+

CN101364302A - A method for sharpening defocused blurred images - Google Patents

A method for sharpening defocused blurred images Download PDF

Info

Publication number
CN101364302A
CN101364302A CNA2008101511969A CN200810151196A CN101364302A CN 101364302 A CN101364302 A CN 101364302A CN A2008101511969 A CNA2008101511969 A CN A2008101511969A CN 200810151196 A CN200810151196 A CN 200810151196A CN 101364302 A CN101364302 A CN 101364302A
Authority
CN
China
Prior art keywords
mrow
image
msub
sub
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101511969A
Other languages
Chinese (zh)
Inventor
朱虹
金欢
徐骁斐
王栋
王翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CNA2008101511969A priority Critical patent/CN101364302A/en
Publication of CN101364302A publication Critical patent/CN101364302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

The invention discloses a defocus blurred image sharpness processing method, which is implemented according to the following steps: firstly, the mean value and the variance of the edge width is calculated according to gradient information of an image; an initial parameter of a fuzzy model is obtained according to the statistical data; secondly, the blurred image is divided into concentric circles around the center of the image and is broken down into sub-images, wherein, the number of the concentric circles is k and the number of the sub-images is k+1; the corresponding blurred initial semidiameters are distributed to the sub-images; the optimal blurred semidiameter is found through an iterative mode, and the sharpness processing of all sub-images is performed by adopting a frequency domain inverse-filtering manner; finally, all the sub-images are added to synthesize the whole sharpness image. The defocus blurred image sharpness processing method overcomes the limitations in the existing circular disc function modeling recovery method based on the fixed semidiameter, and serves the purpose for restoring the sharp image.

Description

一种散焦模糊图像的清晰化处理方法 A method for sharpening defocused blurred images

技术领域 technical field

本发明属于数字图像恢复技术领域,涉及一种散焦模糊图像的清晰化处理方法。The invention belongs to the technical field of digital image restoration, and relates to a method for clearing defocused blurred images.

背景技术 Background technique

当拍摄照片时,有时会出现图像模糊的情况,造成这种情况的原因主要是被拍摄物体未处于成像系统的焦平面上,称之为散焦模糊。对于一些包含重要信息的照片,因为散焦模糊而无法识别,如果没有机会再次拍摄,或者再次拍摄所要付出的代价太高,就可以采用散焦模糊的恢复清晰化技术对其进行清晰化的处理。现有散焦模糊的恢复清晰化技术大多是基于固定半径圆盘函数建模恢复方法,这类方法对实际中产生的光学散焦模糊的恢复能力极其有限。When taking a photo, sometimes the image will be blurred, which is mainly caused by the fact that the object to be photographed is not on the focal plane of the imaging system, which is called defocus blur. For some photos containing important information, which cannot be recognized due to defocus blur, if there is no chance to shoot again, or the cost of taking another shot is too high, you can use the defocus blur restoration and clearing technology to clear them . Most of the existing defocus blur restoration and clearing techniques are based on fixed-radius disk function modeling restoration methods, which have extremely limited ability to restore optical defocus blur generated in practice.

发明内容 Contents of the invention

本发明的目的在于提供一种散焦模糊图像的清晰化处理方法,克服了现有技术对模糊图像的恢复能力有限的问题,能够将散焦模糊的图像恢复为清晰的图像。The purpose of the present invention is to provide a method for sharpening defocused blurred images, which overcomes the problem of limited recovery ability of blurred images in the prior art, and can restore defocused blurred images to clear images.

本发明所采用的技术方案是,一种散焦模糊图像的清晰化处理方法,该方法按照以下步骤实施,The technical solution adopted in the present invention is a method for clearing defocused blurred images, which is implemented according to the following steps,

步骤1:对待处理的散焦模糊图像建立数学模型Step 1: Establish a mathematical model for the defocused blurred image to be processed

利用一个圆盘函数来进行模糊图像的建模,即:A disc function is used to model the blurred image, namely:

hh (( xx ,, ythe y )) == 11 ππ RR bb 22 xx 22 ++ ythe y 22 ≤≤ RR bb 22 00 xx 22 ++ ythe y 22 >> RR bb 22 -- -- -- (( 11 ))

其中,Rb为模糊半径,π为圆周率,(x,y)为图像上的某个像素点;Among them, R b is the blur radius, π is the circumference ratio, and (x, y) is a certain pixel point on the image;

步骤2:选取初始模糊半径Step 2: Pick an initial blur radius

对待处理的散焦模糊整图进行模糊半径的查找,首先对所拍摄到的散焦图像进行锐化,生成梯度图Es和方向图Eo;对得到的梯度图Es以及梯度方向图Eo,用非极大值抑制技术获得局部梯度幅度极大值点集En;对En在给定阈值下进行二值化,得到轮廓图Ee,再求取边沿宽度,将得到的宽度值计算得到均值M和方差D,选取M/2为整图的初始模糊半径RbSearch for the blur radius of the defocused blurred image to be processed, first sharpen the captured defocused image, and generate the gradient map E s and the direction map E o ; the obtained gradient map E s and the gradient direction map E o , use the non-maximum value suppression technique to obtain the local gradient magnitude maximum point set E n ; binarize E n under a given threshold to obtain the contour map E e , and then calculate the edge width, the obtained width Calculate the mean value M and variance D, and select M/2 as the initial blur radius R b of the whole image;

步骤3:子图像的划分Step 3: Division of sub-images

将步骤2中所得到的方差D代入方程式k=int[D-1],得到子图划分个数的参数k,再以图像中心为圆点,画k个同心圆,其半径为Rk=R1+(k-1)·ΔR,其中R1为最内层圆半径,ΔR为增量,将图像分解为一个圆形区域、k-1个圆环区域、剩余图像区域共k+1个子图像,记为gs1、gs2...gs(k+1)Substitute the variance D obtained in step 2 into the equation k=int[D-1] to obtain the parameter k of the number of sub-images, and then draw k concentric circles with the center of the image as a dot, and its radius is R k = R 1 +(k-1)·ΔR, where R 1 is the radius of the innermost circle, and ΔR is the increment. The image is decomposed into a circular area, k-1 circular areas, and the remaining image areas are k+1 sub-images, denoted as g s1 , g s2 ...g s(k+1) ;

步骤4:子图像的清晰化处理Step 4: Sharpening of sub-images

用步骤2中得到的方差和步骤3中得到的k,得到圆盘半径的步长为D/k,得到第i个子图像下的初始模糊半径,根据该模糊半径,按照方程式(1)获得子图像的圆盘函数hi(x,y),将子图像gsi(x,y)进行频域转换,再将各子图像下对应的圆盘函数进行频域变换,并计算噪声和原图像的功率谱Snn(u,v)和Sff(u,v);然后基于逆滤波进行图像清晰恢复,改变模糊半径,即计算Ri(0)和Ri(0)±ΔRi,以此获得三个恢复子图像,计算该三个恢复图像的Sobel锐化细节能量图,并计算该三个恢复图像方差的差异,然后按照差异小的方向进行迭代,直到寻找到方差差异最小的时机,停止迭代,选择迭代停止时的两个能量图中的最大能量均值的图像为最终结果,设为fi*(x,y);With the variance obtained in step 2 and the k obtained in step 3, the step size of the disk radius is D/k, and the initial blur radius under the i-th sub-image is obtained. According to the blur radius, the sub-image is obtained according to equation (1). The disk function h i (x, y) of the image, the sub-image g si (x, y) is converted in the frequency domain, and then the corresponding disk function under each sub-image is converted in the frequency domain, and the noise and the original image are calculated The power spectrum S nn (u, v) and S ff (u, v); and then based on the inverse filter to restore image clarity, change the blur radius, that is, calculate R i (0) and R i (0)±ΔR i , to This obtains three restored sub-images, calculates the Sobel sharpening detail energy map of the three restored images, and calculates the difference in variance of the three restored images, and then iterates in the direction of the small difference until the opportunity with the smallest variance difference is found , stop the iteration, select the image of the maximum energy mean value in the two energy maps when the iteration stops as the final result, set it as f i *(x, y);

步骤5、获得整幅清晰化图像Step 5. Obtain the whole clear image

将fi*(x,y)进行相加,Add f i *(x, y),

即得清晰化图像 f ( x , y ) = Σ i = 1 k + 1 f i * ( x , y ) . sharpen image f ( x , the y ) = Σ i = 1 k + 1 f i * ( x , the y ) .

本发明散焦模糊图像的清晰化处理方法,克服了现有的基于固定半径圆盘函数建模恢复方法的局限,利用散焦模糊图像的基本成像原理,构建起变半径的退化模糊模型圆盘函数,达到恢复出清晰图像的目的。The clearing processing method of the defocused blurred image of the present invention overcomes the limitations of the existing method of modeling and restoration based on the fixed-radius disc function, and uses the basic imaging principle of the defocused blurred image to construct a degenerated blurred model disc with a variable radius function to achieve the purpose of recovering a clear image.

附图说明 Description of drawings

图1为散焦原理示意图,其中a为照相机与拍摄景物的摆设关系,b为散焦原理图示;Figure 1 is a schematic diagram of the defocusing principle, where a is the arrangement relationship between the camera and the shooting scene, and b is the schematic diagram of the defocusing principle;

图2是本发明方法中的子图像分解示意图,其中a为同心圆的划分,b为第k个子图的区域范围。Fig. 2 is a schematic diagram of sub-image decomposition in the method of the present invention, wherein a is the division of concentric circles, and b is the area range of the kth sub-image.

具体实施方式 Detailed ways

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明提出了一种变半径圆盘函数下的恢复方法,是根据散焦模糊图像的基本成像原理,构建不同半径的退化模糊模型圆盘函数,将模糊图像分解为多个子图像,对每个子图像分别通过迭代方法查找最佳的模糊半径,并采用频域逆滤波的方法,对散焦模糊子图像进行逆滤波,从而达到恢复出清晰图像的目的。The present invention proposes a recovery method under variable-radius disc function, which is based on the basic imaging principle of defocused blurred images, constructs degenerated blur model disc functions with different radii, decomposes the blurred image into multiple sub-images, and calculates each sub-image The image is respectively searched for the best blur radius through an iterative method, and the frequency domain inverse filtering method is used to inverse filter the defocused blurred sub-image, so as to achieve the purpose of recovering a clear image.

本发明的散焦模糊图像的清晰化处理方法,按以下步骤实施:The clearing processing method of the defocused blurred image of the present invention is implemented according to the following steps:

步骤1:根据散焦模糊图像的退化原理,建立数学模型Step 1: Establish a mathematical model based on the degradation principle of defocused blurred images

图1a为数码成像器材与拍摄目标物的相对位置示意图,这是一种理想的拍摄状态。如图1b所示,当像点没有投射到照相机内部的成像板(CCD平面)上时,便会产生散焦模糊。图1b中的四条虚线两两代表由目标物的不同位置发出的光锥路径,像点即光锥的顶点并未落在相机成像板上,因此成像板上承接到的将是光锥的横截面,即一块光斑,图像由这些光斑叠加而成,故形成模糊效果。照相机成像板承接到近似圆形光斑的形状与半径会因为与镜头中心的相对位置(即图像的中心位置)不同而发生变化,其变化规律为越是接近于图像中心,光斑就越接近于圆形,光斑的半径就越小;越远离图像中心,光斑半径递增。Figure 1a is a schematic diagram of the relative positions of the digital imaging equipment and the shooting target, which is an ideal shooting state. As shown in Figure 1b, defocus blur occurs when the image point is not projected onto the imaging plate (CCD plane) inside the camera. Two of the four dotted lines in Figure 1b represent the path of the light cone emitted from different positions of the target. The image point, that is, the apex of the light cone does not fall on the imaging plate of the camera, so what is received on the imaging plate will be the horizontal direction of the light cone. A section is a piece of light spots, and the image is formed by superimposing these light spots, so it forms a blur effect. The shape and radius of the approximately circular spot received by the imaging plate of the camera will change due to the relative position to the center of the lens (that is, the center position of the image). The change rule is that the closer the spot is to the center of the image, the closer the spot is to a circle shape, the smaller the radius of the spot; the farther away from the center of the image, the increasing the radius of the spot.

因此,散焦可以近似为是由一点扩展为了一个均匀分布的圆形光斑,并且半径随着远离图像中心而递增,那么就可以将其简化为一个圆盘函数来进行模糊图像的建模,即:Therefore, defocus can be approximated as a uniformly distributed circular spot expanded from a point, and the radius increases as it moves away from the center of the image, then it can be simplified as a disc function to model the blurred image, namely :

hh (( xx ,, ythe y )) == 11 ππ RR bb 22 xx 22 ++ ythe y 22 ≤≤ RR bb 22 00 xx 22 ++ ythe y 22 >> RR bb 22 -- -- -- (( 11 ))

其中,Rb为模糊半径,π为圆周率,(x,y)为图像上的某个像素点。Among them, R b is the blur radius, π is the circumference ratio, and (x, y) is a certain pixel point on the image.

步骤2:初始模糊半径的选取Step 2: Selection of initial blur radius

由步骤1得到了散焦模糊的数学模型可知,模糊半径Rb是确定模糊程度的参数,因此,根据下面的方法先对整图进行模糊半径的查找,其获得的具体步骤如下:From the mathematical model of defocus blur obtained in step 1, it can be seen that the blur radius R b is a parameter to determine the degree of blur. Therefore, according to the following method, the blur radius is first searched for the entire image, and the specific steps for obtaining it are as follows:

2.1、图像梯度信息提取2.1. Image gradient information extraction

对所拍摄到的散焦图像进行锐化,生成梯度图Es和梯度方向图Eo,锐化采用Sobel算子,梯度的计算方程式为:The captured defocused image is sharpened to generate the gradient map E s and the gradient direction map E o , the sharpening uses the Sobel operator, and the calculation equation of the gradient is:

SS (( ii ,, jj )) == dd xx 22 ++ dd ythe y 22 -- -- -- (( 22 ))

其中,

Figure A200810151196D00122
Figure A200810151196D00123
g表示散焦图像。in,
Figure A200810151196D00122
Figure A200810151196D00123
g represents a defocused image.

则梯度图Es为Es=[S(i,j)]。Then the gradient map E s is E s =[S(i, j)].

梯度方向角,按下式求取:Gradient direction angle, calculated according to the following formula:

θθ Mm (( ii ,, jj )) == tgtg -- 11 (( dd ythe y dd xx )) -- -- -- (( 33 ))

对求取的θM按90°~67.5°,67.5°~22.5°,22.5°~-22.5°,-22.5°~-67.5°,-67.5°~-90°五个范围,划分为90°,45°,0°,-45°,-90°五个方向来构成梯度方向图EoThe obtained θ M is divided into 90° according to five ranges of 90°~67.5°, 67.5°~22.5°, 22.5°~-22.5°, -22.5°~-67.5°, -67.5°~-90°, 45°, 0°, -45°, -90° five directions to form the gradient pattern E o .

2.2、用非极大值抑制技术获得局部梯度幅度极大值点集En 2.2. Use the non-maximum suppression technique to obtain the local gradient magnitude maximum point set E n

对步骤2.1得到的梯度图Es,以及梯度方向图Eo,对每一个像素g(x,y),根据梯度方向图Eo中所指出的方向dk,沿正反双向检查相邻的两个像素。若Es(x,y)大于两个相邻像素的梯度强度,那么就令En(x,y)=Es(x,y),否则令En(x,y)=0。最后得到的矩阵En(x,y)即为局部梯度幅度极大值点集。For the gradient map E s obtained in step 2.1, and the gradient direction map E o , for each pixel g(x, y), according to the direction d k indicated in the gradient direction map E o , check the adjacent two pixels. If E s (x, y) is greater than the gradient strength of two adjacent pixels, then set En (x, y)=E s (x, y), otherwise set En (x, y)=0. The finally obtained matrix E n (x, y) is the local gradient magnitude maximum point set.

2.3、边沿宽度的求取2.3 Calculation of edge width

对局部梯度幅度极大值点集En,在给定阈值下进行二值化,得到轮廓图Ee。之后,对En中的任意一点P,按照梯度方向图Eo所指示的方向,沿该点的正负方向搜索Ee中的点。设沿正负方向搜索到Ee中的第一个点分别为P1、P2,如果P1和P2均满足:‖P-P1‖≤d和‖P-P2‖≤d(其中d为给定的阈值,即搜索的最长距离),则将P1和P2之间的距离作为相应的边缘宽度,否则跳过此点。将得到的宽度值计算求得均值M、方差D。选取M/2为整图的初始模糊半径RbFor the local gradient magnitude maximum point set E n , perform binarization under a given threshold to obtain the contour map E e . Afterwards, for any point P in E n , according to the direction indicated by the gradient pattern E o , search for the point in E e along the positive and negative directions of the point. Assume that the first points in E e searched along the positive and negative directions are P 1 and P 2 respectively, if both P 1 and P 2 satisfy: ‖PP 1 ‖≤d and ‖PP 2 ‖≤d (where d is given A given threshold, that is, the longest distance to search), then take the distance between P1 and P2 as the corresponding edge width, otherwise skip this point. Calculate the obtained width value to obtain the mean value M and the variance D. Select M/2 as the initial blur radius R b of the whole image.

步骤3:子图像的划分Step 3: Division of sub-images

考虑到成像时,散焦的模糊程度在整个图像上是不一样的,所以,本发明将原图像分解为多个子图像。Considering that during imaging, the degree of blurring of defocus is different in the whole image, so the present invention decomposes the original image into multiple sub-images.

分解方法为:如图2a所示,以图像中心为圆点,画k个同心圆,其半径为Rk=R1+(k-1)·ΔR。其中R1为最内层圆半径,ΔR为增量。那么就可以将图像分解为一个圆形区域、k-1个圆环区域、剩余图像区域共k+1个子图像,记为gs1、gs2...gs(k+1),第k个子图的区域范围如图2b所示的阴影部分。The decomposition method is as follows: as shown in Figure 2a, draw k concentric circles with the center of the image as the dot, and the radius is R k =R 1 +(k-1)·ΔR. Where R 1 is the radius of the innermost circle, and ΔR is the increment. Then the image can be decomposed into a circular area, k-1 circular areas, and k+1 sub-images in the remaining image area, denoted as g s1 , g s2 ... g s(k+1) , the kth The range of the sub-map is shown in the shaded part in Fig. 2b.

步骤4:子图像的清晰化处理Step 4: Sharpening of sub-images

由步骤2中得到的方差可得圆盘半径的步长为D/k,那么定义第i个子图像下的初始模糊半径可表示为:From the variance obtained in step 2, the step size of the disk radius can be obtained as D/k, then the initial blur radius under the i-th sub-image can be defined as:

Rbi(0)=Rb+(i-1)·D/k   (i=1,2,3...,k+1)。R bi (0)=R b +(i-1)·D/k (i=1, 2, 3 . . . , k+1).

4.1、根据该模糊半径,按照方程式(1)可以获得子图像的圆盘函数hi(x,y)4.1. According to the blur radius, the disk function h i (x, y) of the sub-image can be obtained according to equation (1)

4.2、将模糊图像子图像gsi(x,y)分别利用离散二维傅氏变换(DFT)完成频域转换,即:4.2. Use the discrete two-dimensional Fourier transform (DFT) to complete the frequency domain conversion of the blurred image sub-image g si (x, y), namely:

GG ii (( uu ,, vv )) == ΣΣ xx == 00 NN -- 11 ΣΣ ythe y == 00 NN -- 11 gg sithe si (( xx ,, ythe y )) expexp [[ -- 22 πjπj NN (( uxux ++ vyvy )) ]] -- -- -- (( 44 ))

其中,Gi(u,v),i=1,2,3...k+1为子图像的频域变换。Wherein, G i (u, v), i=1, 2, 3...k+1 is the frequency domain transformation of the sub-image.

4.3、将各子图像下对应的圆盘函数进行频域变换。即:4.3. Perform frequency domain transformation on the corresponding disc function under each sub-image. Right now:

Hh ii (( uu ,, vv )) == ΣΣ xx == 00 NN -- 11 ΣΣ ythe y == 00 NN -- 11 hh ii (( xx ,, ythe y )) expexp [[ -- 22 πjπj NN (( uxux ++ vyvy )) ]] -- -- -- (( 55 ))

其中,hi(u,v)为子图像对应圆盘函数,Hi(u,v)频域变换后系统函数。Wherein, h i (u, v) is the disc function corresponding to the sub-image, and H i (u, v) is the system function after frequency domain transformation.

4.4、计算噪声和原图像的功率谱Snn(u,v)和Sff(u,v)4.4. Calculate noise and power spectrum S nn (u, v) and S ff (u, v) of the original image

直接从模糊图像上计算各个像素附近的像素集合的局部方差,选取局部方差中的最大值作为图像的方差,同时在图像上找一块平坦区域,用其局部方差作为噪声方差。但往往人工不容易找到平坦区域,所以可利用下式计算图像的局部方差,图像边界方差不考虑在内。用局部方差的最大值和最小值的比值作为图像信噪比的估计,即:The local variance of the pixel set near each pixel is directly calculated from the blurred image, and the maximum value of the local variance is selected as the variance of the image. At the same time, a flat area is found on the image, and its local variance is used as the noise variance. However, it is often difficult to find a flat area manually, so the local variance of the image can be calculated using the following formula, and the variance of the image boundary is not taken into account. The ratio of the maximum value and the minimum value of the local variance is used as an estimate of the image signal-to-noise ratio, namely:

σσ 22 yLyL (( ii ,, jj )) == 11 (( 22 PP ++ 11 )) (( 22 QQ ++ 11 )) ΣΣ kk == -- PP PP ΣΣ ll == -- QQ QQ [[ ythe y (( ii ++ kk ,, jj ++ ll )) -- μμ ythe y (( ii ,, jj )) ]] 22 -- -- -- (( 66 ))

其中,μy是局部均值,按下式计算:Among them, μ y is the local mean, calculated as follows:

μμ ythe y == 11 (( 22 PP ++ 11 )) (( 22 QQ ++ 11 )) ΣΣ kk == -- PP PP ΣΣ ll == -- QQ QQ ythe y (( ii ++ kk ,, jj ++ ll )) -- -- -- (( 77 ))

方差计算使用的窗的尺寸是P=Q=2(即5×5窗)。The size of the window used for variance calculation is P=Q=2 (ie 5×5 window).

4.5、基于逆滤波的图像清晰恢复4.5. Image clarity restoration based on inverse filtering

根据上一步骤的子图像函数Hi(u,v)计算出各个复共轭函数本发明选用维纳滤波器进行逆滤波处理,从而实现清晰化,各子图像清晰化图像的频域表达记为Fi(u,v),即:Calculate each complex conjugate function according to the sub-image function H i (u, v) in the previous step The present invention selects the Wiener filter for inverse filtering processing, thereby realizing clearing, and the frequency domain expression of each sub-image clearing image is recorded as F i (u, v), namely:

Ff ii (( uu ,, vv )) == Hh ** ii (( uu ,, vv )) GG ii (( uu ,, vv )) || Hh ii (( uu ,, vv )) || 22 ++ SS nnnn (( uu ,, vv )) // SS ffff (( uu ,, vv )) -- -- -- (( 88 ))

对频域下各子图像Fi(u,v)进行二维离散傅氏反变换,恢复出各子图像的原图像fi(x,y)。The two-dimensional discrete Fourier inverse transform is performed on each sub-image F i (u, v) in the frequency domain to restore the original image f i (x, y) of each sub-image.

ff ii (( xx ,, ythe y )) == 11 NN 22 ΣΣ xx == 00 NN -- 11 ΣΣ ythe y == 00 NN -- 11 Ff ii (( uu ,, vv )) expexp [[ 22 πjπj NN (( uxux ++ vyvy )) ]] -- -- -- (( 99 ))

4.6、改变模糊半径,即计算Rbi(0)和Rbi(0)±ΔRi(ΔRi建议为1个像素),按照步骤4.1~步骤4.5获得各自的恢复子图像。4.6. Change the blur radius, that is, calculate R bi (0) and R bi (0)±ΔR i (ΔR i is recommended to be 1 pixel), and obtain respective restored sub-images according to steps 4.1 to 4.5.

4.7、计算步骤4.6得到的三个恢复图像的Sobel锐化细节能量图,能量图的获取方法,采用方程式(2)。4.7. Calculate the Sobel sharpened detail energy maps of the three recovered images obtained in step 4.6. The energy map acquisition method adopts equation (2).

4.8、计算步骤4.6得到的三个恢复图像方差的差异,然后按照差异小的方向进行迭代,直到寻找到方差差异最小的时机,停止迭代,选择迭代停止时的两个能量图中的最大能量均值的图像为最终结果,设为fi*(x,y)。至此,完成所有子图像的清晰化恢复处理。4.8. Calculate the difference in the variance of the three restored images obtained in step 4.6, and then iterate in the direction of the small difference until the timing with the smallest variance difference is found, stop the iteration, and select the maximum energy mean value in the two energy graphs when the iteration stops The image of is the final result, set f i *(x, y). So far, the sharpening restoration processing of all sub-images is completed.

步骤5:获得整幅清晰化图像Step 5: Obtain the whole sharpened image

将fi*(x,y)进行相加,Add f i *(x, y),

f ( x , y ) = Σ i = 1 k + 1 f i * ( x , y ) , 即得到清晰化图像。 f ( x , the y ) = Σ i = 1 k + 1 f i * ( x , the y ) , That is, a clear image is obtained.

Claims (4)

1. A method for sharpening a defocused blurred image, which is implemented according to the following steps,
step 1: establishing mathematical model for defocusing blurred image to be processed
Modeling of blurred images using a disk function, namely:
<math> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mfenced open='{' close='' separators=','> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mi>&pi;</mi> <msup> <msub> <mi>R</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mtd> <mtd> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>&le;</mo> <msup> <msub> <mi>R</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>></mo> <msup> <msub> <mi>R</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
wherein R isbThe fuzzy radius is adopted, pi is the circumference ratio, and (x, y) is a certain pixel point on the image;
step 2; selecting an initial blur radius
The method comprises the steps of searching a blur radius of a defocus blur integral image to be processed, firstly sharpening the shot defocus image to generate a gradient image EsSum pattern Eo(ii) a For the obtained gradient map EsAnd gradient directional diagram EoObtaining local gradient amplitude maximum value point set E by using non-maximum value inhibition technologyn(ii) a To EnCarrying out binarization under a given threshold value to obtain a contour map EeThen, the edge width is obtained, the obtained width value is calculated to obtain a mean value M and a variance D, and M/2 is selected as the initial fuzzy radius R of the whole graphb
And step 3: division of sub-images
Substituting the variance D obtained in step 2 into the equation k ═ int [ D-1-]Obtaining a parameter k of the sub-graph division number, drawing k concentric circles with the center of the image as a circular point and the radius of the concentric circles as Rk=R1+ (k-1). DELTA.R, wherein R1Dividing the image into k +1 sub-images of a circular region, k-1 circular ring regions and the rest image region, and recording as gs1、gs2...gs(k+1);
And 4, step 4: sharpening processing of sub-images
Obtaining the step length of the disc radius as D/k by using the variance obtained in the step 2 and the k obtained in the step 3, obtaining the initial fuzzy radius under the ith sub-image, and obtaining the disc function h of the sub-image according to the fuzzy radius and the equation (1)i(x, y), sub-image gsi(x, y) performing frequency domain conversion, performing frequency domain conversion on the corresponding disc function under each sub-image, and calculating the power spectrum S of the noise and the original imagenn(u, v) and Sff(u, v); then, based on inverse filtering, the image sharpness is restored, the fuzzy radius is changed, namely R is calculatedi(0) And Ri(0)±ΔRiObtaining three recovery sub-images, calculating Sobel sharpening energy-saving graphs of the three recovery images, calculating the variance difference of the three recovery images, then iterating according to the direction with small variance until the time with the minimum variance difference is found, stopping iterating, selecting the image with the maximum energy mean value in the two energy graphs when iterating is stopped as a final result, and setting the final result as fi *(x,y);
Step 5, obtaining the whole clear image
Will f isi *(x, y) are added to each other,
the clear image is obtained <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow></math>
2. A sharpening process according to claim 1, wherein said selecting an initial blur radius takes the following specific steps:
2.1 image gradient information extraction
Sharpening the shot defocused image to generate a gradient image EsAnd gradient pattern EoThe Sobel operator is adopted for sharpening, and the gradient calculation equation is as follows:
S ( i , j ) = d x 2 + d y 2 - - - ( 2 )
wherein,
Figure A200810151196C0003143743QIETU
Figure A200810151196C0003110429QIETU
g denotes defocused image, gradient map EsIs Es=[S(i,j)],
The gradient direction angle is calculated according to the following formula:
<math> <mrow> <msub> <mi>&theta;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tg</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>d</mi> <mi>y</mi> </msub> <msub> <mi>d</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
to obtain thetaMThe gradient directional diagram E is formed according to five directions of 90 degrees to 67.5 degrees, 67.5 degrees to 22.5 degrees, 22.5 degrees to-67.5 degrees, 67.5 degrees to-90 degrees, divided into 90 degrees, 45 degrees, 0 degrees, 45 degrees and-90 degrees0
2.2, obtaining a local gradient amplitude maximum value point set En by using a non-maximum value inhibition technology
For the gradient map E obtained in step 2.1sAnd gradient pattern EoFor each pixel g (x, y), according to the gradient direction diagram EoDirection d indicated inkChecking two adjacent pixels in both forward and reverse directions, if Es(x, y) is greater than the gradient strength of two adjacent pixels, let En(x,y)=Es(x, y), otherwise let En(x, y) is 0, resulting in matrix En(x, y) is the local gradient amplitude maximum point set;
2.3 determination of edge width
For local gradient amplitude maximum value point set EnBinary at a given thresholdTransforming to obtain a contour map EeThen to EnAccording to a gradient pattern EoThe indicated direction, search E in the positive and negative directions of the pointeA point in (E) is searched in the positive and negative directionseRespectively, is P1、P2If P is1And P2All satisfy: P-P | |1D and P-P are less than or equal to | |2If | is ≦ d, where d is the given threshold, i.e., the longest distance searched, then P is added1And P2The distance between them, otherwise skipping this point,
calculating the obtained width value to obtain a mean value M and a variance D, and selecting an initial fuzzy radius R with M/2 as the whole imageb
3. The processing method according to claim 1, characterized in that the sharpening of the sub-image in step 4 is carried out according to the following specific steps,
obtaining the step size of the disc radius as D/k from the variance obtained in step 2 of claim 1 and k obtained in step 3, and obtaining the initial blur radius under the ith sub-image as:
Rbi(0)=Rb+(i-1)·D/k (i=1,2,3...,k+1)
4.1 obtaining the disk function h of the subimage according to the equation (1) based on the blur radiusi(x,y);
4.2 sub-image g of the image to be blurredsi(x, y) performing frequency domain conversion by using discrete two-dimensional Fourier transform respectively, namely:
<math> <mrow> <msub> <mi>G</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>g</mi> <mi>si</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>[</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;j</mi> </mrow> <mi>N</mi> </mfrac> <mrow> <mo>(</mo> <mi>ux</mi> <mo>+</mo> <mi>vy</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
wherein G isi(u, v), i ═ 1, 2, 3.. k +1 is the frequency domain transform of the sub-images;
4.3, carrying out frequency domain transformation on the corresponding disc function under each sub-image, namely:
<math> <mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>[</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;j</mi> </mrow> <mi>N</mi> </mfrac> <mrow> <mo>(</mo> <mi>ux</mi> <mo>+</mo> <mi>vy</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow></math>
wherein h isi(u, v) is the corresponding disk function for the subimage, Hi(u, v) a system function after frequency domain transformation;
4.4 calculating the Power Spectrum S of the noise and the original imagenn(u, v) and Sff(u,v);
Calculating the local variance of a pixel set near each pixel directly from a blurred image, selecting the maximum value in the local variances as the variance of the image, simultaneously finding a flat area on the image, using the local variance as the noise variance, calculating the local variance of the image by using an equation (6), and using the ratio of the maximum value and the minimum value of the local variance as the estimation of the signal-to-noise ratio of the image, namely:
<math> <mrow> <msub> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>yL</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>Q</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mo>-</mo> <mi>P</mi> </mrow> <mi>P</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mo>-</mo> <mi>Q</mi> </mrow> <mi>Q</mi> </munderover> <msup> <mrow> <mo>[</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mi>k</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
μ in equation (6)yIs the local mean, calculated as:
<math> <mrow> <msub> <mi>&mu;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>Q</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mo>-</mo> <mi>P</mi> </mrow> <mi>P</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mo>-</mo> <mi>Q</mi> </mrow> <mi>Q</mi> </munderover> <mi>y</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mi>k</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow></math>
the size of the window used for variance calculation is P ═ Q ═ 2;
4.5 inverse filter based image sharpness restoration
Subimage function H according to step 4.3i(u, v) calculating respective complex conjugate functionsPerforming inverse filtering with a filter to realize sharpening, wherein the frequency domain expression of each sub-image sharpened image is recorded as Fi(u, v), namely:
F i ( u , v ) = H * i ( u , v ) G i ( u , v ) | H i ( u , v ) | 2 + S nn ( u , v ) / S ff ( u , v ) - - - ( 8 )
for each sub-image F in the frequency domaini(u, v) performing inverse discrete Fourier transform to recover the original image f of each sub-imagei(x,y),
<math> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mi>N</mi> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>F</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>[</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;j</mi> </mrow> <mi>N</mi> </mfrac> <mrow> <mo>(</mo> <mi>ux</mi> <mo>+</mo> <mi>vy</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
4.6 changing the blur radius, i.e. calculating Ri(0) And Ri(0)±ΔRiObtaining three recovery sub-images according to the steps 4.1 to 4.5;
4.7, calculating a Sobel sharpened detailed energy-saving map of the three recovered images obtained in the step 4.6, wherein the energy map acquisition method adopts an equation (2);
4.8, calculating the variance difference of the three recovery images obtained in the step 4.6, then iterating according to the direction with small variance until the time with the minimum variance difference is found, stopping iterating, selecting the image with the maximum energy mean value in the two energy graphs when iterating is stopped as a final result, and setting the final result as fi *(x,y)。
CNA2008101511969A 2008-09-28 2008-09-28 A method for sharpening defocused blurred images Pending CN101364302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008101511969A CN101364302A (en) 2008-09-28 2008-09-28 A method for sharpening defocused blurred images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008101511969A CN101364302A (en) 2008-09-28 2008-09-28 A method for sharpening defocused blurred images

Publications (1)

Publication Number Publication Date
CN101364302A true CN101364302A (en) 2009-02-11

Family

ID=40390658

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101511969A Pending CN101364302A (en) 2008-09-28 2008-09-28 A method for sharpening defocused blurred images

Country Status (1)

Country Link
CN (1) CN101364302A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170526A (en) * 2011-03-22 2011-08-31 公安部第三研究所 Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core
CN102203827A (en) * 2009-10-02 2011-09-28 香港中文大学 Method and device for editing images
CN102201112A (en) * 2010-03-25 2011-09-28 联咏科技股份有限公司 Hierarchical motion blur removing method for single image
CN102708555A (en) * 2012-03-27 2012-10-03 陕西师范大学 Method for removing defocus blur of color images
CN102045514B (en) * 2009-10-13 2012-12-05 原相科技股份有限公司 Image noise filtering method
US8509559B2 (en) 2010-03-16 2013-08-13 Novatek Microelectronics Corp. Hierarchical motion deblurring method for single image
CN103279934A (en) * 2013-06-07 2013-09-04 南京大学 Remote sensing image recovery method based on little support domain regularization inverse convolution
CN105719320A (en) * 2016-01-25 2016-06-29 华中农业大学 Vegetation canopy coverage calculation method and system based on colorful digital image
CN107563978A (en) * 2017-08-31 2018-01-09 苏州科达科技股份有限公司 Face deblurring method and device
CN105678761B (en) * 2016-01-05 2018-07-24 中国航空无线电电子研究所 A kind of noise image based on direction extreme value defocuses figure method of estimation
CN106682617B (en) * 2016-12-28 2019-11-05 电子科技大学 A kind of image clearly based on frequency spectrum segment information and fuzzy discrimination feature extracting method
CN110470219A (en) * 2019-08-16 2019-11-19 福建农林大学 The out-of-focus image distance measuring method and device retained based on edge spectrum
CN110796584A (en) * 2019-10-28 2020-02-14 国网内蒙古东部电力有限公司电力科学研究院 Motion blurred image modeling method and device, storage medium and inspection robot
CN110988888A (en) * 2019-11-08 2020-04-10 中科长城海洋信息系统有限公司 Method and device for acquiring seabed information

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203827A (en) * 2009-10-02 2011-09-28 香港中文大学 Method and device for editing images
CN102203827B (en) * 2009-10-02 2013-05-29 香港中文大学 Method and apparatus for editing image
CN102045514B (en) * 2009-10-13 2012-12-05 原相科技股份有限公司 Image noise filtering method
US8509559B2 (en) 2010-03-16 2013-08-13 Novatek Microelectronics Corp. Hierarchical motion deblurring method for single image
CN102201112A (en) * 2010-03-25 2011-09-28 联咏科技股份有限公司 Hierarchical motion blur removing method for single image
CN102201112B (en) * 2010-03-25 2013-05-22 联咏科技股份有限公司 Hierarchical de-blurring method for single image
CN102170526B (en) * 2011-03-22 2012-09-05 公安部第三研究所 Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core
CN102170526A (en) * 2011-03-22 2011-08-31 公安部第三研究所 Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core
CN102708555A (en) * 2012-03-27 2012-10-03 陕西师范大学 Method for removing defocus blur of color images
CN103279934A (en) * 2013-06-07 2013-09-04 南京大学 Remote sensing image recovery method based on little support domain regularization inverse convolution
CN103279934B (en) * 2013-06-07 2015-08-26 南京大学 A kind of remote sensing image restoration methods based on little support region regularization inverse convolution
CN105678761B (en) * 2016-01-05 2018-07-24 中国航空无线电电子研究所 A kind of noise image based on direction extreme value defocuses figure method of estimation
CN105719320A (en) * 2016-01-25 2016-06-29 华中农业大学 Vegetation canopy coverage calculation method and system based on colorful digital image
CN106682617B (en) * 2016-12-28 2019-11-05 电子科技大学 A kind of image clearly based on frequency spectrum segment information and fuzzy discrimination feature extracting method
CN107563978A (en) * 2017-08-31 2018-01-09 苏州科达科技股份有限公司 Face deblurring method and device
CN110470219A (en) * 2019-08-16 2019-11-19 福建农林大学 The out-of-focus image distance measuring method and device retained based on edge spectrum
CN110796584A (en) * 2019-10-28 2020-02-14 国网内蒙古东部电力有限公司电力科学研究院 Motion blurred image modeling method and device, storage medium and inspection robot
CN110988888A (en) * 2019-11-08 2020-04-10 中科长城海洋信息系统有限公司 Method and device for acquiring seabed information
CN110988888B (en) * 2019-11-08 2021-10-29 中科长城海洋信息系统有限公司 Method and device for acquiring seabed information

Similar Documents

Publication Publication Date Title
CN101364302A (en) A method for sharpening defocused blurred images
CN108765325B (en) A method for restoring blurred images of small unmanned aerial vehicles
WO2019148739A1 (en) Comprehensive processing method and system for blurred image
CN100474337C (en) Noise-possessing movement fuzzy image restoration method based on radial basis nerve network
CN104143185B (en) A kind of stain method for detecting area
CN108537833B (en) Infrared image rapid splicing method
US12165288B2 (en) Frequency domain-based method for removing periodic noise from reconstructed light field image
CN101852970B (en) Automatic focusing method for camera under imaging viewing field scanning state
CN113743147B (en) Anti-fuzzy two-dimensional code image based on fuzzy imaging mechanism and blind restoration method thereof
US20240331362A1 (en) Ai system and method to enhance images acquired through random medium
CN104915940A (en) Alignment-based image denoising method and system
CN109345486A (en) A kind of facial image deblurring method based on adaptive mesh deformation
CN114283103A (en) Multi-depth-of-field fusion technology for ultra-high-definition panoramic image in AIT process of manned spacecraft
CN114612352A (en) Multi-focus image fusion method, storage medium and computer
CN106791353B (en) The methods, devices and systems of auto-focusing
CN102542535A (en) Method for deblurring iris image
CN109949256A (en) An Astronomical Image Fusion Method Based on Fourier Transform
Lin et al. Motion blur removal and its application to vehicle speed detection
CN111640077A (en) Simple and efficient fuzzy text picture sharpening processing method
Qi et al. Motion deblurring for optical character recognition
JP2012155456A (en) Subject separation device, image restoration device, subject separation method, and image restoration method
CN118657668A (en) A multi-focus image fusion method to eliminate defocus diffusion effect
Wee et al. Derivation of blur-invariant features using orthogonal Legendre moments
CN114926331A (en) Panoramic image splicing method applied to vehicle
CN113658317B (en) Method and device for processing continuous shooting image of electron microscope

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20090211

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载