CN1017670B - Integrated circuit isolation process - Google Patents
Integrated circuit isolation processInfo
- Publication number
- CN1017670B CN1017670B CN 90106499 CN90106499A CN1017670B CN 1017670 B CN1017670 B CN 1017670B CN 90106499 CN90106499 CN 90106499 CN 90106499 A CN90106499 A CN 90106499A CN 1017670 B CN1017670 B CN 1017670B
- Authority
- CN
- China
- Prior art keywords
- groove
- layer
- oxide
- oxide layer
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Landscapes
- Element Separation (AREA)
- Local Oxidation Of Silicon (AREA)
Abstract
一种通过提供几乎平滑的表面而避免由应力引起的缺陷的多凹槽隔离工艺。在硅基片10上形成图案并蚀刻之,产生有源围壕区18和凹槽(20a-b和21a-b)。使用LOCOS方法在宽凹槽区21内生长场氧化物40,从而用氧化物将凹槽填上,并在窄凹槽区20内沉积上平整的场氧化物44。当将结构进行蚀刻得到一平整的表面后,使用标准步骤制备有源器件,该方法只使用一个光刻掩蔽步骤,使得有源区的宽度损失量极小。
A multi-groove isolation process that avoids stress-induced defects by providing an almost smooth surface. The silicon substrate 10 is patterned and etched, resulting in active moat regions 18 and recesses (20a-b and 21a-b). A field oxide 40 is grown in the wide groove region 21 using the LOCOS method to fill the groove with oxide and a planarized field oxide 44 is deposited in the narrow groove region 20 . After the structure has been etched to obtain a flat surface, standard procedures are used to fabricate the active devices. This method uses only one photolithographic masking step, resulting in minimal loss of active area width.
Description
概括地说,本发明属于集成电路领域,更具体地说,本发明涉及应用于具有亚微米线度的超大规模集成电路的一种隔离工艺。Generally speaking, the present invention belongs to the field of integrated circuits, and more specifically, the present invention relates to an isolation process applied to ultra-large scale integrated circuits with submicron dimensions.
在集成电路技术中,有必要将有源器件的有源区(或称“围壕区”(moat regions))互相隔开。在使用MOS工艺的大规模集成电路和超大规模集成电路中,通常是采用LOCOS(硅的局部氧化)的方法来完成有源区的隔离的。为实施LOCOS方法,要使用一种在一块薄的氧化物块的表面上的呈一定图案的氮化物,把将作为围壕区的硅基片区域覆盖住。通过将硅基片的未覆盖区域暴露在一高温氧化环境之中,使仅仅在被暴露的区域内才能形成一个相对较厚的场氧化物(field oxide)。In integrated circuit technology, it is necessary to separate the active regions (or "moat regions") of active devices from each other. In large-scale integrated circuits and ultra-large-scale integrated circuits using MOS technology, the method of LOCOS (local oxidation of silicon) is usually used to complete the isolation of the active area. To implement the LOCOS method, a patterned nitride on the surface of a thin oxide block is used to cover the area of the silicon substrate that will serve as the moat area. By exposing the uncovered area of the silicon substrate to a high temperature oxidizing environment, a relatively thick field oxide can be formed only in the exposed area.
然而,该LOCOS工艺不仅在被暴露的硅区域的竖直方向上形成场氧化物,而且,该氧化物还在氮化物掩膜边缘下面的横向生长。氮化物下面的该横向氧化物侵蚀被称为“鸟嘴”,它的厚度可以长到约为氧化物厚度的一半;因此,在这种隔离工艺中有效区域受到了浪费。就标准的LOCOS方法而言,为了要减小“鸟嘴”,场氧化物的厚度必须适当减小,不然的话,剩下的“围壕区”对于有源器件的生产就不够了。但是,场氧化物厚度的减小将降低电路的性能,这是因为相互连接电容增加了。此外,对于通过场氧化物加在一导体之上的一给定电压来说,随着氧化物厚度的减小,场氧化物下面的“围壕区”之间的漏电流迅速增加,导致了相邻区之间的隔离变差。However, the LOCOS process not only forms a field oxide in the vertical direction of the exposed silicon regions, but the oxide also grows laterally under the edge of the nitride mask. This lateral oxide etch beneath the nitride is called the "bird's beak" and can grow to about half the thickness of the oxide; thus, active area is wasted in this isolation process. As far as the standard LOCOS method is concerned, in order to reduce the "bird's beak", the thickness of the field oxide must be reduced appropriately, otherwise, the remaining "moat area" is not enough for the production of active devices. However, a reduction in field oxide thickness will degrade circuit performance due to increased interconnect capacitance. In addition, for a given voltage applied across a conductor through the field oxide, as the oxide thickness decreases, the leakage current between the "moats" under the field oxide increases rapidly, resulting in The isolation between adjacent areas becomes poor.
在标准LOCOS工艺中已发展了几种减少氧化物侵蚀量的隔离工艺。在一种称之为SWAMI(侧壁掩蔽隔离)的方法中,使用一 种硅蚀剂和侧壁氮化物层(形成在凹进去的硅区域的侧面的氮化硅层)来抑制场氧化物的横向侵蚀。这种使侵蚀接近于零的关键之处在于引进了氮化物侧壁,该侧壁在氧化物生长的过程中被升起(lifted Up)。尽管SWAMI工艺方法减小了场氧化物的侵蚀,但它也有其局限性。一个局限在于,氧化掩膜(在氮化物侧壁层之后涂覆上去的)在第一层氮化物和氮化物侧壁层的交接点有断裂的倾向。这一断裂的发生主要是起因于在侧壁工艺方法中的垂直方向上的过分蚀刻(normal over-etching),这种断裂被场氧化物的定域侵蚀所证实,在图形的弯角处尤其容易发生。这种常规的SWAMI工艺方法的另一个局限在于,由于氮化物侧壁的存在,该方法对于在硅基片中缺陷产生的灵敏度的提高。还有一个局限在于,由于一个与围壕区相邻的区域具有一个相对薄的氮化物,而该区域没有包含足够的沟道截止杂质,因而,在晶体管特性中将发生双阈值(double threshold)现象。Several isolation processes have been developed to reduce the amount of oxide etch in the standard LOCOS process. In a method called SWAMI (Sidewall Masking Isolation), a A silicon etchant and sidewall nitride layers (silicon nitride layers formed on the sides of the recessed silicon regions) are used to suppress lateral erosion of the field oxide. The key to this near-zero erosion is the introduction of nitride sidewalls that are lifted up during oxide growth. Although the SWAMI process method reduces field oxide erosion, it has its limitations. One limitation is that the oxide mask (applied after the nitride sidewall layer) has a tendency to break at the junction of the first nitride and nitride sidewall layers. The occurrence of this fracture is mainly due to the normal over-etching in the vertical direction in the sidewall process. This fracture is confirmed by the localized erosion of the field oxide, especially at the corners of the pattern. easy to happen. Another limitation of this conventional SWAMI process approach is the increased sensitivity of the approach to defect generation in the silicon substrate due to the presence of nitride sidewalls. There is also a limitation that since a region adjacent to the moat region has a relatively thin nitride that does not contain enough channel stop impurities, double threshold will occur in the transistor characteristics Phenomenon.
有一种对SWAMI的改进,称为改进的全框架全凹进(fully-framed-fully-recessed,MF3R)隔离方法,降低了SWAMI的局限性。当氮化物、氧化物以及凹进去的硅层被图案成形并蚀刻完毕。以后,这种工艺方法采用一种“潜挖和再填充”(undercut and backfill)工艺,在这种工艺中,氮化物层在横向通过湿蚀法潜挖200-1000埃。There is an improvement to SWAMI, called the modified fully-framed-fully-recessed (MF 3 R) isolation method, which reduces the limitations of SWAMI. When the nitride, oxide, and recessed silicon layers are patterned and etched. Later, this process method uses an "undercut and backfill" process, in which the nitride layer is buried 200-1000 angstroms laterally by wet etching.
再用一种第二氧化物填料填充潜挖洞穴,随后再在其上面覆上一层同样的氮化物侧壁,从而使两层氮化物之间的连接面积增大。在氧化物/氮化物/氧化物侧壁的蚀刻以及随后的场氧化物形成过程中这一增大了的面积保持了氮化物至氮化物连接的完整性。这种MF3R工艺方法的一个主要局限在于,硅的凹槽蚀刻(recess-etched)只能达到约2000埃的深度,这有可能致使有源区之间的隔离不充分。The submerged cavity is then filled with a second oxide filler, which is then overlaid with the same nitride sidewall, thereby increasing the connection area between the two nitride layers. This increased area maintains the integrity of the nitride-to-nitride connection during the etch of the oxide/nitride/oxide sidewalls and subsequent field oxide formation. A major limitation of this MF 3 R process approach is that the silicon can only be recess-etched to a depth of about 2000 Angstroms, which can lead to insufficient isolation between active regions.
另一种用于器件的隔离的方法是氧化物掩埋(buried oxide) (BOX)方法。在BOX方法中生长一层减轻应力的(stress relief)氧化物层,然后用化学汽相沉积(CVD)法沉积上氮化硅。然后,将氮化物/氧化物堆形成图形,并用标准的平版印刷工艺进行蚀刻,正如在SWAMI工艺中一样,蚀刻完了以后沉积上一层更厚的氧化物层,尽管CVD氧化物层填满了蚀刻成凹陷的硅区域,该(氧化物)层是不平的,这是由于氧化物是沉积在宽的凹蚀区域的,因而在CVD氧化物层中产生了凹陷。为了形成一个平整的表面,使用一种第二光致抗蚀剂(photoresist)的图形,用光蚀剂(photoresist)材料填上这些凹陷,使用一种第三光致抗蚀剂(photoresist)涂在整个表面上,从而产生一个相当平整的表面。使用一种光致抗蚀剂(photoresist)/氧化物蚀刻剂按相同的比率对光致抗蚀剂(photoresist)和氧化物进行反复腐蚀(etch-back),从而在任何残存的光致抗蚀剂去除以后,得到一个相当平整的氧化物表面。Another method for device isolation is buried oxide (BOX) method. A stress relief oxide layer is grown in the BOX method, followed by deposition of silicon nitride by chemical vapor deposition (CVD). The nitride/oxide stack is then patterned and etched using a standard lithographic process, as in the SWAMI process, followed by a thicker oxide layer, although the CVD oxide layer fills the Etched into recessed silicon areas, the (oxide) layer is uneven because the oxide is deposited in a wide recessed area, thus creating a recess in the CVD oxide layer. To form a flat surface, use a second photoresist (photoresist) pattern, fill the depressions with photoresist (photoresist) material, use a third photoresist (photoresist) to coat over the entire surface, thus producing a fairly flat surface. Etch-back the photoresist and oxide using a photoresist/oxide etchant at the same ratio, removing any remaining photoresist After the solvent is removed, a fairly flat oxide surface is obtained.
BOX工艺方法有两个主要问题。第一个问题是,该方法需要两个光刻掩蔽步骤,增加了工艺的复杂性。其次,该BOX方法要采用一种要求极高的抗蚀剂反复腐蚀工艺。实际上,这种自旋涂覆(spun-on)的抗蚀剂的厚度取决于图形面积的密度,在致密度较高的区域内,光致抗蚀剂层将较薄一些。因此抗蚀剂反复腐蚀以后,经蚀刻的表面将不是均匀的,一些有源区的表面可能受到蚀刻剂的极大地腐蚀。There are two main problems with the BOX process approach. The first problem is that the method requires two photolithographic masking steps, adding to the complexity of the process. Second, the BOX method employs a very demanding resist iterative etching process. In fact, the thickness of this spin-on resist depends on the density of the pattern area, and the photoresist layer will be thinner in the denser area. Therefore, after repeated etching by the resist, the etched surface will not be uniform, and the surface of some active regions may be greatly corroded by the etchant.
从上文可见,需要一种隔离工艺,它能在产量高的情况下提供大致上平整的表面,而基本上没有壕状侵蚀(moat encrochment)或者在有源区附近没有由应力产生的缺陷。此外,我们对于隔离工艺,要求其能够提供一种基本上平整的表面,而只使用一次掩模来形成图形。这种改进的隔离工艺对于围壕区之间的窄的和宽的凹槽都能提供平整的表面。From the foregoing, it can be seen that there is a need for an isolation process that provides a substantially planar surface at high throughput, substantially free of moat encrochment or stress-induced defects near active regions. In addition, for the isolation process, we require that it can provide a substantially flat surface, and only use a mask once to form a pattern. This improved isolation process provides a flat surface for both narrow and wide grooves between moat areas.
根据本发明,我们提供一种隔离工艺,它基本上消除了或避免了与现有隔离工艺相关联的缺点和困难。In accordance with the present invention, we provide an isolation process that substantially eliminates or avoids the disadvantages and difficulties associated with existing isolation processes.
根据本发明的另一个方面,提供了一种用于在由窄的和宽的凹槽分开的半导体基片中隔离围壕区的方法。在宽的凹槽中生长第一场氧化物,然后,在基片上沉积上第二场氧化物,用以充填窄的凹槽以及宽凹槽的任何未填充部分。According to another aspect of the present invention, there is provided a method for isolating moat regions in a semiconductor substrate separated by narrow and wide grooves. A first field oxide is grown in the wide grooves, and a second field oxide is then deposited on the substrate to fill the narrow grooves and any unfilled portions of the wide grooves.
根据本发明的再一个特征,还提供了一种在硅基片中制备集成电路的隔离区的方法。基片的预定的部分由一个氧化物垫层和一层第一氮化硅层覆盖。贯穿氧化物垫层和第一氮化物层至基片蚀刻宽的和窄的凹槽以形成与此凹槽相邻的围壕区。在基片上沉积一层第二氮化硅。蚀刻一些宽的凹槽,以便在宽凹槽的底部,贯穿所述第二氮化硅层“开出”(clear)一条缝隙来。在宽凹槽内被所述缝隙暴露的基片区域上生长形成一层第一场氧化物,一层第二场氧化物层沉积下来以填充窄凹槽和宽凹槽的剩余部分。随后,所述第二场氧化物被平整至一个与凹槽的顶部边缘的高度近似地相平的高度,从而形成介乎围壕区之间的隔离区。According to still another feature of the present invention, there is also provided a method of forming an isolation region of an integrated circuit in a silicon substrate. A predetermined portion of the substrate is covered by a pad oxide layer and a first silicon nitride layer. Wide and narrow recesses are etched through the oxide liner layer and first nitride layer to the substrate to form moat regions adjacent to the recesses. A layer of second silicon nitride is deposited on the substrate. Wide grooves are etched to "clear" a gap through the second silicon nitride layer at the bottom of the wide grooves. A first field oxide layer is grown on the area of the substrate exposed by the gap within the wide groove, and a second field oxide layer is deposited to fill the remainder of the narrow and wide grooves. Subsequently, the second field oxide is planarized to a height approximately equal to that of the top edge of the groove, thereby forming isolation regions between the moat regions.
下面将参照附图对本发明进行描述,首先是对附图的描述,其中,The invention will be described below with reference to the accompanying drawings, beginning with a description of the accompanying drawings, in which,
图1展示了本发明第一步的截面剖视图,其中,一个第一氮化物层,它下面有一层第一氧化物垫层,该氮化物层已用光致抗蚀剂(photoresest)形成了图形,其氮化物、氧化物和硅的暴露部分已进行了凹槽蚀刻(recess-etched);Figure 1 shows a cross-sectional view of the first step of the present invention, wherein a first nitride layer has a first oxide pad layer below it, and the nitride layer has been patterned with a photoresist , whose exposed portions of nitride, oxide, and silicon have been recess-etched;
图2展示了本发明的第二阶段的截面剖视图,其中,一个第二热氧化物层已经形成,光致抗蚀剂(photoresist)已经去除;Figure 2 shows a cross-sectional view of the second stage of the invention, in which a second thermal oxide layer has been formed and the photoresist has been removed;
图3展示了本发明的处理工艺中的第三步的截面剖视图,该步骤是在沉积上一层第二氮化物层和一层厚的氧化物侧壁层以后;Figure 3 shows a cross-sectional view of a third step in the process of the present invention, after deposition of a second nitride layer and a thick oxide sidewall layer;
图4展示了本发明的工艺方法中的第四步的截面剖视图,其中已 对氧化物侧壁进行了蚀刻;Fig. 4 has shown the sectional view of the 4th step in the processing method of the present invention, wherein The oxide sidewalls are etched;
图5展示了本发明的工艺方法中的第五步的截面剖视图,其中,剩下的侧壁层已用一种湿蚀法去除,随后,在硅暴露的缝隙内生长出一层LOCOS场氧化物;Fig. 5 shows a cross-sectional view of the fifth step in the process of the present invention, wherein the remaining sidewall layer has been removed by a wet etch method, and subsequently, a layer of LOCOS field oxide is grown in the silicon exposed gap. things;
图6展示了本发明工艺方法中的第六步的截面剖视图,这是在第一和第二氧化硅层去除以及一层厚的平整过的氧化物层沉积上去以后;Figure 6 shows a cross-sectional view of the sixth step in the process of the present invention, after removal of the first and second silicon oxide layers and deposition of a thick planarized oxide layer;
图7展示了本发明工艺方法中第七步的截面剖视图,其中,已在平整的场氧化物上进行了平整等离子腐蚀,氧化物垫已被去除;Figure 7 shows a cross-sectional view of the seventh step in the process of the present invention, wherein planar plasma etching has been carried out on the planar field oxide, and the oxide pad has been removed;
图8展示了本发明的一个CMOS实施例的截面剖视图,其中,在有源区的结构中已形成栅极一个氧化物;Figure 8 shows a cross-sectional view of a CMOS embodiment of the present invention in which a gate oxide has been formed in the structure of the active region;
图9所示为与图1相对应的本发明的另一个实施例,其中,在介乎氧化物垫层和第一氮化硅层之间配置了一层多晶硅层;Figure 9 shows another embodiment of the present invention corresponding to Figure 1, wherein a polysilicon layer is disposed between the oxide pad layer and the first silicon nitride layer;
图10展示了在第二热氧化物层形成以后,图9的结构。Figure 10 shows the structure of Figure 9 after the formation of the second thermal oxide layer.
通过参照图1-8,本发明的最佳实施例的应用可最清楚地得到理解,图中,相同的号码用来表示各图中相应的相同部分。The application of the preferred embodiment of the present invention can be best understood by referring to Figures 1-8, in which like numerals are used to indicate corresponding like parts in the various figures.
参见图1,所示单晶硅基片10已进行过槽(tank)内处理。为防止有源晶体管的短沟道穿通,应使用高浓度槽(tank)。使用一种热处理方法,其中二氧化硅是形成在硅基片10的表面上的,将第一热氧化层、氧化物垫12生长在基片10之上。氧化物的厚度可从200至500埃不等,最好是350埃。在氧化物垫12形成以后,使用一种低压化学气相沉积(LPCVD)方法将第一氮化硅层14沉积在氧化物垫12上。第一氮化硅层14的厚度一般为1000至2000埃,以约1800埃为较佳厚度。Referring to Fig. 1, a single
第一氮化硅层14沉积完毕以后,使用一光致抗蚀剂(photoresist)图形16来确定围壕区18(有源区)的位置,并将凹槽区20a-b和21a-b暴露,在下一步中,这些凹槽区将生长场氧化物。正如即将指出的,凹槽区20a-b相对较窄,而凹槽区21a-b则相对较宽,这就使
得用现有的隔离工艺方法来获得一个平整的氧化物表面是困难的。在光致抗蚀剂16已沉积上去并用通常的方法形成图形以后,第一氮化硅层14和氧化物垫层12根据光致抗蚀剂的图形被蚀刻。所采用的蚀刻化学药剂最好是CHF3-C2F6药剂,它的腐蚀速率比较慢,因而,便于操作者很好地控制。当然,使用其他蚀刻剂也有可能达到相似的效果。After the first
在蚀刻完第一氮化物层14和氧化物垫层12以后,可以对硅基片10进行凹槽蚀刻(recessed-etched)以形成围壕区18,这些区18将成为最终得到的器件的有源区。在本最佳实施例中,硅被蚀刻至3000到7500埃深,其中,以5000埃为较佳深度。本最佳实施例中的硅蚀剂选用氟三氯甲烷(Freon)11,氩和氮。然而,也可能选用种类繁多的硅蚀刻剂,这些已为本技术领域内具有熟练技术水准的人员所熟知。凹槽蚀刻(recess etch)完毕后,使用人所共知的光刻法工艺将光致抗蚀剂去除。After etching the
图2所示为一半导体器件的截面剖视图,所示器件已经在被凹槽蚀刻(recess-etch)暴露的硅基片10的区域上以及在氧化物垫12的侧面形成了热氧化物层22,在硅基片10之上形成了一连续的氧化物覆盖层。第二热氧化物层22有几个用处:其一是将凹槽区的角24弄得圆一些以便减小角24上的应力。第二热氧化物层22的厚度一般为250到1000埃不等,其厚度最好为约800埃。由于第二热氧化物层22相对较薄,从P井(P-Well)到正在生长的热氧化物中,硼的损失很少。2 is a cross-sectional view of a semiconductor device that has had a
值得指出的是,硅基片10上的第二热氧化物层22的生长由于氧化硅的形成会消耗硅。硅的损耗会使有源围壕区18的宽度减小。然而,在二氧化硅生长过程中所损耗的硅的数量仅为所长出的氧化物的厚度的百分之四十五,因此,如果所长出的第二热氧化物层22的宽度为800埃的话,则围壕区18的每个侧面将只减小360埃的有源区的宽
度。It is worth pointing out that the growth of the second
图3展示了一个半导体器件的截面剖视图,所示该器件已经采用化学汽相沉积(CVD)工艺方法沉积上了第二氮化硅层26和侧壁氧化物层28。所述第二氮化硅层26的厚度最好在500至1000埃的范围内,一般可取约800埃的厚度。侧壁氧化物层28的厚度最好落在4000到8000埃的范围内,一般以5000埃的厚度为宜。必须指出,侧壁氧化物层28的厚度比原先的氧化物层要厚得多,侧壁氧化物层28所选定的厚度应足以填满窄凹槽区20a和20b,而不至填满宽凹槽区21a和21b。在侧壁氧化物28填上的窄凹槽区20a和20b处,将形成小凹陷30。在宽凹槽区21a和21b中,侧壁氧化物相对的侧壁没有合在一起,将留下不会被填满的深凹陷32。深凹陷32的底部和相应的宽凹槽区21a或b的底部之间的距离应该约等于侧壁氧化物层28的厚度。FIG. 3 shows a cross-sectional view of a semiconductor device on which a second
图4所示为采用各向异性的氧化物/氮化物蚀刻方法对侧壁氧化物层28,所述第二氮化硅层26和第二热氧化物层22进行垂直蚀刻后的一个半导体器件的截面剖视图。在宽凹槽区21a和21b中,上述三层都用蚀刻剂从深凹陷32下面去除,籍此,通过缝隙34和35将硅基片10暴露。尽管不必如图4所示将第二热氧化物层22去除,而实际上还是常常将其去除,这是因为侧壁蚀刻不能控制得足够精确,以至仅只将第二氮化硅层26移去。这种蚀刻的各向异性的特性使得侧壁氧化物层28留在宽凹槽区21a-b的侧壁上,剩下的宽度等于经蚀刻的层28,26和22的厚度的和的80%至100%。可以采用与用于第一氮化物层14和氧化物垫层12相同的蚀刻气体即CHF3和C2F6的混合物来对侧壁进行蚀刻。再次指出,本技术领域内具有熟练技术水准的人员所知的其他蚀刻剂也有可能足以取代所推荐的蚀刻剂。Figure 4 shows a semiconductor device after vertical etching of the sidewall oxide layer 28, the second
为保证将所有的氮化物从缝隙34上除去,各向异性的蚀刻过程也除去第一氮化硅层14的部分表面。因此,所述第一氮化硅层14应足够
厚以便在侧壁蚀刻以后能得以留下大约1000埃的氮化物。在蚀刻时防止将氮化物从凹槽区20a-b和21a-b的侧壁的顶角36上除去是很重要的。在本发明中,也可采用使用于MFR中的相同的防止氮化物去除的工艺方法。To ensure that all of the nitride is removed from the gap 34, the anisotropic etching process also removes part of the surface of the first
在进行侧壁蚀刻时,第二个氮化硅层26将不会从窄凹槽区20a和b中去除,该蚀刻也不会将沟34和35周围的氮化物层38除去。侧壁氧化物层28的厚度的选定要使得在侧壁蚀刻完后,所述窄凹槽区20a和b能得以被侧壁氧化物层28完全覆盖。The second
图5所示为一半导体器件的横截面剖视图,该半导体器件剩余的侧壁氧化物层28已经用湿蚀法从第二氮化硅层26上除去,在宽凹槽区21a-21b的底部已长出一层厚且宽的热场氧化物区40。蚀刻用化学药剂最好用稀释的HF溶液,HF溶液的浓度以10%为宜。湿蚀不会影响到氮化硅层14和26,或者被缝隙34和35暴露的硅。湿蚀以后,应用LOCOS(硅的局部氧化)工艺在缝隙34和35中生长宽热场氧化物区40。热场氧化物将不会在氮化硅层14和26上生长,因此,宽的热场氧化物区40被限制在缝隙34和35上。宽热场氧化物区的厚度是这样选定的:宽热场氧化物区40的上表面应与硅基片10的原先的上表面大致上在同一个平面上,其厚度可在6000到15000埃的范围内,一般约为10000埃厚。Figure 5 is a cross-sectional view of a semiconductor device whose remaining sidewall oxide layer 28 has been removed from the second
还应指出,在有些情况下,宽凹槽区21a具有中等的宽度,因此,在对侧壁进行蚀刻时,只开有一个小的缝隙34。在这一情形中,正如在图5中所示的那样,宽热场氧化物区40的厚度将比在宽得多的宽凹槽区21b中所得到的厚度要小。It should also be noted that in some cases the wide groove region 21a has an intermediate width, so that only a small gap 34 is opened when the sidewall is etched. In this case, as shown in FIG. 5, the thickness of the wide thermal
由图5可见,宽的热场氧化物区40在其周围的氮化物层38的边缘下面生长,形成了“鸟嘴”42。侧壁氧化物层28的厚度应通过与长出的宽的热场氧化物区40的厚度相比较而后选定,从而使“鸟嘴”42不
至于长到围壕区18的顶部边缘,因而不至于在那些地方减小围壕区18的有源区宽度。As can be seen in FIG. 5 , a wide thermal
图6所示为一个已将氮化物层14和26除去并在其表面1沉积上一层平整的场氧化物层44的半导体器件的横截面剖视图。可以使用热磷酸(160℃的H3PO4)或其他合适的化学溶液将氮化物层14和26从表面除去。平整的场氧化物层44是用化学气相沉积(CVD)工艺沉积的,在该CVD工艺中,竖直壁上的氧化物的厚度与水平壁上的氧化物厚度的生长速率相同。氧化物厚度一般为10000埃,但也可以落在8000-15000埃的范围内。平整的场氧化物层44的厚度应选得足够大以便使凹槽区20a-b和21a-b的侧壁上的氧化物能一起长出来将区20a-b和21a-b填满。Figure 6 shows a cross-sectional view of a semiconductor device from which the nitride layers 14 and 26 have been removed and on which surface 1 a planarized
平整过的场氧化物层44的上表面可能会留有一些小凹陷46,如需要的话,可以在平整过的场氧化物层44的上表面加上一层光致抗蚀剂层(未示出),进一步对表面进行平整。Some
图7所示为一半导体的横截面图,该半导体器件已经用等离子体腐蚀将平整过的场氧化物层44和围壕区18上表面的下面的热氧化物垫12除去。重申一下,可以使用CHF3和C2F6的混合物,或用其他合适的蚀刻剂取而代之。为确保将所有的氧化物垫层12除去,可以在这一步结束时加上一次很短的湿的或干的蚀刻。使用本领域内众所周知的工艺,现在的结构即刻便可很方便地做成有源器件3。作为一个例子,下面说明CMOS的栅极的做法,尽管连同本发明而外,还可使用诸如双极性等其他工艺的其不同步骤。7 shows a cross-sectional view of a semiconductor device that has been planarized by plasma etching to remove the planarized
图8所示为一半导体的横截面剖视图,该半导体已在围壕区18上长出了栅极氧化物48从而形成了CMOS栅极。栅极氧化物48的厚度可为50至250埃不等,一般以250埃厚为宜。当栅极氧化物48长出以后,处理过程接下来将材料(一般是多晶硅)沉积下来以形成晶体管
栅极。在本发明的一个不同的实施例中,可以先长出一个厚度从100-500埃的氧化物预置栅极(Pregate Oxide,未示出),然后再将它在栅极氧化物48长出来之前除去以防Kooi效应。FIG. 8 is a cross-sectional view of a semiconductor that has had a
在此,有必要指出,在凹槽区20a-b和21a-b内的平整过的场氧化物层44的上表面相对较为平滑,这一平整(的表面)保证了在接下来的一个步骤中沉积上去的栅极材料不致在表面的不平整处(steps in surface)开裂。此外,平整的表面消除了在栅极材料中短路丝的产生,该短路丝是在一用于限定栅极界限的高度各向异性蚀刻以后存留下来的。Here, it is necessary to point out that the upper surface of the planarized
本发明的另一个重要特征是,凹槽区20a-b或21a-b的侧壁上由于应力而产生的硅的结构性缺陷达到了最小的数量。在平整过的氧化物区层44沉积完毕以后,唯一进行的高温热处理是生长栅极氧化物48,和紧接着对源极/漏极注入(未画出)进行退火。如果凹槽区20a-b或21a-b用热氧化方法完全填满,会产生许多缺陷。这是因为在槽处理过程(Tank Processing)中所使用的浓度较高的缘故。n-井(n-well)和P-井(P-Well)的高浓度将在凹槽区20a-b或21a-b的侧壁上提供足够的浓度,并且也将防止与有源晶体管通道平行的寄生漏泄。同样,正如结合图2所提及的那样,从P-井(P-Well)到正在生长中的第二热氧化物层22的硼的损耗将很小,这是因为第二热氧化物层22的厚度很小。然而,在凹槽蚀刻(recessetch)以后,如果有必要提高厚区的阈值电压的话,可以沿凹槽区20a-b和21a-b的侧壁以及在其底部进行一次硼沟道截止注入。Another important feature of the present invention is that the stress-induced silicon structural defects on the sidewalls of the recessed regions 20a-b or 21a-b are minimized. After the deposition of the planarized
图9所示为本发明的一个不同的实施例,其中,可选择的多晶硅层50沉积在氧化物垫层12和第一氮化硅层14之间,以便在进行平整蚀刻时保护硅基片10。使用一种对多晶硅具有选择性的蚀刻方法,即,一种对多晶硅腐蚀速率低的蚀刻方法,平整蚀刻将终止于可选择的多
晶硅层50上,不会蚀入硅基片10内。Figure 9 shows a different embodiment of the present invention in which an
如果平整蚀刻不能被足够精确地控制,则附加的多晶硅层可能是必需的。应该指出,如果使用多晶硅层50的话,如图10所示,正象参考图2时所描述的那样,第二热氧化物层22的生长将损耗多晶硅层50的侧面以及凹槽区20a-b和21a-b的侧壁。由于多晶硅层50未掺杂,而硅基片10相对而言掺杂较多,因此,可以选择氧化条件以便多晶硅层50的蚀刻速率较之硅基片10为低。这就在硅的围壕区18的顶部的边缘上形成一个延伸的多晶硅顶盖52,籍此保护其免受平整蚀刻(的腐蚀)。由于第二热氧化物层22的生长还将损耗延伸的多晶硅顶盖52的部分延伸部分,因此,应选定可选择的多晶硅层50的厚度使其在第二热氧化物层22长出以后在(层50的)边缘留下足够的多晶硅,以免使多晶硅层50在延伸的多晶硅顶盖52的边缘处开裂。An additional polysilicon layer may be necessary if the planar etch cannot be controlled precisely enough. It should be noted that if a
因此,本发明具有如上所述的以及其他诸多优点,对本领域内具有熟练水准的技术人员显然易见,本发明可以被广泛地改进和进行各种变形,除了在所附的权利要求中所提出的而外,本发明的范围将不受任何限制。Therefore, the present invention has the above-mentioned and many other advantages, and it will be obvious to those skilled in the art that the present invention can be widely improved and variously modified, except as set forth in the appended claims. Otherwise, the scope of the present invention will not be limited in any way.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/882,732 US4842675A (en) | 1986-07-07 | 1986-07-07 | Integrated circuit isolation process |
US882,732 | 1986-07-07 | ||
CN87104640A CN1013160B (en) | 1986-07-07 | 1987-07-03 | IC isolation process |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN87104640A Division CN1013160B (en) | 1986-07-07 | 1987-07-03 | IC isolation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1052572A CN1052572A (en) | 1991-06-26 |
CN1017670B true CN1017670B (en) | 1992-07-29 |
Family
ID=25742337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 90106499 Expired CN1017670B (en) | 1986-07-07 | 1987-07-03 | Integrated circuit isolation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1017670B (en) |
-
1987
- 1987-07-03 CN CN 90106499 patent/CN1017670B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CN1052572A (en) | 1991-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1013160B (en) | IC isolation process | |
US4892614A (en) | Integrated circuit isolation process | |
US6174785B1 (en) | Method of forming trench isolation region for semiconductor device | |
US6326282B1 (en) | Method of forming trench isolation in a semiconductor device and structure formed thereby | |
US5298451A (en) | Recessed and sidewall-sealed poly-buffered LOCOS isolation methods | |
US6967146B2 (en) | Isolation region forming methods | |
US20010041421A1 (en) | Trench isolatoin regions having trench liners with recessed ends | |
JP2000124303A (en) | Manufacturing trench isolation | |
US4916087A (en) | Method of manufacturing a semiconductor device by filling and planarizing narrow and wide trenches | |
JP2003273206A (en) | Semiconductor device and manufacturing method thereof | |
US5061653A (en) | Trench isolation process | |
US6355539B1 (en) | Method for forming shallow trench isolation | |
JPH10144782A (en) | Method for forming division area | |
US6040233A (en) | Method of making a shallow trench isolation with thin nitride as gate dielectric | |
CN1017670B (en) | Integrated circuit isolation process | |
US6261966B1 (en) | Method for improving trench isolation | |
US5861339A (en) | Recessed isolation with double oxidation | |
US6436831B1 (en) | Methods of forming insulative plugs and oxide plug forming methods | |
KR19980060855A (en) | Device isolation method of semiconductor device | |
KR940005720B1 (en) | Device Separation Manufacturing Method of Semiconductor Device | |
KR100446279B1 (en) | Trench Etching Method of Semiconductor Device | |
JP2002100670A (en) | Semiconductor device and its manufacturing method | |
KR20040059998A (en) | Method for manufacturing isolation layer in semiconductor device | |
KR960015595B1 (en) | Method for an elements isolation of a semiconductor device | |
KR20050003046A (en) | Method of manufacturing isolation using liner nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C17 | Cessation of patent right | ||
CX01 | Expiry of patent term |