪表读数模块9和外观异常识别模块10。 As shown in Figure 1, an intelligent visual detection system for a substation inspection robot includes an image acquisition module 1, a pan/tilt control module 2, a visual servo module 3, an image transmission module 4, a comprehensive analysis module 11, and a substation information system interface module 12 , motion control module 13; Wherein, motion control module 13 is provided with pan-tilt control module 2, and pan-tilt control module 2 is connected with image acquisition module 1 through visual servo module 3, and image acquisition module 1 is connected with image transmission module 4, image The transmission module 4 is connected with the intelligent image analysis system 5 , the intelligent image analysis system 5 is connected with the comprehensive analysis module 11 , and the comprehensive analysis module 11 is connected with the substation information system interface 12 . After the image information is collected by the image acquisition module 1 , it is connected with the image intelligent analysis system 5 through the image transmission module 4 . The image intelligent analysis system 5 includes an equipment type identification module 6 , a knife switch state identification module 7 , a high voltage circuit breaker identification module 8 , an instrument reading module 9 and an abnormal appearance identification module 10 .
所述图像采集模块1包括图像信号采集设备和图像编解码设备,图像信号采集设备可以采用单目摄像机或CCD工业相机,图像编码设备负责将图像模拟信号进行压缩编码。 The image acquisition module 1 includes an image signal acquisition device and an image codec device. The image signal acquisition device can be a monocular camera or a CCD industrial camera, and the image encoding device is responsible for compressing and encoding the image analog signal.
所述运动控制模块13包括移动平台和控制移动平台移动的运动控制器。 The motion control module 13 includes a mobile platform and a motion controller for controlling the movement of the mobile platform.
所述云台控制模块2包括云台、云台控制器,云台控制器可以设定、保存、控制云台转动角度。图像采集模块1中的图像信号采集设备搭载到云台上,云台控制器来控制云台水平、垂直方向的转动角度,从而控制相机的姿态,灵活的拍摄多个角度的不同的设备。 The pan-tilt control module 2 includes a pan-tilt and a pan-tilt controller, and the pan-tilt controller can set, save, and control the rotation angle of the pan-tilt. The image signal acquisition device in the image acquisition module 1 is mounted on the pan-tilt, and the pan-tilt controller controls the horizontal and vertical rotation angles of the pan-tilt, thereby controlling the attitude of the camera and flexibly shooting different devices from multiple angles.
所述视觉伺服模块3利用图像信号采集设备获取的当前图像与预先采集的模板图像进行对比分析,获得云台调整量,继而调整云台姿态,保证设备图像完整出现在图像中,为后续的设备状态识别提供充分的信息。该系统采用的结构是采用中国授权专利号ZL201020685635.7所述的结构。基于视觉伺服功能,变电站巡检机器人到达固定检测点,可以自主根据当前图像信息,调整云台,使得目标图像完全出现在视野范围内。消除了由于云台系统误差和移动平台系统误差造成的目标偏出视野范围以外的情况,提高了检测精度和可靠度。 The visual servo module 3 compares and analyzes the current image acquired by the image signal acquisition device with the pre-collected template image to obtain the adjustment amount of the pan/tilt, and then adjusts the attitude of the pan/tilt to ensure that the image of the equipment is completely present in the image, and is used for subsequent equipment. Status recognition provides sufficient information. The structure adopted by the system adopts the structure described in the Chinese authorized patent number ZL201020685635.7. Based on the visual servo function, when the substation inspection robot reaches a fixed detection point, it can independently adjust the pan/tilt according to the current image information, so that the target image appears completely within the field of view. The situation that the target deviates from the field of view caused by the system error of the pan-tilt and the mobile platform is eliminated, and the detection accuracy and reliability are improved.
所述图像传输模块4包括无线路由器、信号接收基站,将压缩编码后的图像信息通过无线网络传输到的后台处理模块中。该系统采用的结构是采用中国授权专利号 201110005671.3所述的无线通讯模块结构。 The image transmission module 4 includes a wireless router and a signal receiving base station, and transmits the compressed and coded image information to the background processing module through a wireless network. The structure adopted by the system adopts the wireless communication module structure described in the Chinese authorized patent number 201110005671.3.
所述图像智能分析系统5通过设备类型识别模块6自动识别设备类型,如刀闸、高压断路器、仪表等类型图像,自动将图像输入到对应的识别模块中。在对应识别模块状态检测完成后,将结果输入到综合分析模块11中,通过与历史数据对比分析、关联设备状态对比分析,得到最终检测结果和预警信息。最后将设备状态信息和状态是否正常的判断结果,通过变电站信息系统接口模块12与变电站自有信息系统中,供变电站工作人员使用。 The image intelligent analysis system 5 automatically identifies equipment types through the equipment type identification module 6, such as images of knife switches, high-voltage circuit breakers, instruments, etc., and automatically inputs the images into the corresponding identification modules. After the status detection of the corresponding identification module is completed, the result is input into the comprehensive analysis module 11, and the final detection result and early warning information are obtained through comparative analysis with historical data and related equipment status. Finally, the equipment state information and the judgment result of whether the state is normal are provided to the substation staff through the substation information system interface module 12 and the substation's own information system.
所述设备类型识别模块6自动识别设备类型,主要通过机器停靠位置的配置信息,获取当前待检测的设备类型,从而自动确定要进入的检测模块。 The device type recognition module 6 automatically recognizes the device type, and obtains the current device type to be detected mainly through the configuration information of the machine parking position, thereby automatically determining the detection module to be entered.
所述刀闸状态识别模块7,对图像信号采集设备获取的刀闸图像进行处理与分析,自动识别刀闸的闭合、断开、闭合不到位三种情况。该系统采用的结构是采用中国授权专利号2011102163781所述结构和方法。 The knife switch state identification module 7 processes and analyzes the knife switch image acquired by the image signal acquisition device, and automatically recognizes the three situations of the knife switch being closed, disconnected, and not closed properly. The structure adopted by the system adopts the structure and method described in Chinese Authorized Patent No. 2011102163781.
所述高压断路器识别模块8,通过图像信号采集设备获取的断路器图像进行识别,主要利用基于模板匹配的方法来判断断路器的分、合状态。该系统采用的结构是采用中国授权专利号201110216396X所述结构和方法。 The high-voltage circuit breaker recognition module 8 recognizes the circuit breaker image obtained by the image signal acquisition device, and mainly uses a method based on template matching to judge the opening and closing state of the circuit breaker. The structure adopted by the system adopts the structure and method described in Chinese Authorized Patent No. 201110216396X.
所述仪表读数模块9,对图像信号采集设备获取的仪表图像采用类圆形指针式仪表读数方法,自动提取类圆形区域,提取仪表指针位置,给出仪表当前指数。本模块通过手动提取目标仪表模板,标记目标仪表刻度与角度的对应关系,存入数据库,具体方法包括以下几个步骤: The instrument reading module 9 adopts a quasi-circular pointer instrument reading method for the instrument image acquired by the image signal acquisition device, automatically extracts the quasi-circular area, extracts the position of the instrument pointer, and gives the current index of the instrument. This module manually extracts the template of the target instrument, marks the corresponding relationship between the scale and the angle of the target instrument, and stores it in the database. The specific method includes the following steps:
(1)把移动机器人采集的仪表图像灰度化,二值化; (1) Grayscale and binarize the instrument image collected by the mobile robot;
(2)利用Canny算法提取设备二值图像的边缘信息;利用边缘点使用最小二乘法拟合椭圆;对获得的椭圆进行过滤,剔除掉被拟合成椭圆的非椭圆图像,得到表盘区域及表盘圆心位置; (2) Use the Canny algorithm to extract the edge information of the binary image of the device; use the edge points to fit the ellipse using the least squares method; filter the obtained ellipse, remove the non-ellipse image that is fitted into an ellipse, and obtain the dial area and dial Center position;
(3)在获得表盘图像区域内使用基于Hough变换的直线提取算法提取指针,参考表盘圆心,进而得到指针的角度; (3) Use the straight line extraction algorithm based on Hough transform to extract the pointer in the obtained dial image area, refer to the center of the dial, and then obtain the angle of the pointer;
(4)提取数据库中对应目标仪表的指针角度与示数之间的关系计算步骤(3)所得角度对应的示数。 (4) Extract the relationship between the pointer angle and the indication corresponding to the target instrument in the database and calculate the indication corresponding to the angle obtained in step (3).
该方法基于现有巡检机器人检测方式,基于固定检测点,同时采用视觉伺服功能,大大提高了仪表识别的可靠性和灵活性,优于现有仪表检测手段。 This method is based on the existing inspection robot detection method, based on fixed detection points, and adopts the visual servo function at the same time, which greatly improves the reliability and flexibility of instrument identification, and is superior to existing instrument detection methods.
所述外观异常识别模块10,是指通过分析设备表面可见信息,检测悬挂物、放电痕迹、油渍等设备表面异常情况,此类情况对变电站安全运行存在较大的安全隐患,是变电站巡检的重要内容之一。该系统采用的结构是采用中国授权专利号ZL 201020555312.6所述结构和方法。 The abnormal appearance identification module 10 refers to detecting abnormalities on the surface of equipment such as hanging objects, discharge traces, oil stains, etc. by analyzing the visible information on the surface of the equipment. One of the important content. The structure adopted by the system adopts the structure and method described in the Chinese authorized patent number ZL 201020555312.6.
所述综合分析模块11利用变电站设备分布信息,自动将相关联的设备的状态记录,保存,并进行一致性分析。通过该模块,可以将当前设备状态纵向的与历史状态对比,横向的与相连设备进行状态比对,综合分析该设备的状态,并给出分析结果,对于出现状态异常的设备进行报警提示。该模块具体实现方法: The comprehensive analysis module 11 uses the substation equipment distribution information to automatically record and save the state of the associated equipment, and perform consistency analysis. Through this module, the current equipment status can be compared vertically with the historical status, and horizontally compared with the status of the connected equipment, comprehensively analyze the status of the equipment, and give the analysis results, and give an alarm prompt for the equipment with abnormal status. The specific implementation method of this module:
(1)根据变电站日常巡检任务,将相关联的设备巡视内容进行关联, (1) According to the daily inspection tasks of the substation, associate the inspection content of the associated equipment,
(2)根据相关设备状态顺序控制关系,在关联的末端任务执行完成后,对关联任务中各个设备的一致性进行判断; (2) According to the state sequence control relationship of related equipment, after the execution of the associated terminal task is completed, the consistency of each equipment in the associated task is judged;
(3)对于产生异常的设备状态,与前二次检测的历史数据进行对比,结合工作票顺序,进行一致性分析,确定是否发生异常。 (3) For the status of abnormal equipment, compare it with the historical data of the previous two inspections, and combine the sequence of work tickets to conduct consistency analysis to determine whether an abnormality occurs.
所述变电站信息系统接口模块12将检测到的设备状态和预警信息与变电站MIS系统相连,变电站工作人员可以通过站内信息系统直接了解到当前变电站内各类设备的状态,可以完全代替人工巡检,只根据预警信息来对设备异常进行排查,将大大降低工作人员的劳动强度。 The substation information system interface module 12 connects the detected equipment status and early warning information to the substation MIS system, and the substation staff can directly understand the current status of various equipment in the substation through the information system in the substation, which can completely replace manual inspections. Examining equipment abnormalities only based on early warning information will greatly reduce the labor intensity of staff.
使用上述系统的变电站设备状态检测方法,具体的实施过程如下: The specific implementation process of the substation equipment status detection method using the above system is as follows:
(1)基于变电站巡检机器人运动控制平台移动到特定位置,通过图像采集模块1获取待检测设备的清晰图像,并通过视觉伺服模块3对图像采集模块1进行调整以保证设备图像完整出现在图像中; (1) Based on the motion control platform of the substation inspection robot moving to a specific position, the clear image of the equipment to be inspected is obtained through the image acquisition module 1, and the image acquisition module 1 is adjusted through the visual servo module 3 to ensure that the complete image of the equipment appears in the image middle;
(2)将采取到的图像信息,先进行压缩编码,再通过图像传输模块4传输到后台处理器中; (2) Compress and encode the image information obtained, and then transmit it to the background processor through the image transmission module 4;
(3)使用设备类型识别模块,自动对设备类型进行分类,并将图像输入到对应的设备状态检测模块; (3) Use the device type identification module to automatically classify the device type, and input the image to the corresponding device status detection module;
(4)相应的设备状态检测系统将检测结果传输至综合分析11模块,该模块自动将当前设备状态与历史数据与相关联的设备进行一致性分析,最终将设备状态信息和预警信息传输至变电站信息系统接口模块12; (4) The corresponding equipment status detection system transmits the detection results to the comprehensive analysis module 11, which automatically analyzes the consistency of the current equipment status and historical data with the associated equipment, and finally transmits the equipment status information and early warning information to the substation Information system interface module 12;
(5)变电站信息系统接口模块12将检测和分析结果转换成变电站信息系统识别的类型,传输至变电站信息管理系统中; (5) The substation information system interface module 12 converts the detection and analysis results into the types identified by the substation information system, and transmits them to the substation information management system;
(6)工作人员直接对判断结果进行监控。 (6) The staff directly monitors the judgment results.
类似的流程,同样适用于高压断路器的识别、仪表读数、设备外观异常识别。 Similar processes are also applicable to the identification of high-voltage circuit breakers, instrument readings, and identification of abnormal appearance of equipment.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。 Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210222443.6A CN102722166B (en) | 2012-06-29 | 2012-06-29 | Intelligent vision detection system and state detection method of transformer substation device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210222443.6A CN102722166B (en) | 2012-06-29 | 2012-06-29 | Intelligent vision detection system and state detection method of transformer substation device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102722166A true CN102722166A (en) | 2012-10-10 |
| CN102722166B CN102722166B (en) | 2015-03-04 |
Family
ID=46947967
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210222443.6A Active CN102722166B (en) | 2012-06-29 | 2012-06-29 | Intelligent vision detection system and state detection method of transformer substation device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102722166B (en) |
Cited By (75)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103105581A (en) * | 2013-01-24 | 2013-05-15 | 上海毕励电子科技有限公司 | Electrical equipment quantity of state collection method based on video recognition |
| CN103532238A (en) * | 2013-10-22 | 2014-01-22 | 国家电网公司 | System and method for preventing misoperation of change-over switch of transformer substation |
| CN103927507A (en) * | 2013-01-12 | 2014-07-16 | 山东鲁能智能技术有限公司 | Improved multi-instrument reading identification method of transformer station inspection robot |
| CN104320580A (en) * | 2014-10-25 | 2015-01-28 | 国家电网公司 | SF6 Density Meter Pointer Recognition Equipment and Method Based on Image Acquisition |
| CN104391506A (en) * | 2014-09-19 | 2015-03-04 | 福州大学 | Transformer station guide rail type inspection robot |
| CN104457621A (en) * | 2014-12-22 | 2015-03-25 | 国家电网公司 | Pattern displacement sensor system for detecting position state of disconnecting link of transformer substation |
| CN104994334A (en) * | 2015-06-09 | 2015-10-21 | 海南电网有限责任公司 | Automatic substation monitoring method based on real-time video |
| CN105262994A (en) * | 2015-10-14 | 2016-01-20 | 南京第五十五所技术开发有限公司 | Instrument identification device and method based on intelligent track video camera |
| CN103605365B (en) * | 2013-11-07 | 2016-01-20 | 成都赛康信息技术有限责任公司 | The entire roboticized work method that substation equipment filth is patrolled and examined, judges and cleaned |
| CN105446336A (en) * | 2015-12-08 | 2016-03-30 | 哈尔滨工业大学 | Robot inspection system and inspection method for cold region transformer substation |
| CN105530456A (en) * | 2014-09-28 | 2016-04-27 | 深圳中兴力维技术有限公司 | Method, device and system for substation monitoring |
| CN105554479A (en) * | 2016-03-02 | 2016-05-04 | 浙江群力电气有限公司 | Intelligent monitoring system for electric power transmission and transformation and distribution equipment |
| CN105652872A (en) * | 2016-02-26 | 2016-06-08 | 郑州金惠计算机系统工程有限公司 | Automatic tracking and positioning method for substation laser navigation patrol robot intelligent pan-tilt |
| CN106125744A (en) * | 2016-06-22 | 2016-11-16 | 山东鲁能智能技术有限公司 | The Intelligent Mobile Robot cloud platform control method of view-based access control model servo |
| CN106529559A (en) * | 2016-12-30 | 2017-03-22 | 山东鲁能软件技术有限公司 | Pointer-type circular multi-dashboard real-time reading identification method |
| CN106651840A (en) * | 2016-11-25 | 2017-05-10 | 国网北京市电力公司 | Electrical device detection system |
| CN107036642A (en) * | 2017-04-12 | 2017-08-11 | 中国电力科学研究院 | A kind of method for being used to carry out robot used for intelligent substation patrol meter inspection performance test |
| CN107067013A (en) * | 2017-04-25 | 2017-08-18 | 航天科技控股集团股份有限公司 | One kind is based on many instrument hawkeye fuzzy detection system and methods |
| CN107257161A (en) * | 2017-06-20 | 2017-10-17 | 安徽南瑞继远电网技术有限公司 | A kind of transformer station's disconnecting link remote control auxiliary check method and system based on state recognition algorithm |
| CN107393270A (en) * | 2017-07-26 | 2017-11-24 | 河海大学常州校区 | A kind of portable vision inspection device and method for electric meter detection |
| CN107481223A (en) * | 2017-07-21 | 2017-12-15 | 中车青岛四方机车车辆股份有限公司 | A kind of method and device of wiring state image automatic identification |
| CN107680195A (en) * | 2017-11-13 | 2018-02-09 | 国网内蒙古东部电力有限公司 | A kind of transformer station intelligent robot inspection Computer Aided Analysis System and method |
| CN107688349A (en) * | 2017-08-17 | 2018-02-13 | 武汉大学 | A kind of crusing robot tele-control system and control method |
| CN107817052A (en) * | 2017-11-30 | 2018-03-20 | 国网辽宁省电力有限公司电力科学研究院 | Based on the collection of infrared imaging power transformer crusing robot thermal map and communication system |
| CN107895409A (en) * | 2017-12-28 | 2018-04-10 | 国网福建省电力有限公司 | Automatic inspection device and inspection method for water inlet door slot of hydropower station |
| CN107907753A (en) * | 2017-10-11 | 2018-04-13 | 国网浙江省电力公司湖州供电公司 | The detection device and method of a kind of protective relaying device |
| CN107976214A (en) * | 2017-10-11 | 2018-05-01 | 国网浙江省电力公司湖州供电公司 | The detecting system and method for a kind of protective relaying device |
| CN108345820A (en) * | 2017-01-23 | 2018-07-31 | 许继集团有限公司 | High-tension apparatus image-recognizing method and device based on variety of components and component locations |
| CN108627794A (en) * | 2018-06-27 | 2018-10-09 | 江苏高远智能科技有限公司 | A kind of smart instrumentation detection method based on deep learning |
| CN108737550A (en) * | 2018-05-25 | 2018-11-02 | 山东鲁能智能技术有限公司 | A kind of robot interface's device and robot based on robot centralized control system |
| CN108900808A (en) * | 2018-07-17 | 2018-11-27 | 广州市君望机器人自动化有限公司 | The method and device that robot is monitored equipment |
| CN109245942A (en) * | 2018-10-19 | 2019-01-18 | 国网山东省电力公司滨州市滨城区供电公司 | A kind of information equipment intelligent management method based on image recognition |
| CN109271407A (en) * | 2018-09-27 | 2019-01-25 | 西安银石科技发展有限责任公司 | A kind of equipment routing inspection method based on machine learning |
| CN109271844A (en) * | 2018-07-29 | 2019-01-25 | 国网上海市电力公司 | Electrical cabinet electrical symbol recognition methods based on OpenCV |
| CN109412069A (en) * | 2018-11-24 | 2019-03-01 | 四川都睿感控科技有限公司 | The state monitoring method and device of switchgear |
| CN109740507A (en) * | 2018-12-29 | 2019-05-10 | 国网浙江省电力有限公司 | A method for abnormal sensing of substation equipment |
| CN109996045A (en) * | 2012-12-14 | 2019-07-09 | 三星电子株式会社 | Method and apparatus for family's monitoring |
| CN110059610A (en) * | 2018-12-25 | 2019-07-26 | 苏州百卓网络技术有限公司 | A kind of pointer instrument method for early warning based on image recognition |
| CN110084251A (en) * | 2019-04-29 | 2019-08-02 | 北京史河科技有限公司 | A kind of Meter recognition method, apparatus and storage medium |
| CN110188786A (en) * | 2019-04-11 | 2019-08-30 | 广西电网有限责任公司电力科学研究院 | A Robotic Image Recognition Algorithm for Leakage Current of Tank Arrester |
| CN110348380A (en) * | 2019-07-10 | 2019-10-18 | 无锡地铁集团有限公司 | A kind of visualization grounding switch state video recognition system and method |
| CN110430078A (en) * | 2019-08-05 | 2019-11-08 | 云南电网有限责任公司电力科学研究院 | The method and system that power automation terminal type identifies, configuration and function are online |
| CN110427882A (en) * | 2019-08-01 | 2019-11-08 | 北京派克盛宏电子科技有限公司 | For the intelligent analysis method of tour, device, equipment and its storage medium |
| CN110514957A (en) * | 2019-08-19 | 2019-11-29 | 深圳供电局有限公司 | Automatic inspection method and platform for transformer substation |
| CN110587629A (en) * | 2019-10-15 | 2019-12-20 | 云南电网有限责任公司电力科学研究院 | Transformer substation inspection robot, inspection method and inspection robot control method |
| CN110823907A (en) * | 2019-11-21 | 2020-02-21 | 张红兵 | System and method for checking integrity condition of blades of aircraft engine |
| CN110962126A (en) * | 2019-12-06 | 2020-04-07 | 深圳优艾智合机器人科技有限公司 | Operation method and operation system of intelligent robot in power distribution room |
| CN110996053A (en) * | 2019-11-26 | 2020-04-10 | 浙江吉城云创科技有限公司 | Environment safety detection method and device, terminal and storage medium |
| CN111044224A (en) * | 2019-12-30 | 2020-04-21 | 深圳供电局有限公司 | A method of patrol car identification and detection of transformers |
| CN111102966A (en) * | 2018-10-29 | 2020-05-05 | 所罗门股份有限公司 | Method for automatically collecting device status |
| CN111460969A (en) * | 2020-03-27 | 2020-07-28 | 河北凯通信息技术服务有限公司 | Intelligent industrial information monitoring system based on cloud computing |
| CN111526330A (en) * | 2020-04-17 | 2020-08-11 | 广东电网有限责任公司 | Transformer substation equipment state intelligent recognition system based on machine vision |
| CN111668925A (en) * | 2019-03-05 | 2020-09-15 | 特变电工智能电气有限责任公司 | Transformer inspection tour inspection device based on intelligent vision |
| CN111814742A (en) * | 2020-07-29 | 2020-10-23 | 南方电网数字电网研究院有限公司 | Knife switch state recognition method based on deep learning |
| CN111830342A (en) * | 2020-07-04 | 2020-10-27 | 中国南方电网有限责任公司 | Multi-system-fused intelligent substation relay protection dynamic scheduled inspection method |
| CN111931605A (en) * | 2020-07-23 | 2020-11-13 | 中核核电运行管理有限公司 | Intelligent monitoring system and method for high-risk operation of nuclear power plant |
| CN112083000A (en) * | 2020-08-12 | 2020-12-15 | 中国电力科学研究院有限公司 | Intelligent identification method and system for appearance defects of substation equipment |
| CN112183194A (en) * | 2020-08-19 | 2021-01-05 | 中国南方电网有限责任公司超高压输电公司广州局 | Non-contact converter station equipment parameter identification method and system |
| CN112364740A (en) * | 2020-10-30 | 2021-02-12 | 交控科技股份有限公司 | Unmanned machine room monitoring method and system based on computer vision |
| CN112484908A (en) * | 2020-11-17 | 2021-03-12 | 广东电网有限责任公司阳江供电局 | Online monitoring system for gas pressure of SF6 circuit breaker |
| CN112525921A (en) * | 2020-11-23 | 2021-03-19 | 青岛海尔工业智能研究院有限公司 | Household appliance appearance detection equipment and image transmission method implemented by same |
| CN112669316A (en) * | 2021-01-29 | 2021-04-16 | 南方电网调峰调频发电有限公司 | Power production abnormity monitoring method and device, computer equipment and storage medium |
| CN113008896A (en) * | 2021-02-23 | 2021-06-22 | 江苏力沛电力工程技术服务有限公司 | Power failure detection device based on machine vision |
| CN113569714A (en) * | 2021-07-24 | 2021-10-29 | 国网河南省电力公司检修公司 | Intelligent image recognition system of substation based on UAV inspection |
| CN113762185A (en) * | 2021-09-14 | 2021-12-07 | 珠海理想科技有限公司 | Intelligent system for achieving state acquisition of power equipment based on computer vision |
| CN113947754A (en) * | 2021-10-15 | 2022-01-18 | 大连海事大学 | A vision-based monitoring method, system and storage medium for ship machinery running state |
| CN114492636A (en) * | 2022-01-26 | 2022-05-13 | 上海交通大学 | A Acquisition System of Transformer Winding Status Signal |
| CN114777877A (en) * | 2022-04-20 | 2022-07-22 | 广东电网有限责任公司广州供电局 | Method for detecting oil level of transformer bushing |
| CN115294352A (en) * | 2022-06-30 | 2022-11-04 | 慈溪市输变电工程有限公司 | A system and method for intelligent recognition of switch cabinet status based on image recognition |
| CN115700802A (en) * | 2021-07-26 | 2023-02-07 | 特变电工股份有限公司 | Instrument equipment fault detection method, device, equipment and storage medium |
| CN116365706A (en) * | 2023-03-17 | 2023-06-30 | 内蒙古大中矿业股份有限公司 | A substation automation monitoring system and method |
| CN117406160A (en) * | 2023-10-23 | 2024-01-16 | 国网黑龙江省电力有限公司营销服务中心 | Intelligent ammeter fault diagnosis system based on historical state comparison |
| CN117499596A (en) * | 2023-11-15 | 2024-02-02 | 岳阳华润燃气有限公司 | Gas station inspection system and method based on intelligent AR glasses |
| WO2024159915A1 (en) * | 2023-02-03 | 2024-08-08 | 南方电网调峰调频发电有限公司运行分公司 | Operation inspection and trend analysis method and system for power station device |
| CN118827932A (en) * | 2024-09-02 | 2024-10-22 | 广东华电清远能源有限公司 | A patrol inspection system and method based on AI visual recognition |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005346463A (en) * | 2004-06-03 | 2005-12-15 | Toshiba Corp | Power generation facility remote monitoring device and remote monitoring method |
| JP2007006283A (en) * | 2005-06-24 | 2007-01-11 | Chugoku Electric Power Co Inc:The | Circuit monitoring system |
| CN102082466A (en) * | 2010-10-15 | 2011-06-01 | 重庆市电力公司超高压局 | Intelligent inspection robot system for transformer substation equipment |
| CN201998168U (en) * | 2010-12-29 | 2011-10-05 | 浙江省电力公司 | Visual servo-based accurate tripod head positioning system for movable robot |
| CN102280826A (en) * | 2011-07-30 | 2011-12-14 | 山东鲁能智能技术有限公司 | Intelligent robot inspection system and intelligent robot inspection method for transformer station |
| CN102521560A (en) * | 2011-11-14 | 2012-06-27 | 上海交通大学 | Instrument pointer image identification method of high-robustness rod |
-
2012
- 2012-06-29 CN CN201210222443.6A patent/CN102722166B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005346463A (en) * | 2004-06-03 | 2005-12-15 | Toshiba Corp | Power generation facility remote monitoring device and remote monitoring method |
| JP2007006283A (en) * | 2005-06-24 | 2007-01-11 | Chugoku Electric Power Co Inc:The | Circuit monitoring system |
| CN102082466A (en) * | 2010-10-15 | 2011-06-01 | 重庆市电力公司超高压局 | Intelligent inspection robot system for transformer substation equipment |
| CN201998168U (en) * | 2010-12-29 | 2011-10-05 | 浙江省电力公司 | Visual servo-based accurate tripod head positioning system for movable robot |
| CN102280826A (en) * | 2011-07-30 | 2011-12-14 | 山东鲁能智能技术有限公司 | Intelligent robot inspection system and intelligent robot inspection method for transformer station |
| CN102521560A (en) * | 2011-11-14 | 2012-06-27 | 上海交通大学 | Instrument pointer image identification method of high-robustness rod |
Cited By (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109996045A (en) * | 2012-12-14 | 2019-07-09 | 三星电子株式会社 | Method and apparatus for family's monitoring |
| CN103927507A (en) * | 2013-01-12 | 2014-07-16 | 山东鲁能智能技术有限公司 | Improved multi-instrument reading identification method of transformer station inspection robot |
| CN103105581A (en) * | 2013-01-24 | 2013-05-15 | 上海毕励电子科技有限公司 | Electrical equipment quantity of state collection method based on video recognition |
| CN103532238A (en) * | 2013-10-22 | 2014-01-22 | 国家电网公司 | System and method for preventing misoperation of change-over switch of transformer substation |
| CN103532238B (en) * | 2013-10-22 | 2016-08-24 | 国家电网公司 | A kind of system and method preventing misoperation of change-over switch of transformer substation |
| CN103605365B (en) * | 2013-11-07 | 2016-01-20 | 成都赛康信息技术有限责任公司 | The entire roboticized work method that substation equipment filth is patrolled and examined, judges and cleaned |
| CN104391506A (en) * | 2014-09-19 | 2015-03-04 | 福州大学 | Transformer station guide rail type inspection robot |
| CN105530456A (en) * | 2014-09-28 | 2016-04-27 | 深圳中兴力维技术有限公司 | Method, device and system for substation monitoring |
| CN104320580A (en) * | 2014-10-25 | 2015-01-28 | 国家电网公司 | SF6 Density Meter Pointer Recognition Equipment and Method Based on Image Acquisition |
| CN104457621A (en) * | 2014-12-22 | 2015-03-25 | 国家电网公司 | Pattern displacement sensor system for detecting position state of disconnecting link of transformer substation |
| CN104994334A (en) * | 2015-06-09 | 2015-10-21 | 海南电网有限责任公司 | Automatic substation monitoring method based on real-time video |
| CN105262994A (en) * | 2015-10-14 | 2016-01-20 | 南京第五十五所技术开发有限公司 | Instrument identification device and method based on intelligent track video camera |
| CN105446336A (en) * | 2015-12-08 | 2016-03-30 | 哈尔滨工业大学 | Robot inspection system and inspection method for cold region transformer substation |
| CN105652872A (en) * | 2016-02-26 | 2016-06-08 | 郑州金惠计算机系统工程有限公司 | Automatic tracking and positioning method for substation laser navigation patrol robot intelligent pan-tilt |
| CN105652872B (en) * | 2016-02-26 | 2018-07-31 | 郑州金惠计算机系统工程有限公司 | The automatic method for tracking and positioning of substation's laser navigation crusing robot intelligent console |
| CN105554479A (en) * | 2016-03-02 | 2016-05-04 | 浙江群力电气有限公司 | Intelligent monitoring system for electric power transmission and transformation and distribution equipment |
| CN106125744A (en) * | 2016-06-22 | 2016-11-16 | 山东鲁能智能技术有限公司 | The Intelligent Mobile Robot cloud platform control method of view-based access control model servo |
| CN106651840A (en) * | 2016-11-25 | 2017-05-10 | 国网北京市电力公司 | Electrical device detection system |
| CN106529559A (en) * | 2016-12-30 | 2017-03-22 | 山东鲁能软件技术有限公司 | Pointer-type circular multi-dashboard real-time reading identification method |
| CN108345820A (en) * | 2017-01-23 | 2018-07-31 | 许继集团有限公司 | High-tension apparatus image-recognizing method and device based on variety of components and component locations |
| CN107036642B (en) * | 2017-04-12 | 2020-10-09 | 中国电力科学研究院 | A method for performing meter inspection performance test on a substation intelligent inspection robot |
| CN107036642A (en) * | 2017-04-12 | 2017-08-11 | 中国电力科学研究院 | A kind of method for being used to carry out robot used for intelligent substation patrol meter inspection performance test |
| CN107067013A (en) * | 2017-04-25 | 2017-08-18 | 航天科技控股集团股份有限公司 | One kind is based on many instrument hawkeye fuzzy detection system and methods |
| CN107257161A (en) * | 2017-06-20 | 2017-10-17 | 安徽南瑞继远电网技术有限公司 | A kind of transformer station's disconnecting link remote control auxiliary check method and system based on state recognition algorithm |
| CN107257161B (en) * | 2017-06-20 | 2020-10-09 | 安徽南瑞继远电网技术有限公司 | Transformer substation disconnecting link remote control auxiliary checking method and system based on state recognition algorithm |
| CN107481223A (en) * | 2017-07-21 | 2017-12-15 | 中车青岛四方机车车辆股份有限公司 | A kind of method and device of wiring state image automatic identification |
| CN107481223B (en) * | 2017-07-21 | 2020-03-24 | 中车青岛四方机车车辆股份有限公司 | Method and device for automatically identifying wiring state image |
| CN107393270A (en) * | 2017-07-26 | 2017-11-24 | 河海大学常州校区 | A kind of portable vision inspection device and method for electric meter detection |
| CN107688349A (en) * | 2017-08-17 | 2018-02-13 | 武汉大学 | A kind of crusing robot tele-control system and control method |
| CN107907753A (en) * | 2017-10-11 | 2018-04-13 | 国网浙江省电力公司湖州供电公司 | The detection device and method of a kind of protective relaying device |
| CN107976214A (en) * | 2017-10-11 | 2018-05-01 | 国网浙江省电力公司湖州供电公司 | The detecting system and method for a kind of protective relaying device |
| CN107907753B (en) * | 2017-10-11 | 2020-01-10 | 国网浙江省电力公司湖州供电公司 | Detection device and method for relay protection device |
| CN107680195A (en) * | 2017-11-13 | 2018-02-09 | 国网内蒙古东部电力有限公司 | A kind of transformer station intelligent robot inspection Computer Aided Analysis System and method |
| CN107817052A (en) * | 2017-11-30 | 2018-03-20 | 国网辽宁省电力有限公司电力科学研究院 | Based on the collection of infrared imaging power transformer crusing robot thermal map and communication system |
| CN107895409B (en) * | 2017-12-28 | 2023-07-28 | 国网福建省电力有限公司 | Automatic inspection device and inspection method for water inlet door slot of hydropower station |
| CN107895409A (en) * | 2017-12-28 | 2018-04-10 | 国网福建省电力有限公司 | Automatic inspection device and inspection method for water inlet door slot of hydropower station |
| CN108737550A (en) * | 2018-05-25 | 2018-11-02 | 山东鲁能智能技术有限公司 | A kind of robot interface's device and robot based on robot centralized control system |
| CN108627794A (en) * | 2018-06-27 | 2018-10-09 | 江苏高远智能科技有限公司 | A kind of smart instrumentation detection method based on deep learning |
| CN108900808A (en) * | 2018-07-17 | 2018-11-27 | 广州市君望机器人自动化有限公司 | The method and device that robot is monitored equipment |
| CN109271844B (en) * | 2018-07-29 | 2023-03-28 | 国网上海市电力公司 | Electrical cabinet electrical symbol recognition method based on OpenCV |
| CN109271844A (en) * | 2018-07-29 | 2019-01-25 | 国网上海市电力公司 | Electrical cabinet electrical symbol recognition methods based on OpenCV |
| CN109271407A (en) * | 2018-09-27 | 2019-01-25 | 西安银石科技发展有限责任公司 | A kind of equipment routing inspection method based on machine learning |
| CN109245942A (en) * | 2018-10-19 | 2019-01-18 | 国网山东省电力公司滨州市滨城区供电公司 | A kind of information equipment intelligent management method based on image recognition |
| CN111102966A (en) * | 2018-10-29 | 2020-05-05 | 所罗门股份有限公司 | Method for automatically collecting device status |
| CN109412069A (en) * | 2018-11-24 | 2019-03-01 | 四川都睿感控科技有限公司 | The state monitoring method and device of switchgear |
| CN110059610A (en) * | 2018-12-25 | 2019-07-26 | 苏州百卓网络技术有限公司 | A kind of pointer instrument method for early warning based on image recognition |
| CN109740507A (en) * | 2018-12-29 | 2019-05-10 | 国网浙江省电力有限公司 | A method for abnormal sensing of substation equipment |
| CN111668925A (en) * | 2019-03-05 | 2020-09-15 | 特变电工智能电气有限责任公司 | Transformer inspection tour inspection device based on intelligent vision |
| CN110188786A (en) * | 2019-04-11 | 2019-08-30 | 广西电网有限责任公司电力科学研究院 | A Robotic Image Recognition Algorithm for Leakage Current of Tank Arrester |
| CN110188786B (en) * | 2019-04-11 | 2022-12-06 | 广西电网有限责任公司电力科学研究院 | Robot image recognition algorithm for leakage current of pot-type lightning arrester |
| CN110084251A (en) * | 2019-04-29 | 2019-08-02 | 北京史河科技有限公司 | A kind of Meter recognition method, apparatus and storage medium |
| CN110348380B (en) * | 2019-07-10 | 2024-01-23 | 无锡地铁集团有限公司 | Visual grounding disconnecting link state video identification system and method |
| CN110348380A (en) * | 2019-07-10 | 2019-10-18 | 无锡地铁集团有限公司 | A kind of visualization grounding switch state video recognition system and method |
| CN110427882A (en) * | 2019-08-01 | 2019-11-08 | 北京派克盛宏电子科技有限公司 | For the intelligent analysis method of tour, device, equipment and its storage medium |
| CN110430078B (en) * | 2019-08-05 | 2022-04-08 | 云南电网有限责任公司电力科学研究院 | Method and system for type identification, configuration and function online of power automation terminal |
| CN110430078A (en) * | 2019-08-05 | 2019-11-08 | 云南电网有限责任公司电力科学研究院 | The method and system that power automation terminal type identifies, configuration and function are online |
| CN110514957A (en) * | 2019-08-19 | 2019-11-29 | 深圳供电局有限公司 | Automatic inspection method and platform for transformer substation |
| CN110587629A (en) * | 2019-10-15 | 2019-12-20 | 云南电网有限责任公司电力科学研究院 | Transformer substation inspection robot, inspection method and inspection robot control method |
| CN110823907A (en) * | 2019-11-21 | 2020-02-21 | 张红兵 | System and method for checking integrity condition of blades of aircraft engine |
| CN110996053B (en) * | 2019-11-26 | 2021-06-01 | 浙江吉城云创科技有限公司 | An environmental safety detection method, device, terminal and storage medium |
| CN110996053A (en) * | 2019-11-26 | 2020-04-10 | 浙江吉城云创科技有限公司 | Environment safety detection method and device, terminal and storage medium |
| CN110962126A (en) * | 2019-12-06 | 2020-04-07 | 深圳优艾智合机器人科技有限公司 | Operation method and operation system of intelligent robot in power distribution room |
| CN111044224A (en) * | 2019-12-30 | 2020-04-21 | 深圳供电局有限公司 | A method of patrol car identification and detection of transformers |
| CN111460969A (en) * | 2020-03-27 | 2020-07-28 | 河北凯通信息技术服务有限公司 | Intelligent industrial information monitoring system based on cloud computing |
| CN111460969B (en) * | 2020-03-27 | 2021-08-06 | 震兑工业智能科技有限公司 | Intelligent industrial information monitoring system based on cloud computing |
| CN111526330A (en) * | 2020-04-17 | 2020-08-11 | 广东电网有限责任公司 | Transformer substation equipment state intelligent recognition system based on machine vision |
| CN111830342A (en) * | 2020-07-04 | 2020-10-27 | 中国南方电网有限责任公司 | Multi-system-fused intelligent substation relay protection dynamic scheduled inspection method |
| CN111931605B (en) * | 2020-07-23 | 2024-05-14 | 中核核电运行管理有限公司 | Nuclear power plant high-risk operation intelligent monitoring system and method |
| CN111931605A (en) * | 2020-07-23 | 2020-11-13 | 中核核电运行管理有限公司 | Intelligent monitoring system and method for high-risk operation of nuclear power plant |
| CN111814742A (en) * | 2020-07-29 | 2020-10-23 | 南方电网数字电网研究院有限公司 | Knife switch state recognition method based on deep learning |
| CN112083000B (en) * | 2020-08-12 | 2022-12-02 | 中国电力科学研究院有限公司 | Intelligent identification method and system for appearance defects of substation equipment |
| CN112083000A (en) * | 2020-08-12 | 2020-12-15 | 中国电力科学研究院有限公司 | Intelligent identification method and system for appearance defects of substation equipment |
| CN112183194B (en) * | 2020-08-19 | 2024-01-19 | 中国南方电网有限责任公司超高压输电公司广州局 | Non-contact type convertor station workstation equipment parameter identification method and system |
| CN112183194A (en) * | 2020-08-19 | 2021-01-05 | 中国南方电网有限责任公司超高压输电公司广州局 | Non-contact converter station equipment parameter identification method and system |
| CN112364740B (en) * | 2020-10-30 | 2024-04-19 | 交控科技股份有限公司 | Unmanned aerial vehicle room monitoring method and system based on computer vision |
| CN112364740A (en) * | 2020-10-30 | 2021-02-12 | 交控科技股份有限公司 | Unmanned machine room monitoring method and system based on computer vision |
| CN112484908A (en) * | 2020-11-17 | 2021-03-12 | 广东电网有限责任公司阳江供电局 | Online monitoring system for gas pressure of SF6 circuit breaker |
| CN112525921A (en) * | 2020-11-23 | 2021-03-19 | 青岛海尔工业智能研究院有限公司 | Household appliance appearance detection equipment and image transmission method implemented by same |
| CN112669316A (en) * | 2021-01-29 | 2021-04-16 | 南方电网调峰调频发电有限公司 | Power production abnormity monitoring method and device, computer equipment and storage medium |
| CN113008896A (en) * | 2021-02-23 | 2021-06-22 | 江苏力沛电力工程技术服务有限公司 | Power failure detection device based on machine vision |
| CN113569714A (en) * | 2021-07-24 | 2021-10-29 | 国网河南省电力公司检修公司 | Intelligent image recognition system of substation based on UAV inspection |
| CN115700802A (en) * | 2021-07-26 | 2023-02-07 | 特变电工股份有限公司 | Instrument equipment fault detection method, device, equipment and storage medium |
| CN113762185A (en) * | 2021-09-14 | 2021-12-07 | 珠海理想科技有限公司 | Intelligent system for achieving state acquisition of power equipment based on computer vision |
| CN113762185B (en) * | 2021-09-14 | 2024-08-13 | 珠海理想科技有限公司 | Intelligent system for achieving power equipment state acquisition based on computer vision |
| CN113947754A (en) * | 2021-10-15 | 2022-01-18 | 大连海事大学 | A vision-based monitoring method, system and storage medium for ship machinery running state |
| CN114492636B (en) * | 2022-01-26 | 2023-11-24 | 上海交通大学 | Transformer winding state signal acquisition system |
| CN114492636A (en) * | 2022-01-26 | 2022-05-13 | 上海交通大学 | A Acquisition System of Transformer Winding Status Signal |
| CN114777877A (en) * | 2022-04-20 | 2022-07-22 | 广东电网有限责任公司广州供电局 | Method for detecting oil level of transformer bushing |
| CN114777877B (en) * | 2022-04-20 | 2025-04-29 | 广东电网有限责任公司广州供电局 | Transformer Bushing Oil Level Detection Method |
| CN115294352A (en) * | 2022-06-30 | 2022-11-04 | 慈溪市输变电工程有限公司 | A system and method for intelligent recognition of switch cabinet status based on image recognition |
| WO2024159915A1 (en) * | 2023-02-03 | 2024-08-08 | 南方电网调峰调频发电有限公司运行分公司 | Operation inspection and trend analysis method and system for power station device |
| CN116365706A (en) * | 2023-03-17 | 2023-06-30 | 内蒙古大中矿业股份有限公司 | A substation automation monitoring system and method |
| CN117406160B (en) * | 2023-10-23 | 2024-05-17 | 国网黑龙江省电力有限公司营销服务中心 | Intelligent ammeter fault diagnosis system based on historical state comparison |
| CN117406160A (en) * | 2023-10-23 | 2024-01-16 | 国网黑龙江省电力有限公司营销服务中心 | Intelligent ammeter fault diagnosis system based on historical state comparison |
| CN117499596A (en) * | 2023-11-15 | 2024-02-02 | 岳阳华润燃气有限公司 | Gas station inspection system and method based on intelligent AR glasses |
| CN117499596B (en) * | 2023-11-15 | 2024-10-18 | 岳阳华润燃气有限公司 | Gas station inspection system and method based on intelligent AR glasses |
| CN118827932A (en) * | 2024-09-02 | 2024-10-22 | 广东华电清远能源有限公司 | A patrol inspection system and method based on AI visual recognition |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102722166B (en) | 2015-03-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102722166B (en) | Intelligent vision detection system and state detection method of transformer substation device | |
| CN112910094B (en) | Remote automatic inspection system and method of substation based on ubiquitous power Internet of things | |
| CN104331710B (en) | On off state identifying system | |
| WO2020199538A1 (en) | Bridge key component disease early-warning system and method based on image monitoring data | |
| CN114373245A (en) | Intelligent inspection system based on digital power plant | |
| CN110728171B (en) | Fine detection and identification method for state of disconnecting link | |
| CN112651516A (en) | Intelligent inspection system and method for transformer substation machine room based on AR technology | |
| CN104994334A (en) | Automatic substation monitoring method based on real-time video | |
| CN112001310A (en) | Transformer substation operation field safety control system based on visual perception and space positioning | |
| CN102255392A (en) | Method for controlling switching operation sequences of full-automatic transformer substation based on mobile robot | |
| CN103595125A (en) | An electrical device on-line monitoring system based on an image identification technique | |
| CN118713308B (en) | An intelligent inspection method and inspection robot based on photovoltaic power station | |
| CN114330477B (en) | Power equipment defect detection system and method based on mixed reality equipment | |
| CN105743223B (en) | Secondary device prefabricated cabin video visiting method based on GOOSE linkages | |
| CN113177614A (en) | Image recognition system and method for power supply switch cabinet of urban rail transit | |
| CN114694050A (en) | A method for detecting the operating state of power equipment based on infrared images | |
| CN103647347A (en) | In-substation equipment state inspection and management system based on precise video recognition | |
| CN116152202A (en) | Equipment appearance detection system based on image recognition technology and infrared thermal imaging technology | |
| CN106959294A (en) | A kind of transmission tower defect analysis device and method based on unmanned plane inspection | |
| CN112183369A (en) | A pointer meter reading identification method for unmanned inspection of substations | |
| CN112508911A (en) | Rail joint touch net suspension support component crack detection system based on inspection robot and detection method thereof | |
| CN112419571A (en) | Distributed substation safety operation monitoring device and method based on light load algorithm | |
| CN115294352A (en) | A system and method for intelligent recognition of switch cabinet status based on image recognition | |
| CN112964180A (en) | Urban rail vehicle collector shoe detection system | |
| CN115061012A (en) | Intelligent monitoring and diagnosing system and method based on edge computing power supply grid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| ASS | Succession or assignment of patent right |
Owner name: STATE ELECTRIC NET CROP. Effective date: 20120905 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20120905 Address after: 250002, No. 1, South Second Ring Road, Shizhong District, Shandong, Ji'nan Applicant after: Electric Power Research Institute of Shandong Electric Power Corporation Applicant after: State Grid Corporation of China Address before: 250002, No. 1, South Second Ring Road, Shizhong District, Shandong, Ji'nan Applicant before: Electric Power Research Institute of Shandong Electric Power Corporation |
|
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CP01 | Change in the name or title of a patent holder |
Address after: 250002, No. 1, South Second Ring Road, Shizhong District, Shandong, Ji'nan Co-patentee after: State Grid Corporation of China Patentee after: Electric Power Research Institute of State Grid Shandong Electric Power Company Address before: 250002, No. 1, South Second Ring Road, Shizhong District, Shandong, Ji'nan Co-patentee before: State Grid Corporation of China Patentee before: Electric Power Research Institute of Shandong Electric Power Corporation |
|
| CP01 | Change in the name or title of a patent holder | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20121010 Assignee: National Network Intelligent Technology Co., Ltd. Assignor: Electric Power Research Institute of State Grid Shandong Electric Power Company Contract record no.: X2019370000006 Denomination of invention: Intelligent vision detection system and state detection method of transformer substation device Granted publication date: 20150304 License type: Exclusive License Record date: 20191014 |
|
| EE01 | Entry into force of recordation of patent licensing contract | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20201028 Address after: 250101 Electric Power Intelligent Robot Production Project 101 in Jinan City, Shandong Province, South of Feiyue Avenue and East of No. 26 Road (ICT Industrial Park) Patentee after: National Network Intelligent Technology Co.,Ltd. Address before: 250002, No. 1, South Second Ring Road, Shizhong District, Shandong, Ji'nan Patentee before: ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER Co. Patentee before: STATE GRID CORPORATION OF CHINA |
|
| TR01 | Transfer of patent right | ||
| EC01 | Cancellation of recordation of patent licensing contract | ||
| EC01 | Cancellation of recordation of patent licensing contract |
Assignee: National Network Intelligent Technology Co.,Ltd. Assignor: ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER Co. Contract record no.: X2019370000006 Date of cancellation: 20210324 |