CN101364302A - A method for sharpening defocused blurred images - Google Patents
A method for sharpening defocused blurred images Download PDFInfo
- Publication number
- CN101364302A CN101364302A CNA2008101511969A CN200810151196A CN101364302A CN 101364302 A CN101364302 A CN 101364302A CN A2008101511969 A CNA2008101511969 A CN A2008101511969A CN 200810151196 A CN200810151196 A CN 200810151196A CN 101364302 A CN101364302 A CN 101364302A
- Authority
- CN
- China
- Prior art keywords
- mrow
- image
- msub
- sub
- munderover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000011084 recovery Methods 0.000 claims abstract description 8
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000003672 processing method Methods 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000004576 sand Substances 0.000 claims 3
- 230000005764 inhibitory process Effects 0.000 claims 2
- 238000003384 imaging method Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域 technical field
本发明属于数字图像恢复技术领域,涉及一种散焦模糊图像的清晰化处理方法。The invention belongs to the technical field of digital image restoration, and relates to a method for clearing defocused blurred images.
背景技术 Background technique
当拍摄照片时,有时会出现图像模糊的情况,造成这种情况的原因主要是被拍摄物体未处于成像系统的焦平面上,称之为散焦模糊。对于一些包含重要信息的照片,因为散焦模糊而无法识别,如果没有机会再次拍摄,或者再次拍摄所要付出的代价太高,就可以采用散焦模糊的恢复清晰化技术对其进行清晰化的处理。现有散焦模糊的恢复清晰化技术大多是基于固定半径圆盘函数建模恢复方法,这类方法对实际中产生的光学散焦模糊的恢复能力极其有限。When taking a photo, sometimes the image will be blurred, which is mainly caused by the fact that the object to be photographed is not on the focal plane of the imaging system, which is called defocus blur. For some photos containing important information, which cannot be recognized due to defocus blur, if there is no chance to shoot again, or the cost of taking another shot is too high, you can use the defocus blur restoration and clearing technology to clear them . Most of the existing defocus blur restoration and clearing techniques are based on fixed-radius disk function modeling restoration methods, which have extremely limited ability to restore optical defocus blur generated in practice.
发明内容 Contents of the invention
本发明的目的在于提供一种散焦模糊图像的清晰化处理方法,克服了现有技术对模糊图像的恢复能力有限的问题,能够将散焦模糊的图像恢复为清晰的图像。The purpose of the present invention is to provide a method for sharpening defocused blurred images, which overcomes the problem of limited recovery ability of blurred images in the prior art, and can restore defocused blurred images to clear images.
本发明所采用的技术方案是,一种散焦模糊图像的清晰化处理方法,该方法按照以下步骤实施,The technical solution adopted in the present invention is a method for clearing defocused blurred images, which is implemented according to the following steps,
步骤1:对待处理的散焦模糊图像建立数学模型Step 1: Establish a mathematical model for the defocused blurred image to be processed
利用一个圆盘函数来进行模糊图像的建模,即:A disc function is used to model the blurred image, namely:
其中,Rb为模糊半径,π为圆周率,(x,y)为图像上的某个像素点;Among them, R b is the blur radius, π is the circumference ratio, and (x, y) is a certain pixel point on the image;
步骤2:选取初始模糊半径Step 2: Pick an initial blur radius
对待处理的散焦模糊整图进行模糊半径的查找,首先对所拍摄到的散焦图像进行锐化,生成梯度图Es和方向图Eo;对得到的梯度图Es以及梯度方向图Eo,用非极大值抑制技术获得局部梯度幅度极大值点集En;对En在给定阈值下进行二值化,得到轮廓图Ee,再求取边沿宽度,将得到的宽度值计算得到均值M和方差D,选取M/2为整图的初始模糊半径Rb;Search for the blur radius of the defocused blurred image to be processed, first sharpen the captured defocused image, and generate the gradient map E s and the direction map E o ; the obtained gradient map E s and the gradient direction map E o , use the non-maximum value suppression technique to obtain the local gradient magnitude maximum point set E n ; binarize E n under a given threshold to obtain the contour map E e , and then calculate the edge width, the obtained width Calculate the mean value M and variance D, and select M/2 as the initial blur radius R b of the whole image;
步骤3:子图像的划分Step 3: Division of sub-images
将步骤2中所得到的方差D代入方程式k=int[D-1],得到子图划分个数的参数k,再以图像中心为圆点,画k个同心圆,其半径为Rk=R1+(k-1)·ΔR,其中R1为最内层圆半径,ΔR为增量,将图像分解为一个圆形区域、k-1个圆环区域、剩余图像区域共k+1个子图像,记为gs1、gs2...gs(k+1);Substitute the variance D obtained in step 2 into the equation k=int[D-1] to obtain the parameter k of the number of sub-images, and then draw k concentric circles with the center of the image as a dot, and its radius is R k = R 1 +(k-1)·ΔR, where R 1 is the radius of the innermost circle, and ΔR is the increment. The image is decomposed into a circular area, k-1 circular areas, and the remaining image areas are k+1 sub-images, denoted as g s1 , g s2 ...g s(k+1) ;
步骤4:子图像的清晰化处理Step 4: Sharpening of sub-images
用步骤2中得到的方差和步骤3中得到的k,得到圆盘半径的步长为D/k,得到第i个子图像下的初始模糊半径,根据该模糊半径,按照方程式(1)获得子图像的圆盘函数hi(x,y),将子图像gsi(x,y)进行频域转换,再将各子图像下对应的圆盘函数进行频域变换,并计算噪声和原图像的功率谱Snn(u,v)和Sff(u,v);然后基于逆滤波进行图像清晰恢复,改变模糊半径,即计算Ri(0)和Ri(0)±ΔRi,以此获得三个恢复子图像,计算该三个恢复图像的Sobel锐化细节能量图,并计算该三个恢复图像方差的差异,然后按照差异小的方向进行迭代,直到寻找到方差差异最小的时机,停止迭代,选择迭代停止时的两个能量图中的最大能量均值的图像为最终结果,设为fi*(x,y);With the variance obtained in step 2 and the k obtained in step 3, the step size of the disk radius is D/k, and the initial blur radius under the i-th sub-image is obtained. According to the blur radius, the sub-image is obtained according to equation (1). The disk function h i (x, y) of the image, the sub-image g si (x, y) is converted in the frequency domain, and then the corresponding disk function under each sub-image is converted in the frequency domain, and the noise and the original image are calculated The power spectrum S nn (u, v) and S ff (u, v); and then based on the inverse filter to restore image clarity, change the blur radius, that is, calculate R i (0) and R i (0)±ΔR i , to This obtains three restored sub-images, calculates the Sobel sharpening detail energy map of the three restored images, and calculates the difference in variance of the three restored images, and then iterates in the direction of the small difference until the opportunity with the smallest variance difference is found , stop the iteration, select the image of the maximum energy mean value in the two energy maps when the iteration stops as the final result, set it as f i *(x, y);
步骤5、获得整幅清晰化图像Step 5. Obtain the whole clear image
将fi*(x,y)进行相加,Add f i *(x, y),
即得清晰化图像
本发明散焦模糊图像的清晰化处理方法,克服了现有的基于固定半径圆盘函数建模恢复方法的局限,利用散焦模糊图像的基本成像原理,构建起变半径的退化模糊模型圆盘函数,达到恢复出清晰图像的目的。The clearing processing method of the defocused blurred image of the present invention overcomes the limitations of the existing method of modeling and restoration based on the fixed-radius disc function, and uses the basic imaging principle of the defocused blurred image to construct a degenerated blurred model disc with a variable radius function to achieve the purpose of recovering a clear image.
附图说明 Description of drawings
图1为散焦原理示意图,其中a为照相机与拍摄景物的摆设关系,b为散焦原理图示;Figure 1 is a schematic diagram of the defocusing principle, where a is the arrangement relationship between the camera and the shooting scene, and b is the schematic diagram of the defocusing principle;
图2是本发明方法中的子图像分解示意图,其中a为同心圆的划分,b为第k个子图的区域范围。Fig. 2 is a schematic diagram of sub-image decomposition in the method of the present invention, wherein a is the division of concentric circles, and b is the area range of the kth sub-image.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明提出了一种变半径圆盘函数下的恢复方法,是根据散焦模糊图像的基本成像原理,构建不同半径的退化模糊模型圆盘函数,将模糊图像分解为多个子图像,对每个子图像分别通过迭代方法查找最佳的模糊半径,并采用频域逆滤波的方法,对散焦模糊子图像进行逆滤波,从而达到恢复出清晰图像的目的。The present invention proposes a recovery method under variable-radius disc function, which is based on the basic imaging principle of defocused blurred images, constructs degenerated blur model disc functions with different radii, decomposes the blurred image into multiple sub-images, and calculates each sub-image The image is respectively searched for the best blur radius through an iterative method, and the frequency domain inverse filtering method is used to inverse filter the defocused blurred sub-image, so as to achieve the purpose of recovering a clear image.
本发明的散焦模糊图像的清晰化处理方法,按以下步骤实施:The clearing processing method of the defocused blurred image of the present invention is implemented according to the following steps:
步骤1:根据散焦模糊图像的退化原理,建立数学模型Step 1: Establish a mathematical model based on the degradation principle of defocused blurred images
图1a为数码成像器材与拍摄目标物的相对位置示意图,这是一种理想的拍摄状态。如图1b所示,当像点没有投射到照相机内部的成像板(CCD平面)上时,便会产生散焦模糊。图1b中的四条虚线两两代表由目标物的不同位置发出的光锥路径,像点即光锥的顶点并未落在相机成像板上,因此成像板上承接到的将是光锥的横截面,即一块光斑,图像由这些光斑叠加而成,故形成模糊效果。照相机成像板承接到近似圆形光斑的形状与半径会因为与镜头中心的相对位置(即图像的中心位置)不同而发生变化,其变化规律为越是接近于图像中心,光斑就越接近于圆形,光斑的半径就越小;越远离图像中心,光斑半径递增。Figure 1a is a schematic diagram of the relative positions of the digital imaging equipment and the shooting target, which is an ideal shooting state. As shown in Figure 1b, defocus blur occurs when the image point is not projected onto the imaging plate (CCD plane) inside the camera. Two of the four dotted lines in Figure 1b represent the path of the light cone emitted from different positions of the target. The image point, that is, the apex of the light cone does not fall on the imaging plate of the camera, so what is received on the imaging plate will be the horizontal direction of the light cone. A section is a piece of light spots, and the image is formed by superimposing these light spots, so it forms a blur effect. The shape and radius of the approximately circular spot received by the imaging plate of the camera will change due to the relative position to the center of the lens (that is, the center position of the image). The change rule is that the closer the spot is to the center of the image, the closer the spot is to a circle shape, the smaller the radius of the spot; the farther away from the center of the image, the increasing the radius of the spot.
因此,散焦可以近似为是由一点扩展为了一个均匀分布的圆形光斑,并且半径随着远离图像中心而递增,那么就可以将其简化为一个圆盘函数来进行模糊图像的建模,即:Therefore, defocus can be approximated as a uniformly distributed circular spot expanded from a point, and the radius increases as it moves away from the center of the image, then it can be simplified as a disc function to model the blurred image, namely :
其中,Rb为模糊半径,π为圆周率,(x,y)为图像上的某个像素点。Among them, R b is the blur radius, π is the circumference ratio, and (x, y) is a certain pixel point on the image.
步骤2:初始模糊半径的选取Step 2: Selection of initial blur radius
由步骤1得到了散焦模糊的数学模型可知,模糊半径Rb是确定模糊程度的参数,因此,根据下面的方法先对整图进行模糊半径的查找,其获得的具体步骤如下:From the mathematical model of defocus blur obtained in
2.1、图像梯度信息提取2.1. Image gradient information extraction
对所拍摄到的散焦图像进行锐化,生成梯度图Es和梯度方向图Eo,锐化采用Sobel算子,梯度的计算方程式为:The captured defocused image is sharpened to generate the gradient map E s and the gradient direction map E o , the sharpening uses the Sobel operator, and the calculation equation of the gradient is:
其中, g表示散焦图像。in, g represents a defocused image.
则梯度图Es为Es=[S(i,j)]。Then the gradient map E s is E s =[S(i, j)].
梯度方向角,按下式求取:Gradient direction angle, calculated according to the following formula:
对求取的θM按90°~67.5°,67.5°~22.5°,22.5°~-22.5°,-22.5°~-67.5°,-67.5°~-90°五个范围,划分为90°,45°,0°,-45°,-90°五个方向来构成梯度方向图Eo。The obtained θ M is divided into 90° according to five ranges of 90°~67.5°, 67.5°~22.5°, 22.5°~-22.5°, -22.5°~-67.5°, -67.5°~-90°, 45°, 0°, -45°, -90° five directions to form the gradient pattern E o .
2.2、用非极大值抑制技术获得局部梯度幅度极大值点集En 2.2. Use the non-maximum suppression technique to obtain the local gradient magnitude maximum point set E n
对步骤2.1得到的梯度图Es,以及梯度方向图Eo,对每一个像素g(x,y),根据梯度方向图Eo中所指出的方向dk,沿正反双向检查相邻的两个像素。若Es(x,y)大于两个相邻像素的梯度强度,那么就令En(x,y)=Es(x,y),否则令En(x,y)=0。最后得到的矩阵En(x,y)即为局部梯度幅度极大值点集。For the gradient map E s obtained in step 2.1, and the gradient direction map E o , for each pixel g(x, y), according to the direction d k indicated in the gradient direction map E o , check the adjacent two pixels. If E s (x, y) is greater than the gradient strength of two adjacent pixels, then set En (x, y)=E s (x, y), otherwise set En (x, y)=0. The finally obtained matrix E n (x, y) is the local gradient magnitude maximum point set.
2.3、边沿宽度的求取2.3 Calculation of edge width
对局部梯度幅度极大值点集En,在给定阈值下进行二值化,得到轮廓图Ee。之后,对En中的任意一点P,按照梯度方向图Eo所指示的方向,沿该点的正负方向搜索Ee中的点。设沿正负方向搜索到Ee中的第一个点分别为P1、P2,如果P1和P2均满足:‖P-P1‖≤d和‖P-P2‖≤d(其中d为给定的阈值,即搜索的最长距离),则将P1和P2之间的距离作为相应的边缘宽度,否则跳过此点。将得到的宽度值计算求得均值M、方差D。选取M/2为整图的初始模糊半径Rb。For the local gradient magnitude maximum point set E n , perform binarization under a given threshold to obtain the contour map E e . Afterwards, for any point P in E n , according to the direction indicated by the gradient pattern E o , search for the point in E e along the positive and negative directions of the point. Assume that the first points in E e searched along the positive and negative directions are P 1 and P 2 respectively, if both P 1 and P 2 satisfy: ‖PP 1 ‖≤d and ‖PP 2 ‖≤d (where d is given A given threshold, that is, the longest distance to search), then take the distance between P1 and P2 as the corresponding edge width, otherwise skip this point. Calculate the obtained width value to obtain the mean value M and the variance D. Select M/2 as the initial blur radius R b of the whole image.
步骤3:子图像的划分Step 3: Division of sub-images
考虑到成像时,散焦的模糊程度在整个图像上是不一样的,所以,本发明将原图像分解为多个子图像。Considering that during imaging, the degree of blurring of defocus is different in the whole image, so the present invention decomposes the original image into multiple sub-images.
分解方法为:如图2a所示,以图像中心为圆点,画k个同心圆,其半径为Rk=R1+(k-1)·ΔR。其中R1为最内层圆半径,ΔR为增量。那么就可以将图像分解为一个圆形区域、k-1个圆环区域、剩余图像区域共k+1个子图像,记为gs1、gs2...gs(k+1),第k个子图的区域范围如图2b所示的阴影部分。The decomposition method is as follows: as shown in Figure 2a, draw k concentric circles with the center of the image as the dot, and the radius is R k =R 1 +(k-1)·ΔR. Where R 1 is the radius of the innermost circle, and ΔR is the increment. Then the image can be decomposed into a circular area, k-1 circular areas, and k+1 sub-images in the remaining image area, denoted as g s1 , g s2 ... g s(k+1) , the kth The range of the sub-map is shown in the shaded part in Fig. 2b.
步骤4:子图像的清晰化处理Step 4: Sharpening of sub-images
由步骤2中得到的方差可得圆盘半径的步长为D/k,那么定义第i个子图像下的初始模糊半径可表示为:From the variance obtained in step 2, the step size of the disk radius can be obtained as D/k, then the initial blur radius under the i-th sub-image can be defined as:
Rbi(0)=Rb+(i-1)·D/k (i=1,2,3...,k+1)。R bi (0)=R b +(i-1)·D/k (i=1, 2, 3 . . . , k+1).
4.1、根据该模糊半径,按照方程式(1)可以获得子图像的圆盘函数hi(x,y)4.1. According to the blur radius, the disk function h i (x, y) of the sub-image can be obtained according to equation (1)
4.2、将模糊图像子图像gsi(x,y)分别利用离散二维傅氏变换(DFT)完成频域转换,即:4.2. Use the discrete two-dimensional Fourier transform (DFT) to complete the frequency domain conversion of the blurred image sub-image g si (x, y), namely:
其中,Gi(u,v),i=1,2,3...k+1为子图像的频域变换。Wherein, G i (u, v), i=1, 2, 3...k+1 is the frequency domain transformation of the sub-image.
4.3、将各子图像下对应的圆盘函数进行频域变换。即:4.3. Perform frequency domain transformation on the corresponding disc function under each sub-image. Right now:
其中,hi(u,v)为子图像对应圆盘函数,Hi(u,v)频域变换后系统函数。Wherein, h i (u, v) is the disc function corresponding to the sub-image, and H i (u, v) is the system function after frequency domain transformation.
4.4、计算噪声和原图像的功率谱Snn(u,v)和Sff(u,v)4.4. Calculate noise and power spectrum S nn (u, v) and S ff (u, v) of the original image
直接从模糊图像上计算各个像素附近的像素集合的局部方差,选取局部方差中的最大值作为图像的方差,同时在图像上找一块平坦区域,用其局部方差作为噪声方差。但往往人工不容易找到平坦区域,所以可利用下式计算图像的局部方差,图像边界方差不考虑在内。用局部方差的最大值和最小值的比值作为图像信噪比的估计,即:The local variance of the pixel set near each pixel is directly calculated from the blurred image, and the maximum value of the local variance is selected as the variance of the image. At the same time, a flat area is found on the image, and its local variance is used as the noise variance. However, it is often difficult to find a flat area manually, so the local variance of the image can be calculated using the following formula, and the variance of the image boundary is not taken into account. The ratio of the maximum value and the minimum value of the local variance is used as an estimate of the image signal-to-noise ratio, namely:
其中,μy是局部均值,按下式计算:Among them, μ y is the local mean, calculated as follows:
方差计算使用的窗的尺寸是P=Q=2(即5×5窗)。The size of the window used for variance calculation is P=Q=2 (ie 5×5 window).
4.5、基于逆滤波的图像清晰恢复4.5. Image clarity restoration based on inverse filtering
根据上一步骤的子图像函数Hi(u,v)计算出各个复共轭函数本发明选用维纳滤波器进行逆滤波处理,从而实现清晰化,各子图像清晰化图像的频域表达记为Fi(u,v),即:Calculate each complex conjugate function according to the sub-image function H i (u, v) in the previous step The present invention selects the Wiener filter for inverse filtering processing, thereby realizing clearing, and the frequency domain expression of each sub-image clearing image is recorded as F i (u, v), namely:
对频域下各子图像Fi(u,v)进行二维离散傅氏反变换,恢复出各子图像的原图像fi(x,y)。The two-dimensional discrete Fourier inverse transform is performed on each sub-image F i (u, v) in the frequency domain to restore the original image f i (x, y) of each sub-image.
4.6、改变模糊半径,即计算Rbi(0)和Rbi(0)±ΔRi(ΔRi建议为1个像素),按照步骤4.1~步骤4.5获得各自的恢复子图像。4.6. Change the blur radius, that is, calculate R bi (0) and R bi (0)±ΔR i (ΔR i is recommended to be 1 pixel), and obtain respective restored sub-images according to steps 4.1 to 4.5.
4.7、计算步骤4.6得到的三个恢复图像的Sobel锐化细节能量图,能量图的获取方法,采用方程式(2)。4.7. Calculate the Sobel sharpened detail energy maps of the three recovered images obtained in step 4.6. The energy map acquisition method adopts equation (2).
4.8、计算步骤4.6得到的三个恢复图像方差的差异,然后按照差异小的方向进行迭代,直到寻找到方差差异最小的时机,停止迭代,选择迭代停止时的两个能量图中的最大能量均值的图像为最终结果,设为fi*(x,y)。至此,完成所有子图像的清晰化恢复处理。4.8. Calculate the difference in the variance of the three restored images obtained in step 4.6, and then iterate in the direction of the small difference until the timing with the smallest variance difference is found, stop the iteration, and select the maximum energy mean value in the two energy graphs when the iteration stops The image of is the final result, set f i *(x, y). So far, the sharpening restoration processing of all sub-images is completed.
步骤5:获得整幅清晰化图像Step 5: Obtain the whole sharpened image
将fi*(x,y)进行相加,Add f i *(x, y),
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101511969A CN101364302A (en) | 2008-09-28 | 2008-09-28 | A method for sharpening defocused blurred images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101511969A CN101364302A (en) | 2008-09-28 | 2008-09-28 | A method for sharpening defocused blurred images |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101364302A true CN101364302A (en) | 2009-02-11 |
Family
ID=40390658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101511969A Pending CN101364302A (en) | 2008-09-28 | 2008-09-28 | A method for sharpening defocused blurred images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101364302A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102170526A (en) * | 2011-03-22 | 2011-08-31 | 公安部第三研究所 | Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core |
CN102203827A (en) * | 2009-10-02 | 2011-09-28 | 香港中文大学 | Method and device for editing images |
CN102201112A (en) * | 2010-03-25 | 2011-09-28 | 联咏科技股份有限公司 | Hierarchical motion blur removing method for single image |
CN102708555A (en) * | 2012-03-27 | 2012-10-03 | 陕西师范大学 | Method for removing defocus blur of color images |
CN102045514B (en) * | 2009-10-13 | 2012-12-05 | 原相科技股份有限公司 | Image noise filtering method |
US8509559B2 (en) | 2010-03-16 | 2013-08-13 | Novatek Microelectronics Corp. | Hierarchical motion deblurring method for single image |
CN103279934A (en) * | 2013-06-07 | 2013-09-04 | 南京大学 | Remote sensing image recovery method based on little support domain regularization inverse convolution |
CN105719320A (en) * | 2016-01-25 | 2016-06-29 | 华中农业大学 | Vegetation canopy coverage calculation method and system based on colorful digital image |
CN107563978A (en) * | 2017-08-31 | 2018-01-09 | 苏州科达科技股份有限公司 | Face deblurring method and device |
CN105678761B (en) * | 2016-01-05 | 2018-07-24 | 中国航空无线电电子研究所 | A kind of noise image based on direction extreme value defocuses figure method of estimation |
CN106682617B (en) * | 2016-12-28 | 2019-11-05 | 电子科技大学 | A kind of image clearly based on frequency spectrum segment information and fuzzy discrimination feature extracting method |
CN110470219A (en) * | 2019-08-16 | 2019-11-19 | 福建农林大学 | The out-of-focus image distance measuring method and device retained based on edge spectrum |
CN110796584A (en) * | 2019-10-28 | 2020-02-14 | 国网内蒙古东部电力有限公司电力科学研究院 | Motion blurred image modeling method and device, storage medium and inspection robot |
CN110988888A (en) * | 2019-11-08 | 2020-04-10 | 中科长城海洋信息系统有限公司 | Method and device for acquiring seabed information |
-
2008
- 2008-09-28 CN CNA2008101511969A patent/CN101364302A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102203827A (en) * | 2009-10-02 | 2011-09-28 | 香港中文大学 | Method and device for editing images |
CN102203827B (en) * | 2009-10-02 | 2013-05-29 | 香港中文大学 | Method and apparatus for editing image |
CN102045514B (en) * | 2009-10-13 | 2012-12-05 | 原相科技股份有限公司 | Image noise filtering method |
US8509559B2 (en) | 2010-03-16 | 2013-08-13 | Novatek Microelectronics Corp. | Hierarchical motion deblurring method for single image |
CN102201112A (en) * | 2010-03-25 | 2011-09-28 | 联咏科技股份有限公司 | Hierarchical motion blur removing method for single image |
CN102201112B (en) * | 2010-03-25 | 2013-05-22 | 联咏科技股份有限公司 | Hierarchical de-blurring method for single image |
CN102170526B (en) * | 2011-03-22 | 2012-09-05 | 公安部第三研究所 | Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core |
CN102170526A (en) * | 2011-03-22 | 2011-08-31 | 公安部第三研究所 | Method for calculation of defocus fuzzy core and sharp processing of defocus fuzzy image of defocus fuzzy core |
CN102708555A (en) * | 2012-03-27 | 2012-10-03 | 陕西师范大学 | Method for removing defocus blur of color images |
CN103279934A (en) * | 2013-06-07 | 2013-09-04 | 南京大学 | Remote sensing image recovery method based on little support domain regularization inverse convolution |
CN103279934B (en) * | 2013-06-07 | 2015-08-26 | 南京大学 | A kind of remote sensing image restoration methods based on little support region regularization inverse convolution |
CN105678761B (en) * | 2016-01-05 | 2018-07-24 | 中国航空无线电电子研究所 | A kind of noise image based on direction extreme value defocuses figure method of estimation |
CN105719320A (en) * | 2016-01-25 | 2016-06-29 | 华中农业大学 | Vegetation canopy coverage calculation method and system based on colorful digital image |
CN106682617B (en) * | 2016-12-28 | 2019-11-05 | 电子科技大学 | A kind of image clearly based on frequency spectrum segment information and fuzzy discrimination feature extracting method |
CN107563978A (en) * | 2017-08-31 | 2018-01-09 | 苏州科达科技股份有限公司 | Face deblurring method and device |
CN110470219A (en) * | 2019-08-16 | 2019-11-19 | 福建农林大学 | The out-of-focus image distance measuring method and device retained based on edge spectrum |
CN110796584A (en) * | 2019-10-28 | 2020-02-14 | 国网内蒙古东部电力有限公司电力科学研究院 | Motion blurred image modeling method and device, storage medium and inspection robot |
CN110988888A (en) * | 2019-11-08 | 2020-04-10 | 中科长城海洋信息系统有限公司 | Method and device for acquiring seabed information |
CN110988888B (en) * | 2019-11-08 | 2021-10-29 | 中科长城海洋信息系统有限公司 | Method and device for acquiring seabed information |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101364302A (en) | A method for sharpening defocused blurred images | |
CN108765325B (en) | A method for restoring blurred images of small unmanned aerial vehicles | |
WO2019148739A1 (en) | Comprehensive processing method and system for blurred image | |
CN100474337C (en) | Noise-possessing movement fuzzy image restoration method based on radial basis nerve network | |
CN104143185B (en) | A kind of stain method for detecting area | |
CN108537833B (en) | Infrared image rapid splicing method | |
US12165288B2 (en) | Frequency domain-based method for removing periodic noise from reconstructed light field image | |
CN101852970B (en) | Automatic focusing method for camera under imaging viewing field scanning state | |
CN113743147B (en) | Anti-fuzzy two-dimensional code image based on fuzzy imaging mechanism and blind restoration method thereof | |
US20240331362A1 (en) | Ai system and method to enhance images acquired through random medium | |
CN104915940A (en) | Alignment-based image denoising method and system | |
CN109345486A (en) | A kind of facial image deblurring method based on adaptive mesh deformation | |
CN114283103A (en) | Multi-depth-of-field fusion technology for ultra-high-definition panoramic image in AIT process of manned spacecraft | |
CN114612352A (en) | Multi-focus image fusion method, storage medium and computer | |
CN106791353B (en) | The methods, devices and systems of auto-focusing | |
CN102542535A (en) | Method for deblurring iris image | |
CN109949256A (en) | An Astronomical Image Fusion Method Based on Fourier Transform | |
Lin et al. | Motion blur removal and its application to vehicle speed detection | |
CN111640077A (en) | Simple and efficient fuzzy text picture sharpening processing method | |
Qi et al. | Motion deblurring for optical character recognition | |
JP2012155456A (en) | Subject separation device, image restoration device, subject separation method, and image restoration method | |
CN118657668A (en) | A multi-focus image fusion method to eliminate defocus diffusion effect | |
Wee et al. | Derivation of blur-invariant features using orthogonal Legendre moments | |
CN114926331A (en) | Panoramic image splicing method applied to vehicle | |
CN113658317B (en) | Method and device for processing continuous shooting image of electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20090211 |