CN101344340B - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- CN101344340B CN101344340B CN2008101279295A CN200810127929A CN101344340B CN 101344340 B CN101344340 B CN 101344340B CN 2008101279295 A CN2008101279295 A CN 2008101279295A CN 200810127929 A CN200810127929 A CN 200810127929A CN 101344340 B CN101344340 B CN 101344340B
- Authority
- CN
- China
- Prior art keywords
- heat exchanger
- bypass circuit
- compressor
- outdoor heat
- way valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
一种空调机,在由压缩机(1)、四通阀(8)、室内热交换器(3)、减压器(4)、室外热交换器(5)通过制冷剂配管连接而成的制冷循环中设置有:将室外热交换器与减压器之间的部位与压缩机的排出管相连的第一旁通回路(18)、以及将压缩机的排出管与压缩机的吸入部相连的第二旁通回路(19),旁通回路具有开闭机构(7),所述空调机以如下方式进行供暖除霜运行,即进行供暖循环的除霜运行一直到满足规定条件,之后,使四通阀(8)从供暖循环向制冷运行循环变更,使减压器关闭,从而在不会将冷风送向室内的情况下,可使室外热交换器的制冷剂温度和压力上升,使霜融化。另外,使减压器以规定开度打开,使极少的制冷剂向室内热交换器循环,从而可提高除霜结束判定的精度。
An air conditioner, which is formed by connecting a compressor (1), a four-way valve (8), an indoor heat exchanger (3), a pressure reducer (4), and an outdoor heat exchanger (5) through refrigerant piping The refrigeration cycle is provided with: a first bypass circuit (18) connecting the part between the outdoor heat exchanger and the pressure reducer with the discharge pipe of the compressor, and connecting the discharge pipe of the compressor with the suction part of the compressor The second bypass circuit (19), the bypass circuit has an opening and closing mechanism (7), and the air conditioner performs the heating and defrosting operation in the following manner, that is, the defrosting operation of the heating cycle is performed until the specified conditions are met, and then, Change the four-way valve (8) from the heating cycle to the cooling cycle, and close the pressure reducer, so that the temperature and pressure of the refrigerant in the outdoor heat exchanger can be increased without sending cold air to the room. The frost melts. In addition, the decompressor is opened at a predetermined opening to circulate a very small amount of refrigerant to the indoor heat exchanger, thereby improving the accuracy of defrosting completion determination.
Description
技术领域technical field
本发明涉及一种在供暖循环下可进行除霜运行的除霜循环中可提高除霜能力和除霜结束判定控制的精度的空调机。The present invention relates to an air conditioner capable of improving the defrosting capability and the accuracy of defrosting end determination control in a defrosting cycle capable of performing a defrosting operation in a heating cycle.
背景技术Background technique
以往,在进行空调机的供暖运行的制冷循环的场合,四通阀使从压缩机排出的高温高压制冷剂向室内热交换器循环,使制冷剂冷凝成高压的液体制冷剂。该制冷剂向室外膨胀阀流动而绝热膨胀成低温低压的制冷剂,之后,在室外热交换器中从室外空气吸热,作为气态的低压制冷剂经由蓄存器向压缩机返回。此时,在室外气温为冰点以下等较低的场合,空气中的水分会成为霜而凝结在室外热交换器上。结霜后的热交换器的热交换能力显著下降,无法获得充分的供暖能力,因此,需要使凝结的霜融化。此时,以往的空调机一般采用如下方法,即在供暖运行中使四通阀逆转,成为制冷循环,使室内风扇和室外风扇停止来使高温高压的制冷剂在室外热交换器内循环,从而使附着在热交换器上的霜和冰融化。Conventionally, in the refrigeration cycle of the heating operation of the air conditioner, the four-way valve circulates the high-temperature and high-pressure refrigerant discharged from the compressor to the indoor heat exchanger to condense the refrigerant into a high-pressure liquid refrigerant. The refrigerant flows to the outdoor expansion valve and adiabatically expands into a low-temperature and low-pressure refrigerant, then absorbs heat from the outdoor air in the outdoor heat exchanger, and returns to the compressor as a gaseous low-pressure refrigerant via the accumulator. At this time, when the outdoor air temperature is low such as below freezing point, moisture in the air turns into frost and condenses on the outdoor heat exchanger. The heat exchanging capacity of the heat exchanger after frosting is significantly reduced, and sufficient heating capacity cannot be obtained. Therefore, it is necessary to melt the condensed frost. At this time, conventional air conditioners generally adopt the method of reversing the four-way valve during the heating operation to form a refrigeration cycle, stopping the indoor fan and the outdoor fan to circulate the high-temperature and high-pressure refrigerant in the outdoor heat exchanger, thereby Melts frost and ice adhering to the heat exchanger.
有一种空调机则采用了无需切换四通阀的除霜方法,即供暖运行时通过在保持供暖循环的状态下使排出气体旁通等来进行除霜运行,这种情况下,维持供暖循环一直到除霜运行结束(例如参照日本专利特开平2-17370号公报)。There is an air conditioner that uses a defrosting method that does not need to switch the four-way valve. That is, the defrosting operation is performed by bypassing the exhaust gas while maintaining the heating cycle during heating operation. In this case, the heating cycle is maintained. until the end of the defrosting operation (for example, refer to Japanese Patent Laid-Open No. 2-17370).
图5表示的是上述公报所记载的以往的空调机。如图5所示,制冷循环由压缩机1、排出管2、室内热交换器3、电动膨胀阀4、液体管15、室外热交换器5、蓄存器6、旁通回路16和开闭阀17构成。在上述结构中,当在供暖运行中进行除霜运行时,四通阀8仍旧维持供暖循环,室外膨胀阀4完全打开,室外风扇14停止,室内风扇13弱风运行,旁通回路16的开闭阀17被打开,从而使排出气体向旁通回路流动。这样一来,室内可持续进行供暖运行,不用 切换四通阀8,因此还可避免断油等不良问题。FIG. 5 shows a conventional air conditioner described in the above publication. As shown in Figure 5, the refrigeration cycle consists of a
然而,采用上述以往的在除霜运行时向制冷循环切换的结构,由于要使供暖运行暂时停止,因此室内温度会下降,另外,由于使四通阀逆转,因此存在会产生制冷剂声音、压缩机1的断油、制冷剂的回液等问题。However, with the above-mentioned conventional structure that switches to the refrigeration cycle during defrosting operation, the indoor temperature drops because the heating operation is temporarily stopped. In addition, since the four-way valve is reversed, there is a risk of refrigerant sound and compression. Oil cut-off of
另外,若采用除霜运行时仍进行供暖循环的结构,则在室外热交换器内循环的制冷剂的压力已下降,室外热交换器的温度无法充分上升,因此存在会产生霜的融化残留物或很难进行除霜结束判定的问题。In addition, if the heating cycle is still performed during the defrosting operation, the pressure of the refrigerant circulating in the outdoor heat exchanger has dropped, and the temperature of the outdoor heat exchanger cannot be raised sufficiently, so there is a melting residue that will cause frost. Or it is difficult to judge the completion of defrosting.
发明内容Contents of the invention
鉴于上述问题,本发明的目的在于提供一种可防止霜的融化残留物残留在室外热交换器上并可提高除霜结束判定的精度的空调机。In view of the above-mentioned problems, an object of the present invention is to provide an air conditioner capable of improving the accuracy of defrosting end judgment while preventing frost residue from remaining on an outdoor heat exchanger.
为了解决上述以往的技术问题,在本发明的空调机中,在由压缩机、四通阀、室内热交换器、减压器、室外热交换器通过制冷剂配管连接而成的制冷循环中设置有:将所述室外热交换器与所述减压器之间的部位与所述压缩机排出管相连的第一旁通回路、以及使所述压缩机排出管与压缩机吸入部连通的第二旁通回路,所述第一旁通回路和第二旁通回路所共有的旁通回路部分具有一个开闭机构,所述空调机以如下方式进行供暖除霜运行,即进行供暖循环的除霜运行一直到满足规定条件,之后,使所述四通阀成为制冷运行循环,使所述开闭机构打开,并使所述减压器关闭或大致关闭。In order to solve the above-mentioned conventional technical problems, in the air conditioner of the present invention, a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by refrigerant piping in a refrigeration cycle. There are: a first bypass circuit that connects the part between the outdoor heat exchanger and the pressure reducer with the compressor discharge pipe, and a second bypass circuit that connects the compressor discharge pipe with the compressor suction part. Two bypass circuits, the bypass circuit part shared by the first bypass circuit and the second bypass circuit has an opening and closing mechanism, and the air conditioner performs heating and defrosting operation in the following manner, that is, defrosting of the heating cycle The frost operation is performed until the specified conditions are met, and then the four-way valve is turned into a cooling operation cycle, the opening and closing mechanism is opened, and the pressure reducer is closed or substantially closed.
另外,在本发明的空调机中,并未在第一旁通回路和第二旁通回路共有的旁通回路上设置共用的开闭机构,而是在第一旁通回路和第二旁通回路上分别设置开闭机构。In addition, in the air conditioner of the present invention, a common opening and closing mechanism is not provided on the bypass circuit shared by the first bypass circuit and the second bypass circuit, but the first bypass circuit and the second bypass circuit Opening and closing mechanisms are respectively arranged on the circuit.
由此,即使制冷剂不在室内热交换器内循环,四通阀成为制冷循环状态,也不会将冷风向室内输送,使室外热交换器的制冷剂压力上升,并使热交换器温度上升,从而可使霜融化。Therefore, even if the refrigerant does not circulate in the indoor heat exchanger and the four-way valve is in a refrigeration cycle state, cold air will not be sent to the room, increasing the pressure of the refrigerant in the outdoor heat exchanger and increasing the temperature of the heat exchanger. This allows the frost to melt.
另外,在本发明中,当供暖除霜运行开始后经过了规定时间时、或安装在室外热交换器上的配管温度传感器的检测温度成为了预先确定的规定温度以上时,使减压器成为规定开度而使制冷剂向室内热交换器循环,之后,利用所 述室外热交换器的配管温度传感器的检测温度来判定除霜的结束,从而可准确地判定除霜结束。In addition, in the present invention, when a predetermined time elapses after the start of the heating and defrosting operation, or when the temperature detected by the piping temperature sensor attached to the outdoor heat exchanger becomes higher than a predetermined predetermined temperature, the pressure reducer is set to After the refrigerant is circulated to the indoor heat exchanger at a predetermined opening degree, the end of defrosting can be determined by using the temperature detected by the pipe temperature sensor of the outdoor heat exchanger, so that the end of defrosting can be accurately determined.
另外,在本发明中,特别是将旁通回路的开闭机构做成可完全关闭的流量调节阀,从而可使制冷循环最佳化。In addition, in the present invention, in particular, the opening and closing mechanism of the bypass circuit is made into a flow regulating valve that can be completely closed, so that the refrigeration cycle can be optimized.
另外,在本发明中,特别是将旁通回路的开闭机构做成电磁二通阀,从而可降低制造成本。In addition, in the present invention, in particular, the opening and closing mechanism of the bypass circuit is made as an electromagnetic two-way valve, so that the manufacturing cost can be reduced.
另外,特别是将减压器做成可完全关闭的膨胀阀,从而可使制冷循环最佳化。In addition, in particular, the pressure reducer is made as an expansion valve that can be completely closed, so that the refrigeration cycle can be optimized.
附图说明Description of drawings
图1是表示本发明实施形态的空调机的制冷循环的图。Fig. 1 is a diagram showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention.
图2是表示本发明另一实施形态的空调机的制冷循环的一部分的图。Fig. 2 is a diagram showing a part of a refrigeration cycle of an air conditioner according to another embodiment of the present invention.
图3是表示本发明又一实施形态的空调机的制冷循环的一部分的图。Fig. 3 is a diagram showing a part of a refrigeration cycle of an air conditioner according to still another embodiment of the present invention.
图4是本发明实施形态的控制流程图。Fig. 4 is a control flow diagram of the embodiment of the present invention.
图5是以往的空调机的制冷循环图。Fig. 5 is a refrigeration cycle diagram of a conventional air conditioner.
具体实施方式Detailed ways
下面参照附图对本发明的实施形态进行说明。另外,本发明并不局限于该实施形态。Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to this embodiment.
图1是表示本发明实施形态的空调机的制冷循环的图,实线箭头表示的是供暖除霜循环时的制冷剂流,虚线箭头表示的是制冷循环时的制冷剂流。图1中,制冷循环由压缩机1、室内热交换器3、作为减压器的可全闭的膨胀阀4、室外热交换器5和四通阀8通过制冷剂配管连接而成。从压缩机1的排出管2向室外热交换器5与膨胀阀4之间的连接配管4a延伸设置第一旁通回路18,在其途中配置有作为开闭机构的电磁二通阀7、对制冷剂进行流量调整的毛细管9A和止回阀10A。在电磁二通阀7与毛细管9A之间的部位与蓄存器6之间设有第二旁通回路19。在第二旁通回路19上也配置有对制冷剂进行流量调整的毛细管9B和止回阀10B。在本实施形态中,电磁二通阀7设置成可兼用于第一旁通回路18和第二旁通回路19的开闭,但也可分别设置电磁二通阀7以使第一旁通回路18和第二旁通回路19分别进行开闭。图2表示的是将电磁二通阀7分别配置在第一旁通回路18和第二旁通回路19上的例子。图3的例子也将电磁二通阀7分别配置在第一旁通回路18和第二旁通回路19上的例子,但第二旁通回路19并不经由第一旁通回路的一部分,而是与压缩机排出管和压缩机吸入部单独连通。FIG. 1 is a diagram showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention. Solid arrows indicate refrigerant flow during a heating and defrosting cycle, and dotted arrows indicate refrigerant flow during a refrigeration cycle. In Fig. 1, a refrigeration cycle is formed by connecting a
在上述结构中,若在使四通阀8保持供暖循环的状态下使室外膨胀阀4以规定开度打开,则室内热交换器3中的高温高压制冷剂会以气液两相的弱高温状态(+5℃~10℃左右)流入结霜的室外热交换器5。由于该高温制冷剂,附着在室外热交换器5上的霜和冰会融化。但在此时,由于以气液两相状态流入的制冷剂因气体成分液化而放热,因此,随着在热交换器中的循环,液体制冷剂成分增加,在向压缩机1返回时,液体成分会占绝大部分。因此,存在压缩机1的回液现象、因排出温度下降而引起的排出过热(加热度)不足等影响可靠性的问题。另外,随着排出温度下降,从室外膨胀阀4向室外热交换器5循环的制冷剂的干燥度也会下降,从而导致室外热交换器5的融化霜和冰的除霜能力也下降。In the above-mentioned structure, if the
因此,通过使压缩机1的排出气体向室外膨胀阀4与室外热交换器5之间旁通,使在室外热交换器5内循环的制冷剂的温度和压力上升,可提高除霜能力。同时,使排出气体在流过电磁二通阀7后分流并使一部分流入压缩机1的吸入侧。这样一来,可维持压缩机吸入气体的干燥度,并可防止上述可靠性问题和排出温度下降。Therefore, by bypassing the discharge gas from the
在这种循环下进行的除霜大致存在两个问题。一个问题是会因室外热交换器5的温度上升不足而导致除霜能力不足。另一个问题是很难辨别霜是否已经融化。There are generally two problems with defrosting with this cycle. One problem is that defrosting capability is insufficient due to insufficient temperature rise of the
首先,在上述供暖循环下进行的除霜运行中,在满足了预先确定的条件的场合,本发明的实施例中是指安装在室外热交换器5上的配管温度传感器B12的检测温度超过规定温度(例如8℃)的状态持续了规定时间(例如1分钟)的场合或超过了最长时间(例如10分钟)的场合,判定为除霜结束,但超过最长时间的场合包括了除霜未完全结束的场合。First, in the above-mentioned defrosting operation under the heating cycle, when the predetermined condition is satisfied, in the embodiment of the present invention, it means that the detected temperature of the pipe temperature sensor B12 installed on the
因此,在供暖循环的除霜运行结束后,使室外的四通阀8逆转,进行制冷循环除霜运行。图1表示的是此时的制冷循环。这样一来,从压缩机1排出的高温高压的气体制冷剂在室外热交换器5中向与供暖循环除霜时相反的方向循环。即,温度最高的制冷剂会向供暖循环除霜时作为出口的最难进行除霜的部分流动,从而可提高除霜能力。此时,旁路上的电磁二通阀7保持打开状态,因此,即使不停止压缩机1,压力差也很小,从而可将伴随四通阀8的切换而产生的制冷剂声音抑制在最小限度。即,在除霜运行中,即使处于供暖循环状态,由于使室外膨胀阀4以规定开度打开且作为开闭装置的电磁二通阀7被打开,因此高压不怎么上升而低压不怎么下降,从而成为高压侧与低压侧之间的“压力差很小”的状态。另外,也不会出现压缩机1的油不足的状态。Therefore, after the defrosting operation of the heating cycle is completed, the outdoor four-
此时,包括将室外膨胀阀4完全关闭的场合和将室外膨胀阀4稍微打开的场合。将室外膨胀阀4完全关闭是为了使低温低压的制冷剂完全不会流入室内,具有可将制冷剂声音完全遮蔽并可避免室内冷风的优点,但制冷剂会向室外热交换器5积留,因此无法长时间持续运行。另外,由于此状态下制冷剂并不循环,因此也很难判定室外热交换器5是否完全完成了除霜。在将室外膨胀阀4稍微打开的场合,相反,由于制冷剂向室内循环,因此存在制冷剂声音和冷风的问题,但若其极小,则不成问题。但是,这种情况下也很难进行长时间运行。At this time, the case of fully closing the
之后,在本发明的实施例中,为了进行除霜判定而使室外膨胀阀4以一定开度打开。这样一来,室外热交换器5成为高压侧,若霜完全融化,则会成为10℃以上,若霜并未融化,则会成为0℃~4℃左右,因此,即使考虑了配管温度传感器的偏差也足以进行除霜结束的判定。若判定为除霜未结束,则切换四通阀8并使旁通回路上的电磁二通阀7返回到关闭状态,进行制冷循环除霜。此时所使用的配管温度传感器为热交换器出口处的配管温度传感器A11。另外,由于只需很短的时间(例如30秒)即可进行判定,因此不会出现室内的不良问题。Thereafter, in the embodiment of the present invention, the
图4表示的是使用上述结构的制冷循环的实际的控制流程图。图4中,在供暖运行中进行除霜判定,除霜运行开始(S1)。接着,当室外配管温度传感器B12的检测温度成为规定温度t1以上时或除霜运行经过了规定时间T1时(S2),将四通阀8向制冷循环切换(S3)。这样一来,在室外热交换器5内流动的制冷剂的方向逆转。高温的排出制冷剂向容易出现霜的融化残留物的、供暖循环的除霜运行中的出口侧流动,因此,可有效地进行除霜。此时,将膨胀阀4完全关闭(S4),使制冷剂不会流向室内。之后,当室外配管温度传感器A11的温度成为规定值t2以上时或除霜运行经过了规定时间T2时(S5),使膨胀阀4成为规定开度(使制冷剂稍微流动,例如本发明中为80脉冲)(S6),使极少的制冷剂向室内侧循环。这样一来,制冷剂便会在室外热交换器5中循环,可利用配管温度传感器A11的检测温度来高精度地判定附着在室外热交换器5上的霜是否融化(S7)。若室外配管温度传感器A11的检测温度为规定温度t3以上,就直接返回供暖运行(S8)。如上所述,在本实施形态中,由于在供暖循环的除霜运行时使四通阀8逆转来进行制冷循环,因此不会出现产生制冷剂声音和室内冷风之类的问题,可提高室外热交换器5的除霜能力,并可提高其除霜判定控制的精度。Fig. 4 shows an actual control flow chart of the refrigeration cycle using the above structure. In FIG. 4 , the defrosting determination is performed during the heating operation, and the defrosting operation starts ( S1 ). Next, when the temperature detected by the outdoor piping temperature sensor B12 becomes equal to or higher than the predetermined temperature t1 or the predetermined time T1 has elapsed in the defrosting operation (S2), the four-
由于将本实施形态的旁路上的电磁二通阀7作为可完全关闭的流量调节阀,因此不需要毛细管9A、9B,可削减成本,并可使制冷循环最佳化。由于将一个电磁二通阀兼用作两个旁通回路的开闭机构,因此可降低制造成本。另外,由于将减压器做成可完全关闭的膨胀阀,因此可使制冷循环最佳化。Since the electromagnetic two-
Claims (8)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007180634 | 2007-07-10 | ||
| JP2007180634 | 2007-07-10 | ||
| JP2007-180634 | 2007-07-10 | ||
| JP2007295441 | 2007-11-14 | ||
| JP2007295441A JP2009036502A (en) | 2007-07-10 | 2007-11-14 | Air conditioner |
| JP2007-295441 | 2007-11-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101344340A CN101344340A (en) | 2009-01-14 |
| CN101344340B true CN101344340B (en) | 2011-07-27 |
Family
ID=40246390
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2008101279295A Expired - Fee Related CN101344340B (en) | 2007-07-10 | 2008-07-01 | Air conditioner |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2009036502A (en) |
| CN (1) | CN101344340B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102721149A (en) * | 2012-05-08 | 2012-10-10 | 广东美的制冷设备有限公司 | Air conditioner and control method thereof |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5249293B2 (en) * | 2010-09-09 | 2013-07-31 | パナソニック株式会社 | Air conditioner |
| WO2013088590A1 (en) * | 2011-12-12 | 2013-06-20 | 三菱電機株式会社 | Outdoor unit and air-conditioning device |
| CN102635969A (en) * | 2012-04-11 | 2012-08-15 | 广东美的制冷设备有限公司 | Air conditioner |
| CN102645064A (en) * | 2012-05-24 | 2012-08-22 | 钟学斌 | Defrosting method and device of air source heat pump set |
| CN107631513A (en) * | 2017-09-20 | 2018-01-26 | 珠海格力电器股份有限公司 | Heat pump system and control method thereof |
| CN109000339A (en) * | 2018-08-01 | 2018-12-14 | 泰豪科技股份有限公司 | Defrost control device and air-conditioner set |
| CN109282542A (en) * | 2018-09-26 | 2019-01-29 | 珠海格力电器股份有限公司 | Defrosting device, heat pump unit and control method |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6291759A (en) * | 1985-10-15 | 1987-04-27 | 三菱電機株式会社 | Defrosting method for heat pump refrigeration cycle |
| JP2993180B2 (en) * | 1991-06-13 | 1999-12-20 | ダイキン工業株式会社 | Air conditioner |
| JP2001133088A (en) * | 1999-11-04 | 2001-05-18 | Sharp Corp | Air conditioner |
-
2007
- 2007-11-14 JP JP2007295441A patent/JP2009036502A/en active Pending
-
2008
- 2008-07-01 CN CN2008101279295A patent/CN101344340B/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102721149A (en) * | 2012-05-08 | 2012-10-10 | 广东美的制冷设备有限公司 | Air conditioner and control method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009036502A (en) | 2009-02-19 |
| CN101344340A (en) | 2009-01-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101344340B (en) | Air conditioner | |
| CN106104178B (en) | Heat source side unit and refrigerating circulatory device | |
| KR100821728B1 (en) | Air conditioning system | |
| JP4069947B2 (en) | Refrigeration equipment | |
| EP2211127A1 (en) | Heat pump type air conditioner | |
| CN112050399B (en) | Air conditioner | |
| JP6545252B2 (en) | Refrigeration cycle device | |
| US20190360725A1 (en) | Refrigeration apparatus | |
| US6609390B1 (en) | Two-refrigerant refrigerating device | |
| WO2015140951A1 (en) | Air conditioner | |
| JPWO2020179005A1 (en) | Refrigeration cycle equipment | |
| CN111919073A (en) | refrigeration unit | |
| KR20130114154A (en) | Refrigeration cycle device | |
| JP6524670B2 (en) | Air conditioner | |
| JP2009236447A (en) | Refrigeration apparatus | |
| JP4622901B2 (en) | Air conditioner | |
| CN106766334A (en) | Air conditioner circulating system and control method | |
| CN213089945U (en) | Air conditioner | |
| AU2007252631A1 (en) | Refrigeration system | |
| JP4269476B2 (en) | Refrigeration equipment | |
| KR101100009B1 (en) | Air conditioning system | |
| JP4284823B2 (en) | Refrigeration equipment | |
| KR20220006334A (en) | Air conditioner and control method thereof | |
| CN113685916A (en) | Air conditioning system and control method thereof | |
| JP2007298188A (en) | Refrigeration equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110727 Termination date: 20120701 |