CN102212756A - Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof - Google Patents
Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof Download PDFInfo
- Publication number
- CN102212756A CN102212756A CN 201110113029 CN201110113029A CN102212756A CN 102212756 A CN102212756 A CN 102212756A CN 201110113029 CN201110113029 CN 201110113029 CN 201110113029 A CN201110113029 A CN 201110113029A CN 102212756 A CN102212756 A CN 102212756A
- Authority
- CN
- China
- Prior art keywords
- steel
- temperature
- molybdenum
- chromium
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
本发明涉及一种低成本铬钼钒系热作工模具钢及其热处理工艺,属合金钢制造工艺技术领域。该钢的成分及重量百分比为:C0.3~0.4%,Si0.6~1.2%,Mn0.6~1.2%,Cr3.5~4.5%,Mo0.8~1.2%,V0.4~0.8%,P<0.02%,S<0.02%,Fe余量。本发明热作工模具钢的制备过程如下:配料、冶炼、浇涛,然后电渣重熔;在1200~1280℃,匀质化处理8~10h,然后锻造,再进行超细化热处理和等温退火处理,最后进行调质处理,即将其加热至1000~1100℃进行奥氏体化,经过油淬或高压气淬后,在560℃~620℃进行两至三次回火。本发明的热作工模具钢具有高的热稳定性、高的韧性、以及良好的热疲劳性能。
The invention relates to a low-cost chromium-molybdenum-vanadium-based hot work die steel and its heat treatment process, which belongs to the technical field of alloy steel manufacturing process. The composition and weight percentage of the steel are: C0.3~0.4%, Si0.6~1.2%, Mn0.6~1.2%, Cr3.5~4.5%, Mo0.8~1.2%, V0.4~0.8% , P<0.02%, S<0.02%, Fe balance. The preparation process of the hot working die steel of the present invention is as follows: batching, smelting, pouring, and then electroslag remelting; at 1200-1280 ° C, homogenization treatment for 8-10 hours, then forging, and then ultra-fine heat treatment and isothermal Annealing treatment, and finally quenching and tempering treatment, that is, heating it to 1000-1100°C for austenitization, and after oil quenching or high-pressure gas quenching, tempering at 560°C-620°C for two to three times. The hot work die steel of the invention has high thermal stability, high toughness and good thermal fatigue performance.
Description
技术领域technical field
本发明涉及一种铬钼钒系热作工模具钢及其热处理工艺,该工模钢不仅降低了合金成本(相对于H13系钢),而且具有高的热稳定性和有良好的韧性和热疲劳性能,属合金钢制造工艺技术领域。The invention relates to a chromium-molybdenum-vanadium series hot working tool steel and its heat treatment process. The tool steel not only reduces the alloy cost (compared to the H13 series steel), but also has high thermal stability and good toughness and heat treatment. The invention relates to fatigue performance, which belongs to the technical field of alloy steel manufacturing technology.
背景技术Background technique
工模具钢通常可以分为热作、冷作和塑料工模具钢三大类产品。热作工模具钢主要用于制造铝合金压铸模和铜锌压铸模等,是目前使用最广和消耗最大的工模具钢之一,它的工况条件复杂,在工作时需长时间与加热的坯料甚至液态金属相接触,当炽热的金属放入热作模具型腔时,型腔表面急剧升温,表层产生压应力和压应变;当金属件取出时,型腔表面由于急剧降温而受到拉应力和拉应变作用,极易产生热疲劳等,并且热作模具钢在服役过程中,还要受到较大冲击载荷。因此要求工模具材料具有高的热强度、高温硬度、冲击韧性、淬透性和好的热稳定性和抗冷热疲劳性能等。我国目前广泛应用的热作工模具钢包括钨系3Cr2W8V、铬系H13以及应用于热锻模的5CrNiMo、5CrMnMo等。钨系的3Cr2W8V虽然具有较高的回火抗力和高的热强性,但其塑韧性、导热性以其热疲劳性能较差;H13钢是现在使用最广泛的热作模具钢,但是它的高温强度不是很高,一般使用温度不能超过540℃;5CrNiMo和5CrMnMo的热强性较低,容易造成模具工作部分的塌陷。我国目前使用的热挤压模具钢采用的是国家标准GB/T1299-2000中钢号为4Cr5MoSiV1。这种热挤压模具钢的化学成分采用C 0.32-0.45wt%、Cr 4.75-5.50wt%、Mo 1.20-1.75 wt%、V 0.80-1.20 wt%、Si 0.80-1.2wt%、Mn 0.20-0.5wt%、P≤0.03wt%、S≤0.03wt%。由于这种热挤压模具钢的化学成份含有较高的钼、铬和钒元素及一定量的碳元素,属于过共析钢,因此其材料电渣锭的偏析严重,成材后的组织中存在大量的大块液析碳化物,使得材料的韧性不足,容易出现早期开裂失效。由于这种材料含有大量的二次硬化元素,其回火态二次碳化物容易在服役条件下长大粗化和发生类型转变,而且回火马氏体中的合金元素也容易析出而降低钢的强度,从而降低钢的高温性能。这种钢的性能指标为:经1030℃淬火+590-610℃回火后洛氏硬度值为44-46HRC,冲击韧性值(“V”型缺口)Ak为≥8J,这些在淬火加回火状态下的硬度值和冲击韧性值等性能指标是热挤压模用钢的关键技术指标,是衡量热挤压模用钢质量好坏的主要技术参数指标。另外,抗回火软化能力和热疲劳抗力是热作模具钢的重要性能指标。Tool steel can generally be divided into three major categories of hot work, cold work and plastic tool steel. Hot working tool steel is mainly used to manufacture aluminum alloy die-casting molds and copper-zinc die-casting molds. It is one of the most widely used and most consumed tool steels. Its working conditions are complicated and it takes a long time and heating during work. When the hot metal is put into the cavity of the hot work mold, the surface of the cavity heats up sharply, and the surface layer generates compressive stress and strain; when the metal part is taken out, the surface of the cavity is pulled due to the sharp drop in temperature. The effect of stress and tensile strain can easily cause thermal fatigue, etc., and the hot work die steel is also subjected to a large impact load during its service. Therefore, the tool and mold materials are required to have high thermal strength, high temperature hardness, impact toughness, hardenability, good thermal stability and thermal fatigue resistance. The hot working die steels widely used in my country include tungsten-based 3Cr2W8V, chromium-based H13, and 5CrNiMo and 5CrMnMo used in hot forging dies. Although the tungsten-based 3Cr2W8V has high tempering resistance and high thermal strength, its plasticity, toughness, thermal conductivity and thermal fatigue performance are poor; H13 steel is the most widely used hot work die steel, but its The high-temperature strength is not very high, and the general use temperature cannot exceed 540°C; the thermal strength of 5CrNiMo and 5CrMnMo is low, and it is easy to cause the collapse of the working part of the mold. The hot extrusion die steel currently used in my country is 4Cr5MoSiV1 in the national standard GB/T1299-2000. The chemical composition of this hot extrusion die steel adopts C 0.32-0.45wt%, Cr 4.75-5.50wt%, Mo 1.20-1.75wt%, V 0.80-1.20wt%, Si 0.80-1.2wt%, Mn 0.20-0.5 wt%, P≤0.03wt%, S≤0.03wt%. Since the chemical composition of this hot extrusion die steel contains relatively high molybdenum, chromium and vanadium elements and a certain amount of carbon elements, it belongs to hypereutectoid steel, so the segregation of its material electroslag ingot is serious, and there are A large number of large liquefied carbides make the material insufficient in toughness and prone to early crack failure. Because this material contains a large amount of secondary hardening elements, its tempered secondary carbides are easy to grow, coarsen and undergo type transformation under service conditions, and the alloying elements in the tempered martensite are also easy to precipitate and reduce the hardness of the steel. The strength, thereby reducing the high temperature performance of steel. The performance indicators of this steel are: after quenching at 1030°C + tempering at 590-610°C, the Rockwell hardness value is 44-46HRC, and the impact toughness value ("V" notch) Ak is ≥8J. Performance indicators such as hardness value and impact toughness value in the state are the key technical indicators of steel for hot extrusion dies, and are the main technical parameter indicators to measure the quality of steel for hot extrusion dies. In addition, the resistance to temper softening and thermal fatigue resistance are important performance indicators of hot work die steel.
上述热作模具钢的冶金制造工艺是采用电炉熔炼加电渣重熔,然后锻造成材的工艺。在其制造工序中,电炉熔炼加电渣重熔工序完成之后获得500Kg-3000Kg的电渣锭,径锻机锻造成材。这种制造工艺存在如下问题:1)电渣锭型较小,小锭型降低了产品的成材率和制造产能;2)电渣锭的原始组织存在大量的大颗粒或大块状液析碳化物和组织偏析,降低了钢锭锻造成材后的性能指标;3)锻后材料晶粒粗大,导致淬回火后材料的冲击韧性低,产品档次低,无法满足市场对高韧性热作模具钢的需要。The metallurgical manufacturing process of the above-mentioned hot work die steel is a process of electric furnace melting, electroslag remelting, and then forging. In its manufacturing process, after the electric furnace smelting and electroslag remelting process is completed, a 500Kg-3000Kg electroslag ingot is obtained, which is forged by a radial forging machine. This manufacturing process has the following problems: 1) The size of the electroslag ingot is small, and the small ingot size reduces the yield and manufacturing capacity of the product; 2) The original structure of the electroslag ingot has a large number of large particles or massive liquefied carbonization 3) The grain size of the material after forging is coarse, resulting in low impact toughness of the material after quenching and tempering, and the product grade is low, which cannot meet the market demand for high toughness hot work die steel need.
在目前国内外可持续、经济型的发展模式下,本发明从经济的角度出发打破传统的低硅高钼铬的研究方向,采用经济的硅、锰作为主要的合金化元素,充分利用硅、锰合金元素的固溶强化和对碳化物回火稳定性等作用,而尽量降低铬、钼和钒等贵合金元素的含量,从而开发了具有高热稳定性、良好冲击韧性和热疲劳性能的低成本热作模具钢。Under the current sustainable and economical development mode at home and abroad, the present invention breaks the traditional research direction of low-silicon and high-molybdenum-chromium from an economic point of view, adopts economical silicon and manganese as the main alloying elements, and makes full use of silicon, manganese and The solid solution strengthening of manganese alloy elements and the tempering stability of carbides, etc., and the content of noble alloy elements such as chromium, molybdenum and vanadium should be reduced as much as possible, so as to develop low-temperature alloys with high thermal stability, good impact toughness and thermal fatigue performance. Cost hot work tool steel.
发明内容Contents of the invention
本发明的目的是提供一种低成本铬 钼钒系热作工模具钢及其热处理工艺。The purpose of the present invention is to provide a low-cost chromium-molybdenum-vanadium series hot work tool steel and heat treatment process thereof.
本发明热作工模具钢的特征在于具有以下的成分及重量百分比:Hot working tool steel of the present invention is characterized in that having following composition and weight percent:
C 0.3~0.4%, Si 0.6~1.2%,C 0.3~0.4%, Si 0.6~1.2%,
Mn 0.6~1.2%, Cr 3.5~4.5%,Mn 0.6~1.2%, Cr 3.5~4.5%,
Mo 0.8~1.2%, V 0.4~0.8%,Mo 0.8~1.2%, V 0.4~0.8%,
P <0.02%, S <0.02%P <0.02%, S <0.02%
Fe 余量。Fe balance.
上述低成本铬钼钒系热作工模具钢的热处理工艺,该工艺具有以下的工艺步骤:The heat treatment process of the above-mentioned low-cost chromium-molybdenum-vanadium series hot work tool steel has the following process steps:
A. 采用感应熔炼或电弧炉熔炼:按低成本铬钼钒系热作工模具钢的化学成分及重量百分比:C 0.3~0.4%,Si 0.6~1.2%,Mn 0.6~1.2%,Cr 3.5~4.5%,Mo 0.8~1.2%,V 0.4~0.8%,P<0.02%,S<0.02%,Fe余量,配料后放入感应熔炼或电弧炉中,进行熔炼。A. Using induction melting or electric arc furnace melting: according to the chemical composition and weight percentage of low-cost chromium molybdenum vanadium series hot work die steel: C 0.3~0.4%, Si 0.6~1.2%, Mn 0.6~1.2%, Cr 3.5~ 4.5%, Mo 0.8~1.2%, V 0.4~0.8%, P<0.02%, S<0.02%, Fe balance, after batching, put it into induction melting or electric arc furnace for melting.
B. 电渣重熔:将熔炼浇涛出的电渣锭放到电渣重熔装置中,进行电渣重熔。B. Electroslag remelting: Put the electroslag ingots poured out of melting into the electroslag remelting device for electroslag remelting.
C. 高温均质化处理:将电渣重熔后的钢锭加热至1200~1280℃进行高温均质化处理,保温8~10小时,均匀组织,消除成分偏析和伪共晶碳化物。C. High-temperature homogenization treatment: heat the steel ingot after electroslag remelting to 1200-1280°C for high-temperature homogenization treatment, keep it warm for 8-10 hours, uniform structure, and eliminate composition segregation and pseudo-eutectic carbide.
D. 锻造:将上述钢锭温度调整到1050~1150℃温度范围内进行多向锻造加工;锻造比≥4,终锻温度≥850℃。D. Forging: Adjust the temperature of the above steel ingots to a temperature range of 1050-1150°C for multi-directional forging; forging ratio ≥ 4, final forging temperature ≥ 850°C.
E. 超细化处理:超细化温度为1050~1150℃,超细化时间为6~10h;然后油冷(淬火介质)至200℃以下。E. Ultra-fine treatment: the ultra-fine temperature is 1050-1150°C, and the ultra-fine time is 6-10h; then oil cooling (quenching medium) to below 200°C.
F. 等温退火处理:第一阶段等温退火温度为830~850℃,退火时间为6~10h;第二阶段等温退火温度为730~750℃,退火时间为6~10h;F. Isothermal annealing treatment: the first-stage isothermal annealing temperature is 830-850°C, and the annealing time is 6-10h; the second-stage isothermal annealing temperature is 730-750°C, and the annealing time is 6-10h;
G. 调质热处理:加热至1000~1100℃进行奥氏体化,采用油淬(淬火介质);随后进行560~620℃回火处理。G. Quenching and tempering heat treatment: heating to 1000-1100°C for austenitization, using oil quenching (quenching medium); followed by tempering at 560-620°C.
所述的高温均质化处理,钢锭升温过程中分多级升温,保证钢锭内外温度均匀,即分别在800℃和1100℃等温;高温均质化处理后在1100~1150℃温度等温,当钢锭温度均匀后进行锻造处理。In the high-temperature homogenization treatment, the temperature of the steel ingot is raised in multiple stages to ensure that the temperature inside and outside the steel ingot is uniform, that is, isothermal at 800°C and 1100°C respectively; After the temperature is uniform, forging treatment is carried out.
所述的调质热处理,加热至1000~1100℃油淬(淬火介质)至室温后,立即回火处理,回火处理2~3次,每次回火温度560~620℃,每次回火保温时间2~4h。In the quenching and tempering heat treatment, after heating to 1000-1100°C and oil quenching (quenching medium) to room temperature, tempering treatment is carried out immediately, and the tempering treatment is performed 2 to 3 times, each tempering temperature is 560-620°C, and the holding time for each tempering is 2~4h.
本发明的热作工模具钢其成分设计的理论依据如下所述:The theoretical basis of its compositional design of hot work tool steel of the present invention is as follows:
本热作工模具钢与传统铬系热作模具钢相比,降低了Cr、Mo和V的含量,增加了Si和Mn的含量。最近研究发现,一定量的锰元素的加入可以增加钢的基体强化作用并能推迟马氏体组织的转变,提高钢的抗回火软化性。锰元素虽然是弱碳化物形成元素,不能够形成碳化物强化作用,但是一定量的锰元素的加入可以促进渗碳体的分解和推迟碳化物的析出与长大,有利于钢的热稳定性。另外,锰元素可以造成钢中的残余奥氏体的含量增加与稳定,这样可以提高钢的韧性和抗热疲劳性能。硅元素不是碳化物形成元素,但硅元素是提高回火抗力的有效元素,提高钢中硅元素的含量主要是可以使得钢在回火的过程中马氏体的分解减缓,硅元素可以在奥氏体到马氏体的转变之后的回火过程中有效阻碍马氏体的分解,这主要是通过抑制ε碳化物质点的长大和扩大ε碳化物稳定区,延迟了ε-碳化物向θ-碳化物的转变。硅推迟ε→θ转变,并能充分减小钢中渗碳体在回火过程中的长大速率,硅原子从θ相析出而在θ相周围形成硅原子的富集区,抑制θ相的长大粗化;另外硅能有效提高钢的抗回火软化能力。由于V与碳的亲和力强,在冶炼的过程中容易形成VC一次碳化物,这种碳化物颗粒尺寸较大,不仅对钢的性能没有提高,相反降低钢的韧性和热疲劳性能等,而在随后的热处理过程中很难完全消除。因此适当降低钢中V含量可有效的降低VC一次碳化物的比例,改善钢的性能。但是,在回火过程中V可降低马氏体的分解速度,推迟了奥氏体的转变,而且V形成MC型的二次碳化物,细小弥散,不易聚集长大,在回火过程中,增强了二次硬化效果,极大的提高了钢的热稳定性和冲击韧性。因此,将钢中V的含量控制在0.4~0.8%之间,充分发挥V的合金化作用。Cr在热作工模具钢中主要形成Cr23C6型碳化物,这类碳化物易沿晶析出并长大粗化,降低材料的热稳定性和热疲劳性能,本热作模具钢的铬含量有所降低,减小了这种不利影响。Compared with the traditional chromium-based hot work die steel, the hot work die steel reduces the content of Cr, Mo and V, and increases the content of Si and Mn. Recent studies have found that the addition of a certain amount of manganese can increase the matrix strengthening effect of steel and delay the transformation of martensitic structure, improving the temper softening resistance of steel. Although manganese is a weak carbide forming element and cannot form carbide strengthening, the addition of a certain amount of manganese can promote the decomposition of cementite and delay the precipitation and growth of carbides, which is beneficial to the thermal stability of steel . In addition, manganese can increase and stabilize the content of retained austenite in steel, which can improve the toughness and thermal fatigue resistance of steel. Silicon element is not a carbide forming element, but silicon element is an effective element to improve tempering resistance. Increasing the content of silicon element in steel can mainly slow down the decomposition of martensite in steel during tempering. The tempering process after the transformation from tensite to martensite effectively hinders the decomposition of martensite, which is mainly by inhibiting the growth of ε carbides and expanding the stable area of ε carbides, delaying the transformation of ε-carbides to θ- carbide transformation. Silicon delays the transformation of ε→θ, and can fully reduce the growth rate of cementite in steel during tempering. Silicon atoms precipitate from the θ phase and form a silicon atom-enriched region around the θ phase, inhibiting the growth of the θ phase. Growth and coarsening; in addition, silicon can effectively improve the temper softening resistance of steel. Due to the strong affinity between V and carbon, it is easy to form VC primary carbides during the smelting process. This carbide has a large particle size, which not only does not improve the performance of the steel, but also reduces the toughness and thermal fatigue performance of the steel. It is difficult to completely eliminate it in the subsequent heat treatment process. Therefore, appropriately reducing the V content in steel can effectively reduce the proportion of VC primary carbides and improve the performance of steel. However, during the tempering process, V can reduce the decomposition rate of martensite and delay the transformation of austenite, and V forms MC-type secondary carbides, which are fine and dispersed, and are not easy to aggregate and grow. During the tempering process, Enhanced secondary hardening effect, greatly improving the thermal stability and impact toughness of steel. Therefore, the content of V in the steel is controlled between 0.4% and 0.8%, so as to give full play to the alloying effect of V. Cr mainly forms Cr23C6 carbides in hot work die steel, which are easy to precipitate along the grain and grow and coarsen, reducing the thermal stability and thermal fatigue performance of the material. The chromium content of this hot work die steel is somewhat reduce this adverse effect.
本发明热作工模具钢在经过上述热处理后,其热稳定性、冲击韧性和热疲劳性能优于H13钢。The thermal stability, impact toughness and thermal fatigue performance of the hot working die steel of the present invention are better than those of the H13 steel after the above heat treatment.
附图说明Description of drawings
图1为本发明热作工模具钢在上述热处理工艺后的退火组织和回火组织。Fig. 1 is the annealed structure and tempered structure of the hot work die steel of the present invention after the above-mentioned heat treatment process.
图2为本发明热作工模具钢在上述热处理工艺后的淬火组织。Fig. 2 is the quenched structure of the hot work die steel of the present invention after the above heat treatment process.
图3为本发明热作工模具钢在上述热处理工艺后的回火组织。Fig. 3 is the tempered structure of the hot work die steel of the present invention after the above heat treatment process.
图4为本发明热作工模具钢在620℃下与H13钢热稳定性数据对比。Fig. 4 is a comparison of the thermal stability data of the hot working tool steel of the present invention at 620°C with that of H13 steel.
图5为本发明热作工模具钢热疲劳裂纹表面和截面照片。Fig. 5 is a photo of the thermal fatigue crack surface and cross-section of the hot work die steel of the present invention.
图6为H13钢的热疲劳裂纹表面和截面照片。Figure 6 shows the thermal fatigue crack surface and section photos of H13 steel.
图7为本发明热作工模具钢与H13钢的热疲劳试样截面硬度梯度对比。Fig. 7 is a comparison of cross-sectional hardness gradients of thermal fatigue samples of the hot working tool steel of the present invention and H13 steel.
具体实施方式Detailed ways
现将本发明的具体实施例叙述于下。Specific embodiments of the present invention are now described below.
实施例一Embodiment one
本实例中,采用热作模具钢的组成成分及其重量百分比如下:In this example, the composition and weight percentage of the hot work die steel are as follows:
C 0.32%, Si 1.0%, Mn 1.0%, Cr 4.0%, Mo 1.0%,C 0.32%, Si 1.0%, Mn 1.0%, Cr 4.0%, Mo 1.0%,
V 0.6%, P 0.01%, S 0.01%, Fe 余量。V 0.6%, P 0.01%, S 0.01%, Fe balance.
本实施例中,热作工模具钢的工艺过程和步骤如下:In the present embodiment, the technical process and steps of hot working tool steel are as follows:
A 电炉冶炼:按上述的合金元素配比在电弧炉中进行熔炼,熔炼温度大于1500℃,浇铸成φ400mm-φ450mm电极棒并空冷;A Electric furnace smelting: smelting in an electric arc furnace according to the above alloy element ratio, the melting temperature is greater than 1500 ° C, casting into φ400mm-φ450mm electrode rods and air cooling;
B 电渣重熔:将浇涛后的钢锭作为自耗电极放置于电渣重熔装置中,进行电渣重熔,化渣电压56-62V,电流3000-5000A、电制度电压57-59V,电流11000-12000A、封顶电压57-59V,电流时间35-50Min,电渣重熔成500Kg-3000Kg电渣锭;B Electroslag remelting: The poured steel ingot is placed in the electroslag remelting device as a consumable electrode for electroslag remelting. The slag melting voltage is 56-62V, the current is 3000-5000A, and the electric system voltage is 57-59V. , current 11000-12000A, capping voltage 57-59V, current time 35-50Min, electroslag remelting into 500Kg-3000Kg electroslag ingot;
C 高温匀质化:将电渣重熔后的钢锭加热至1250℃进行高温均质化处理,保温10小时,均匀组织,消除成分偏析和伪共晶碳化物;C High-temperature homogenization: heat the steel ingot after electroslag remelting to 1250°C for high-temperature homogenization treatment, keep it warm for 10 hours, uniform structure, and eliminate composition segregation and pseudo-eutectic carbide;
D 锻造:将上述高温均质化处理的钢锭温度调整至1100℃温度范围内进行多向锻造加工;锻造比≥4,终锻温度≥850℃。D Forging: Adjust the temperature of the above-mentioned high-temperature homogenized steel ingot to a temperature range of 1100°C for multi-directional forging; the forging ratio is ≥4, and the final forging temperature is ≥850°C.
E 超细化处理:超细化温度为1100℃,超细化时间为8h;然后油冷(淬火介质)至200℃以下。E Superfine treatment: The superfine temperature is 1100°C, and the ultrafine time is 8h; then oil cooling (quenching medium) to below 200°C.
F 等温退火处理:第一阶段等温退火温度为830~850℃,退火时间为8h;第二阶段等温退火温度为730~750℃,退火时间为8h;然后炉冷至室温F Isothermal annealing treatment: the first stage isothermal annealing temperature is 830-850°C, annealing time is 8h; the second stage isothermal annealing temperature is 730-750°C, annealing time is 8h; then furnace cool to room temperature
G 淬回火处理:淬火温度1050℃,采用油淬,在600℃进行两次回火,每次回火2小时。G Quenching and tempering treatment: Quenching temperature is 1050°C, oil quenching is used, and tempering is carried out twice at 600°C, each tempering is 2 hours.
本发明热作工模具钢经过上述热处理后,进行性能测试:After the hot working tool steel of the present invention is through above-mentioned heat treatment, carry out performance test:
A 硬度测试:A hardness test:
淬火硬度:51HRC;回火硬度:48HRCQuenching hardness: 51HRC; Tempering hardness: 48HRC
B 冲击韧性实验:B impact toughness test:
在坯料上取横向冲击试样,试样尺寸为7mm×10mm×55mm(采用北美压铸协会标准)。Take a transverse impact sample on the billet, and the sample size is 7mm×10mm×55mm (according to the standard of North American Die Casting Association).
室温冲击功值:≥280J。Impact energy value at room temperature: ≥280J.
C 热稳定性:C thermal stability:
本发明热作模具钢在620℃条件下与H13钢进行稳定性对比实验,H13钢经过淬回火处理之后使其硬度值与本发明钢一样,均为49HRC,试验结果如附图4所示。由附图4可见,虽然实验开始前本发明热作模具钢与H13钢硬度值一致,但在620℃下,从进行20个小时热稳定性实验硬度变化情况来看,本发明的热作模具钢优于H13钢。The hot working die steel of the present invention is subjected to a stability comparison test with H13 steel at 620°C. After quenching and tempering, the H13 steel has the same hardness value as the steel of the present invention, both of which are 49HRC. The test results are shown in Figure 4 . It can be seen from accompanying drawing 4 that although the hardness value of the hot work die steel of the present invention is consistent with that of H13 steel before the start of the experiment, at 620°C, the hot work die steel of the present invention has Steel is better than H13 steel.
D 热疲劳性能测试:D Thermal fatigue performance test:
在700℃条件下进行冷热循环,经过3000次后,对比本发明热作模具钢与H13钢的热疲劳表面形貌(如附图5所示)和截面形貌(如附图6所示)以及截面硬度梯度(如附图7所示)。由图中可见,本发明热作模具钢热疲劳实验后,表面裂纹十分均匀、细小,在表面上没有看到比较大的主裂纹的形成。而H13钢的表面裂纹成网状,且其中存在几条宽度较大的的主裂纹,裂纹之间相互贯通,呈开裂状。另外,从截面硬度梯度分布可以看出H13钢的硬度下降显著于本发明热作模具钢。二者对比可以看出,本发明热作模具钢的热疲劳性能强于H13钢。Under the condition of 700 ℃, carry out cold and heat cycle, after 3000 times, compare the thermal fatigue surface morphology (as shown in Figure 5) and cross-sectional morphology (as shown in Figure 6) of the hot work die steel of the present invention and H13 steel ) and cross-sectional hardness gradient (as shown in Figure 7). It can be seen from the figure that after the thermal fatigue test of the hot work die steel of the present invention, the surface cracks are very uniform and small, and no relatively large main cracks are formed on the surface. However, the surface cracks of H13 steel are in the form of a network, and there are several main cracks with large widths, and the cracks are connected to each other in a cracked shape. In addition, it can be seen from the cross-sectional hardness gradient distribution that the hardness decrease of the H13 steel is significantly lower than that of the hot work die steel of the present invention. It can be seen from the comparison between the two that the thermal fatigue performance of the hot work die steel of the present invention is stronger than that of the H13 steel.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110113029 CN102212756A (en) | 2011-05-04 | 2011-05-04 | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110113029 CN102212756A (en) | 2011-05-04 | 2011-05-04 | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102212756A true CN102212756A (en) | 2011-10-12 |
Family
ID=44744284
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110113029 Pending CN102212756A (en) | 2011-05-04 | 2011-05-04 | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102212756A (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102534161A (en) * | 2012-02-24 | 2012-07-04 | 浙江联合电梯有限公司 | Hardening method for guide rail of elevator |
| CN102650021A (en) * | 2012-05-28 | 2012-08-29 | 上海大学 | Bainite pre-hardening plastic mold steel and preparation method and heat treatment method thereof |
| CN102650020A (en) * | 2012-05-14 | 2012-08-29 | 上海大学 | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof |
| CN102974740A (en) * | 2012-11-30 | 2013-03-20 | 天津市天锻压力机有限公司 | Multi-directional forging process for oil drill rod joint |
| CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
| CN103468913A (en) * | 2013-09-06 | 2013-12-25 | 内蒙古北方重工业集团有限公司 | Heat treatment method for steel grain refinement of ultrahigh pressure vessel |
| CN103695802A (en) * | 2013-12-23 | 2014-04-02 | 钢铁研究总院 | High-molybdenum high-strength secondary hardening ultra-high-strength steel and preparation method thereof |
| CN104152918A (en) * | 2014-07-22 | 2014-11-19 | 广州市机电工业研究所 | Common steel boriding and quenching combined treatment process |
| CN106636568A (en) * | 2016-11-18 | 2017-05-10 | 上海电机学院 | Heat treatment method of low-carbon heat-resistant steel containing chrome, molybdenum, vanadium, niobium and tantalum |
| CN106702280A (en) * | 2015-11-13 | 2017-05-24 | 江苏新曙锻造有限公司 | Production method of cam piece |
| CN106811580A (en) * | 2017-02-13 | 2017-06-09 | 钢铁研究总院 | A kind of annealing process of H13 hot die steels |
| CN107904510A (en) * | 2017-11-21 | 2018-04-13 | 重庆文理学院 | Comprehensive high performance hot die steel of one kind and preparation method thereof |
| CN109136765A (en) * | 2018-09-28 | 2019-01-04 | 上大鑫仑材料科技(广东)有限公司 | A kind of hot die steel and preparation method thereof |
| CN109321826A (en) * | 2018-10-24 | 2019-02-12 | 昆明理工大学 | A kind of high manganese and low chromium type hot work die steel and preparation method thereof |
| CN110055464A (en) * | 2019-04-29 | 2019-07-26 | 上海工程技术大学 | Tough hot stamping die steel of a kind of fine grain height and preparation method thereof |
| CN110129678A (en) * | 2019-05-31 | 2019-08-16 | 上海工程技术大学 | An economical fine-grained high-strength toughness hot work die steel and its preparation method |
| CN110172641A (en) * | 2019-05-31 | 2019-08-27 | 上海工程技术大学 | A kind of fine grain high-toughness hot working die steel and preparation method thereof |
| CN111893391A (en) * | 2020-08-12 | 2020-11-06 | 燕山大学 | A kind of nano-bainite hot work die steel and preparation method thereof |
| CN112877526A (en) * | 2021-01-14 | 2021-06-01 | 江油市长祥特殊钢制造有限公司 | Preparation method of 8418 high-quality hot-working die-casting die steel |
| CN113046641A (en) * | 2021-03-10 | 2021-06-29 | 东北大学 | Low-vanadium nitrogen-containing hot work die steel and preparation method thereof |
| CN113500263A (en) * | 2021-07-27 | 2021-10-15 | 苏州世沃电子科技有限公司 | Copper sheet welding method using new auxiliary carrier |
| CN114196870A (en) * | 2020-09-02 | 2022-03-18 | 宝武特种冶金有限公司 | Aluminum profile extrusion die steel and preparation method thereof |
| CN114410893A (en) * | 2021-12-24 | 2022-04-29 | 钢铁研究总院 | Ultra-fine grain structure heat treatment process of annealed hot work die steel |
| CN116445821A (en) * | 2023-04-28 | 2023-07-18 | 鞍钢股份有限公司 | Die steel resistant to mechanical strain and high in uniformity and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002155342A (en) * | 2000-11-16 | 2002-05-31 | Hitachi Metals Ltd | Steel for diecasting mold for small quantity producing and diecasting mold for small quantity production |
| CN101709428A (en) * | 2009-11-26 | 2010-05-19 | 上海大学 | Compound microalloy hot die steel with high heat resistance and preparation method thereof |
| CN101787492A (en) * | 2010-03-17 | 2010-07-28 | 上海大学 | Manufacturing method of high quality and large size mandril blank |
-
2011
- 2011-05-04 CN CN 201110113029 patent/CN102212756A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002155342A (en) * | 2000-11-16 | 2002-05-31 | Hitachi Metals Ltd | Steel for diecasting mold for small quantity producing and diecasting mold for small quantity production |
| CN101709428A (en) * | 2009-11-26 | 2010-05-19 | 上海大学 | Compound microalloy hot die steel with high heat resistance and preparation method thereof |
| CN101787492A (en) * | 2010-03-17 | 2010-07-28 | 上海大学 | Manufacturing method of high quality and large size mandril blank |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102534161A (en) * | 2012-02-24 | 2012-07-04 | 浙江联合电梯有限公司 | Hardening method for guide rail of elevator |
| CN102650020A (en) * | 2012-05-14 | 2012-08-29 | 上海大学 | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof |
| CN102650021A (en) * | 2012-05-28 | 2012-08-29 | 上海大学 | Bainite pre-hardening plastic mold steel and preparation method and heat treatment method thereof |
| CN102650021B (en) * | 2012-05-28 | 2013-10-16 | 上海大学 | Bainite pre-hardening plastic mold steel and preparation method and heat treatment method thereof |
| CN102974740A (en) * | 2012-11-30 | 2013-03-20 | 天津市天锻压力机有限公司 | Multi-directional forging process for oil drill rod joint |
| CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
| CN103334061B (en) * | 2013-06-18 | 2016-01-20 | 上海大学 | High thermal conductivity large section die-casting die steel and preparation thereof and heat treating method |
| CN103468913A (en) * | 2013-09-06 | 2013-12-25 | 内蒙古北方重工业集团有限公司 | Heat treatment method for steel grain refinement of ultrahigh pressure vessel |
| CN103695802A (en) * | 2013-12-23 | 2014-04-02 | 钢铁研究总院 | High-molybdenum high-strength secondary hardening ultra-high-strength steel and preparation method thereof |
| CN104152918A (en) * | 2014-07-22 | 2014-11-19 | 广州市机电工业研究所 | Common steel boriding and quenching combined treatment process |
| CN106702280B (en) * | 2015-11-13 | 2018-05-11 | 江苏新曙锻造有限公司 | The production method of cam bit |
| CN106702280A (en) * | 2015-11-13 | 2017-05-24 | 江苏新曙锻造有限公司 | Production method of cam piece |
| CN106636568A (en) * | 2016-11-18 | 2017-05-10 | 上海电机学院 | Heat treatment method of low-carbon heat-resistant steel containing chrome, molybdenum, vanadium, niobium and tantalum |
| CN106811580A (en) * | 2017-02-13 | 2017-06-09 | 钢铁研究总院 | A kind of annealing process of H13 hot die steels |
| CN107904510A (en) * | 2017-11-21 | 2018-04-13 | 重庆文理学院 | Comprehensive high performance hot die steel of one kind and preparation method thereof |
| CN109136765A (en) * | 2018-09-28 | 2019-01-04 | 上大鑫仑材料科技(广东)有限公司 | A kind of hot die steel and preparation method thereof |
| CN109321826A (en) * | 2018-10-24 | 2019-02-12 | 昆明理工大学 | A kind of high manganese and low chromium type hot work die steel and preparation method thereof |
| CN110055464A (en) * | 2019-04-29 | 2019-07-26 | 上海工程技术大学 | Tough hot stamping die steel of a kind of fine grain height and preparation method thereof |
| CN110055464B (en) * | 2019-04-29 | 2020-07-17 | 上海工程技术大学 | A kind of fine-grained high-strength and toughness hot stamping die steel and preparation method thereof |
| CN110129678A (en) * | 2019-05-31 | 2019-08-16 | 上海工程技术大学 | An economical fine-grained high-strength toughness hot work die steel and its preparation method |
| CN110172641A (en) * | 2019-05-31 | 2019-08-27 | 上海工程技术大学 | A kind of fine grain high-toughness hot working die steel and preparation method thereof |
| CN111893391A (en) * | 2020-08-12 | 2020-11-06 | 燕山大学 | A kind of nano-bainite hot work die steel and preparation method thereof |
| CN114196870A (en) * | 2020-09-02 | 2022-03-18 | 宝武特种冶金有限公司 | Aluminum profile extrusion die steel and preparation method thereof |
| CN114196870B (en) * | 2020-09-02 | 2022-07-15 | 宝武特种冶金有限公司 | A kind of aluminum extrusion die steel and preparation method thereof |
| CN112877526A (en) * | 2021-01-14 | 2021-06-01 | 江油市长祥特殊钢制造有限公司 | Preparation method of 8418 high-quality hot-working die-casting die steel |
| CN113046641A (en) * | 2021-03-10 | 2021-06-29 | 东北大学 | Low-vanadium nitrogen-containing hot work die steel and preparation method thereof |
| CN113500263A (en) * | 2021-07-27 | 2021-10-15 | 苏州世沃电子科技有限公司 | Copper sheet welding method using new auxiliary carrier |
| CN114410893A (en) * | 2021-12-24 | 2022-04-29 | 钢铁研究总院 | Ultra-fine grain structure heat treatment process of annealed hot work die steel |
| CN114410893B (en) * | 2021-12-24 | 2022-11-15 | 钢铁研究总院 | A heat treatment process for ultra-fine grained structure of annealed hot work die steel |
| CN116445821A (en) * | 2023-04-28 | 2023-07-18 | 鞍钢股份有限公司 | Die steel resistant to mechanical strain and high in uniformity and preparation method thereof |
| CN116445821B (en) * | 2023-04-28 | 2024-05-14 | 鞍钢股份有限公司 | Die steel resistant to mechanical strain and high in uniformity and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102212756A (en) | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof | |
| CN102650020A (en) | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof | |
| CN103334061B (en) | High thermal conductivity large section die-casting die steel and preparation thereof and heat treating method | |
| CN104046915A (en) | Large-section high-performance hot work die steel for die casting and preparation technology thereof | |
| CN101392353A (en) | High manganese low chromium type high strength toughness hot work die steel and preparation method thereof | |
| CN107557667A (en) | A kind of large die-casting mould high performance hot-work die steel and its manufacturing process | |
| CN105803314B (en) | One kind has high performance advanced hot die steel and its manufacture method | |
| CN109280849A (en) | A kind of high performance hot-work die steel and its manufacturing process | |
| CN102912236A (en) | High-performance and abrasion-resistant hot work die steel and technology for manufacturing same | |
| CN103334052A (en) | High-thermal conductivity high-abrasion resistance hot stamping die steel and preparation method thereof | |
| CN101302599A (en) | Niobium microalloyed high strength hot work die steel and preparation method thereof | |
| CN105002427B (en) | Industrial stable high-performance bolt steel and manufacturing method thereof | |
| CN105274437A (en) | Thermal fatigue resisting and high performance hot working die steel and manufacturing process thereof | |
| CN101886228B (en) | Low carbon maraging stainless steel with high strength, high toughness and high corrosion resistance | |
| CN106566997B (en) | A kind of high-performance compression mod hot die steel metallurgical manufacturing method | |
| CN103993223A (en) | Ultrahigh thermal conductivity wear-resistant hot stamping die steel and manufacturing method thereof | |
| CN114411043B (en) | A kind of preparation method of large-scale hot forging hot work die steel | |
| CN101280394A (en) | A high-silicon and low-carbon hot work die steel with high thermal strength | |
| CN101709428A (en) | Compound microalloy hot die steel with high heat resistance and preparation method thereof | |
| CN110484812A (en) | A kind of high-performance hot stamping die steel and its manufacturing process | |
| CN107779746B (en) | Ultra-fine grain alloy steel with ultrahigh strength, high toughness, corrosion resistance, oxidation resistance and preparation method thereof | |
| CN110863156A (en) | A kind of hot work die steel and efficient preparation method thereof | |
| CN100510148C (en) | High heat-intensity hot-work die steel material | |
| CN101440456B (en) | Hot die steel with excellent heat resistance and high toughness | |
| CN103938096A (en) | High-strength high-toughness hot work die steel and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111012 |