CN101291069A - A photovoltaic grid-connected power generation system capable of online expansion - Google Patents
A photovoltaic grid-connected power generation system capable of online expansion Download PDFInfo
- Publication number
- CN101291069A CN101291069A CNA2008100283984A CN200810028398A CN101291069A CN 101291069 A CN101291069 A CN 101291069A CN A2008100283984 A CNA2008100283984 A CN A2008100283984A CN 200810028398 A CN200810028398 A CN 200810028398A CN 101291069 A CN101291069 A CN 101291069A
- Authority
- CN
- China
- Prior art keywords
- grid
- module
- power
- photovoltaic
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 15
- 238000004891 communication Methods 0.000 claims abstract description 35
- 238000003491 array Methods 0.000 claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 4
- 230000008054 signal transmission Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 5
- 238000012423 maintenance Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000003245 coal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Photovoltaic Devices (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明一种可实现在线扩容的光伏并网发电系统,主要包括至少一组光伏阵列、一个集中显示控制模块和两组及两组以上并网逆变模块,各光伏阵列及各模块间通过光伏直流母线实现电能的传输,通过通信母线实现信号数据的传输,各并网逆变模块输出电能至电网母线;由于该光伏阵列组与并网逆变模块通过集中显示控制模块进行MPPT集中控制以及最大效率控制,使整机能够共用一组光伏阵列,并且能够跟踪光伏电能的大小自动调节并网逆变模块的开启与关闭,使系统始终工作在最大效率状态;当用户需要进行扩容时,可以通过增加光伏阵列组及并网逆变模块来完成;且由于采用了模块化、热插拔设计,因此在维护、扩容等方面具有一定的实用性。
The present invention is a photovoltaic grid-connected power generation system capable of realizing online expansion, which mainly includes at least one group of photovoltaic arrays, a centralized display control module, and two or more groups of grid-connected inverter modules. The DC bus realizes the transmission of electric energy, and the transmission of signal data is realized through the communication bus, and each grid-connected inverter module outputs electric energy to the grid bus; since the photovoltaic array group and the grid-connected inverter module perform MPPT centralized control and maximum Efficiency control, so that the whole machine can share a group of photovoltaic arrays, and can automatically adjust the opening and closing of the grid-connected inverter module by tracking the size of photovoltaic power, so that the system always works at the state of maximum efficiency; when users need to expand capacity, they can It is completed by adding photovoltaic array groups and grid-connected inverter modules; and because of the modular and hot-swappable design, it has certain practicability in maintenance and expansion.
Description
技术领域 technical field
本发明涉及一种可实现在线扩容的光伏并网发电系统。The invention relates to a photovoltaic grid-connected power generation system capable of realizing online expansion.
背景技术 Background technique
光伏并网发电技术是最近几年兴起来的新技术,与传统煤电、油电相比,具有环保、无能源消耗等诸多优点,成为今后发展的重点。但是作为电子产品同样存在可靠性、可维护性的相关问题。Photovoltaic grid-connected power generation technology is a new technology emerging in recent years. Compared with traditional coal power and oil power, it has many advantages such as environmental protection and no energy consumption, and has become the focus of future development. However, as electronic products, there are also related problems of reliability and maintainability.
目前市面上较为流行的光伏发电系统均采用的是单机工作,即光伏阵列只能为一台并网逆变器供电,不能同时为多台并网逆变器供电,原因是在最大功率跟踪上采用的是分散式控制手段,因此不能实现光伏阵列共用。当用户需要进行扩容时只能采用增加光伏阵列与并网逆变器的容量来完成,这样明显增加了二次投入成本。并且采用单机工作明显增加了系统工作维护量。当单机工作在低负载状态时,转换效率明显低下。At present, the more popular photovoltaic power generation systems on the market all use single-machine operation, that is, the photovoltaic array can only supply power for one grid-connected inverter, and cannot supply power for multiple grid-connected inverters at the same time, because of the maximum power tracking. The distributed control method is used, so the sharing of photovoltaic arrays cannot be realized. When the user needs to expand the capacity, it can only be done by increasing the capacity of the photovoltaic array and grid-connected inverter, which obviously increases the secondary input cost. And the use of stand-alone work has significantly increased the amount of system work and maintenance. When a stand-alone unit works under low load, the conversion efficiency is obviously low.
随着光伏发电系统的普及化中小型光伏发电系统进入家庭及村庄,光伏并网逆变器的模块化设计将成为今后中小型光伏发电的趋势。With the popularization of photovoltaic power generation systems, small and medium-sized photovoltaic power generation systems enter households and villages, and the modular design of photovoltaic grid-connected inverters will become the trend of small and medium-sized photovoltaic power generation in the future.
发明内容 Contents of the invention
本发明的目的在于提供一种能够根据需要在线扩容,可实现光伏阵列共用,并网逆变器采用模块化设计的光伏并网发电系统。The purpose of the present invention is to provide a photovoltaic grid-connected power generation system that can be expanded online according to needs, can realize the sharing of photovoltaic arrays, and adopts a modular design for grid-connected inverters.
本发明是一种可实现在线扩容的光伏并网发电系统,主要包括至少一组光伏阵列、一个集中显示控制模块和两组及两组以上并网逆变模块,各光伏阵列及各模块间通过光伏直流母线实现电能的传输,通过通信母线实现信号数据的传输,各并网逆变模块输出电能至电网母线,其中:The invention is a photovoltaic grid-connected power generation system capable of realizing online expansion, which mainly includes at least one group of photovoltaic arrays, a centralized display control module, and two or more groups of grid-connected inverter modules. The photovoltaic DC bus realizes the transmission of electric energy, and the transmission of signal data is realized through the communication bus, and each grid-connected inverter module outputs electric energy to the grid bus, among which:
该光伏阵列输出电能至光伏直流母线,输出信号数据至通信母线及从通信母线获取控制信号数据;The photovoltaic array outputs electric energy to the photovoltaic DC bus, outputs signal data to the communication bus and acquires control signal data from the communication bus;
该集中显示控制模块主是对各个光伏阵列进行最大功率点跟踪集中控制,根据光伏阵列电能的大小,控制开启或关闭并网逆变模块,从而来进行最大效率控制,完成与每个并网逆变模块的数据通信,以及集中显示系统工作参数;The centralized display control module is mainly to carry out the centralized control of the maximum power point tracking of each photovoltaic array. According to the power of the photovoltaic array, it controls to turn on or off the grid-connected inverter module, so as to control the maximum efficiency and complete the integration with each grid-connected inverter. Variable module data communication, and centralized display of system operating parameters;
该并网逆变模块将从光伏直流母线获得的光伏阵列的输出电能直接转换成交流电,并输入到电网母线,其并入电网功率的大小受集中显示控制模块的控制,其运行的参数及数据通过通信母线输送至集中显示控制模块。The grid-connected inverter module directly converts the output power of the photovoltaic array obtained from the photovoltaic DC bus into alternating current, and inputs it to the grid bus. The power incorporated into the grid is controlled by the centralized display control module. It is sent to the centralized display control module through the communication bus.
所述的集中显示控制模块主要由SPI通信模块、信号采集控制模块、并网功率计算模块、集中MPPT控制模块、最大效率控制模块、状态控制及显示模块和电源组成;其中:The centralized display control module is mainly composed of an SPI communication module, a signal acquisition control module, a grid-connected power calculation module, a centralized MPPT control module, a maximum efficiency control module, a state control and display module and a power supply; wherein:
该SPI通信模块主要通过通信母线完成与其它并网逆变模块的通信;The SPI communication module mainly completes the communication with other grid-connected inverter modules through the communication bus;
该信号采集控制模块主要是对SPI通信模块传送来的数据加以区分、分配,从数据中解码出所需要的各种信号及工作状态参数,以供并网功率计算模块或状态控制及显示模块使用;The signal acquisition control module mainly distinguishes and distributes the data transmitted by the SPI communication module, and decodes various signals and working state parameters required from the data for use by the grid-connected power calculation module or the state control and display module;
该并网功率计算模块将信号采集控制模块解码出来的电流信号进行累加计算,完成对整机并网总功率及各并网逆变模块功率的计算,计算结果供集中MPPT控制模块或最大功率控制模块使用;The grid-connected power calculation module accumulates and calculates the current signals decoded by the signal acquisition control module, and completes the calculation of the total grid-connected power of the whole machine and the power of each grid-connected inverter module. The calculation results are provided to the centralized MPPT control module or maximum power control module usage;
该集中MPPT控制模块用于整机的MPPT控制,对至少一组光伏阵列的最大功率进行跟踪扫描,从而确定其最大功率工作点,使光伏阵列输出最大功率;The centralized MPPT control module is used for the MPPT control of the whole machine, and tracks and scans the maximum power of at least one group of photovoltaic arrays, so as to determine its maximum power operating point and make the photovoltaic arrays output maximum power;
该最大效率控制模块从并网功率计算模块中取得模块总功率,从集中MPPT控制模块中获取功率调节参数,然后根据并网逆变模块的数量及工作情况,对各并网逆变模块进行控制,以使每个工作的模块最大限度地处于满负荷状态,从而提升整机效率;The maximum efficiency control module obtains the total power of the modules from the grid-connected power calculation module, and obtains the power adjustment parameters from the centralized MPPT control module, and then controls each grid-connected inverter module according to the number and working conditions of the grid-connected inverter modules , so that each working module is at full load to the maximum, thereby improving the efficiency of the whole machine;
该状态控制及显示模块主要从信号采集控制模块中取出各并网逆变模块的实时工作数据进行显示,以供用户了解系统工作状态;The state control and display module mainly extracts the real-time working data of each grid-connected inverter module from the signal acquisition control module for display, so that users can understand the working state of the system;
该电源为集中显示控制模块的控制电源部分,它从光伏直流母线及电网母线中取得电能进行变换后供电给各控制模块。The power supply is the control power supply part of the centralized display control module, which obtains electric energy from the photovoltaic DC busbar and the grid busbar, converts it, and supplies power to each control module.
由于本发明的光伏并网发电系统采用模块化设计的并网逆变器,通过增加光伏阵列及增加相应的并网逆变器模块,就可以实现在线扩容,且由于运用集中式最大功率跟踪控制方式,可以避免传统分散式最大功率跟踪控制所带来的相互干扰的问题,能够实现最优最大功率跟踪控制。对光伏发电系统来说具有非常实用的使用价值,避免了传统单机工作的一些缺点,在任何状态均可获得最大的转换效率,能最大程度的利用太阳能,缩短了维护时间,增强了使用的灵活性。Since the photovoltaic grid-connected power generation system of the present invention adopts a modular grid-connected inverter, by adding photovoltaic arrays and corresponding grid-connected inverter modules, online expansion can be realized, and due to the use of centralized maximum power tracking control In this way, the problem of mutual interference caused by the traditional distributed maximum power tracking control can be avoided, and the optimal maximum power tracking control can be realized. It has very practical use value for photovoltaic power generation system, avoids some shortcomings of traditional stand-alone work, can obtain the maximum conversion efficiency in any state, can maximize the use of solar energy, shorten maintenance time, and enhance the flexibility of use sex.
附图说明 Description of drawings
图1为本发明各部分的连接关系图;Fig. 1 is the connection diagram of each part of the present invention;
图2为本发明中最大功率点跟踪控制的调节流程;Fig. 2 is the adjustment process of maximum power point tracking control in the present invention;
图3为本发明中实现高效率输出的控制流程图。Fig. 3 is a control flowchart for realizing high-efficiency output in the present invention.
具体实施方式 Detailed ways
如图1所示,本发明主要包括至少一组光伏阵列1、一集中显示控制模块2和两组及两组以上并网逆变模块3,各光伏阵列1及各模块间通过光伏直流母线4实现电能的传输,通过通信母线5实现信号数据的传输,各并网逆变模块3输出电能至电网母线6,其中:As shown in Figure 1, the present invention mainly includes at least one group of photovoltaic arrays 1, a centralized
该光伏阵列1输出电能至光伏直流母线4,输出信号数据至通信母线5及从通信母线5获取控制信号数据;The photovoltaic array 1 outputs electric energy to the photovoltaic DC bus 4, outputs signal data to the
该集中显示控制模块2用于集中最大功率点跟踪(MPPT)控制、最大效率控制、SPI通信及显示。主是对各个光伏阵列1进行MPPT控制,根据光伏阵列1电能的大小,控制开启或关闭并网逆变模块3,从而来进行最大效率控制,完成与每个并网逆变模块3的数据通信,以及集中显示系统工作参数;The centralized
该并网逆变模块3将从光伏直流母线4获得的光伏阵列1的输出电能直接转换成交流电,并输入到电网母线6,其并入电网功率的大小受集中显示控制模块2的控制,其运行的参数及数据通过通信母线5输送至集中显示控制模块2。The grid-connected
所述的集中显示控制模块2主要由SPI通信模块201、信号采集控制模块202、并网功率计算模块203、集中MPPT控制模块204、最大效率控制模块205、状态控制及显示模块206和电源207组成;其中:The centralized
SPI通信模块201主要通过通信母线5完成与其它并网逆变模块3的通信。该各并网逆变模块3由地址区分,将数据通过通信母线5上传至SPI通信模块201;该集中显示控制模块2对各并网逆变模块3的控制也是通过地址来区分,该SPI通信模块201与其他控制部分采用了光耦电气隔离,以减少信号干扰,具有很强的抗干扰特性,。The
信号采集控制模块202主要是对SPI通信模块201传送来的数据加以区分、分配,从数据中解码出所需要的各种信号及工作状态参数,以供并网功率计算模块203或状态控制及显示模块206使用。The signal
并网功率计算模块203将信号采集控制模块202解码出来的电流信号进行累加计算,完成对整机并网总功率及各并网逆变模块3功率的计算,计算结果供集中MPPT控制模块204或最大效率控制模块205使用。The grid-connected
集中MPPT控制模块204用于整机的MPPT控制,采用了扰动观测法对至少一组光伏阵列1的最大功率进行跟踪扫描,从而确定其最大功率工作点,使光伏阵列1输出最大功率;其MPPT调节流程如图2所示;首先,从信号采集控制模块202和并网功率计算模块203取得相关数据,根据这次光伏功率与上次光伏功率的比较结果来决定是否通过调节并网功率来增加或减少光伏电压,从而实现最大功率点的集中控制。The centralized
最大效率控制模块205从并网功率计算模块203中取得模块总功率,从集中MPPT控制模块204中获取功率调节参数,然后根据并网逆变模块3的数量及工作情况,对各并网逆变模块3进行控制,以使每个工作的模块最大限度地处于满负荷状态,进而提高系统工作的效率。The maximum
控制流程如图3所示。The control flow is shown in Figure 3.
首先,将并网总功率/并网逆变模块单模块额定功率,获得整数N;First, the total grid-connected power/rated power of a single grid-connected inverter module is obtained to obtain an integer N;
然后,对各并网逆变模块3进行控制,使第1号-第N号并网逆变模块3处于满负荷工作状态,第(N+1)号并网逆变模块3受MPPT调节控制,将大于(N+1)号的并网逆变模块3全部关闭。Then, each grid-connected
当整个系统的并网逆变模块3的额定总功率远大于光伏阵列最大功率时,若所有并网逆变模块皆处于工作状态(即采用模块均流输出的方案),将出现低功率转换效率低的问题。通过上述最大效率的控制流程,本发明可以实时根据并网总功率的大小,使相对应数量的并网逆变模块3处于满负荷的工作状态,关闭其他多余的并网逆变模块3,从而提高整个系统的工作效率。另外,在取整数N的时候,可能尚余部分不足单模块额定功率的功率,由于要进行MPPT调节,为避免不让工作于满负载状态的模块执行MPPT调节从而产生低功率转换效率低的问题,因此由另一块非满载工作的并网逆变模块3,即(N+1)号模块受MPPT调节控制,从而实现将MPPT调节时所产生的不足模块额定功率的部分功率并入电网。When the total rated power of the grid-connected
随着光照强度及环境温度的变化,光伏电池的电能是时刻在变化的,本发明的光伏并网发电系统采用了MPPT技术,这样在任一时刻就必须会有功率在扰动变化,这是MPPT技术固定的特性。由于1至N号并网逆变模块3均处于最大功率状态(即满负荷工作状态),因此只能依靠没有处于额定功率的并网逆变模块3来执行MPPT调节,这样就不会产生同时进行MPPT调节致使每个并网逆变模块3输出功率小于额定功率的现象。受MPPT调节的逆变模块,与其它满负荷工作的逆变模块不同点在于,受MPPT调节的逆变模块输出功率总是小于额定功率,因为MPPT调节过程中并网功率是一直在扰动变化的。采用本发明的输出功率的控制方法后,可以避免所有逆变模块同时受扰动而处于非满负荷工作状态,从而避免使整机处于低转换效率工作状态。由于采用了单个并网逆变模块单独受MPPT调节技术,与统一MPPT技术相比,又可以提高MPPT的跟踪精度。With the change of light intensity and ambient temperature, the electric energy of photovoltaic cells is changing all the time. The photovoltaic grid-connected power generation system of the present invention adopts MPPT technology, so at any moment there must be power disturbance and change, which is MPPT technology fixed features. Since grid-connected
状态控制及显示模块206主要从信号采集控制模块202中取出各并网逆变模块3的实时工作数据进行显示,以供用户了解系统工作状态。The status control and
电源207为集中显示控制模块2的控制电源部分,它从光伏直流母线2及电网母线6中取得电能进行变换后供电给各控制模块。The
本发明的设计重点在于:光伏阵列组与并网逆变模块不是一一对应的关系,它们通过集中显示控制模块进行MPPT集中控制以及最大效率控制,使整机(即所有的并网逆变模块)能够共用一组光伏方阵,并且能够跟踪光伏电能的大小自动调节并网逆变模块的开启与关闭,从而避免了采用模块均流输出而导致低功率转换效率低的问题,使系统始终工作在最大效率状态。当用户需要进行扩容时,可以通过增加光伏阵列组及并网逆变模块的来完成。且由于本发明采用了模块化、热插拔设计,因此在维护、扩容等方面具有一定的实用性。The focus of the design of the present invention is that the photovoltaic array group and the grid-connected inverter module are not in a one-to-one correspondence. They perform MPPT centralized control and maximum efficiency control through the centralized display control module, so that the whole machine (that is, all grid-connected inverter modules ) can share a group of photovoltaic square arrays, and can automatically adjust the opening and closing of the grid-connected inverter module by tracking the size of photovoltaic power, thus avoiding the problem of low power conversion efficiency caused by the use of module current sharing output, so that the system always works at maximum efficiency. When users need to expand capacity, it can be done by adding photovoltaic array groups and grid-connected inverter modules. Moreover, since the present invention adopts a modularized and hot-swappable design, it has certain practicability in maintenance, capacity expansion, and the like.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810028398.4A CN101291069B (en) | 2008-05-30 | 2008-05-30 | Photovoltaic parallel-net power generating system realizing on-line capacity enlarging |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810028398.4A CN101291069B (en) | 2008-05-30 | 2008-05-30 | Photovoltaic parallel-net power generating system realizing on-line capacity enlarging |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101291069A true CN101291069A (en) | 2008-10-22 |
| CN101291069B CN101291069B (en) | 2014-12-24 |
Family
ID=40035205
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200810028398.4A Active CN101291069B (en) | 2008-05-30 | 2008-05-30 | Photovoltaic parallel-net power generating system realizing on-line capacity enlarging |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101291069B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101777775A (en) * | 2010-02-26 | 2010-07-14 | 东南大学 | High-frequency isolation single-phase photovoltaic grid-connected system and control method thereof |
| CN101951193A (en) * | 2010-09-16 | 2011-01-19 | 薛韬 | Cellular photovoltaic power station |
| CN102496960A (en) * | 2011-12-24 | 2012-06-13 | 朱建国 | Photovoltaic grid-connected inverter and method for reducing working loss of photovoltaic grid-connected inverter |
| CN102012693B (en) * | 2009-09-04 | 2012-11-14 | 中海阳新能源电力股份有限公司 | Distributed control system (DCS) of solar power station |
| CN104505856A (en) * | 2014-12-17 | 2015-04-08 | 北京四方继保自动化股份有限公司 | Photovoltaic power optimization control system |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6285572B1 (en) * | 1999-04-20 | 2001-09-04 | Sanyo Electric Co., Ltd. | Method of operating a power supply system having parallel-connected inverters, and power converting system |
-
2008
- 2008-05-30 CN CN200810028398.4A patent/CN101291069B/en active Active
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102012693B (en) * | 2009-09-04 | 2012-11-14 | 中海阳新能源电力股份有限公司 | Distributed control system (DCS) of solar power station |
| CN101777775A (en) * | 2010-02-26 | 2010-07-14 | 东南大学 | High-frequency isolation single-phase photovoltaic grid-connected system and control method thereof |
| CN101951193A (en) * | 2010-09-16 | 2011-01-19 | 薛韬 | Cellular photovoltaic power station |
| WO2012034256A1 (en) * | 2010-09-16 | 2012-03-22 | 南京苏特电气股份有限公司 | Cellular photovoltaic power station |
| CN102496960A (en) * | 2011-12-24 | 2012-06-13 | 朱建国 | Photovoltaic grid-connected inverter and method for reducing working loss of photovoltaic grid-connected inverter |
| CN104505856A (en) * | 2014-12-17 | 2015-04-08 | 北京四方继保自动化股份有限公司 | Photovoltaic power optimization control system |
| CN104505856B (en) * | 2014-12-17 | 2016-09-28 | 北京四方继保自动化股份有限公司 | A kind of photovoltaic power Optimal Control System |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101291069B (en) | 2014-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180175623A1 (en) | Smart and on/off-grid power inverters | |
| US9906038B2 (en) | Smart renewable power generation system with grid and DC source flexibility | |
| US8786133B2 (en) | Smart and scalable power inverters | |
| CN101702523B (en) | A control method for a distributed modular grid-connected power generation system | |
| CN101976852A (en) | Photovoltaic power supply system structure and method thereof | |
| KR20210005502A (en) | PV module serial/parallel conversion system for MPPT operating voltage optimization based on machine learning | |
| CN108258718A (en) | Inverter, collecting and distributing type header box, limit power control system and method | |
| CN101291070A (en) | Control method for high-efficiency output of photovoltaic grid-connected power generation system | |
| CN101291069B (en) | Photovoltaic parallel-net power generating system realizing on-line capacity enlarging | |
| Chaaban et al. | An adaptive photovoltaic topology to overcome shading effect in PV systems | |
| CN106602605B (en) | Maximum power point tracking control system of photovoltaic array and photovoltaic air conditioning system | |
| CN107658900A (en) | Photovoltaic grid-connected system | |
| Cramer et al. | PV system technologies: State-of-the-art and trends in decentralised electrification | |
| CN201215929Y (en) | A photovoltaic grid-connected power generation system capable of online expansion | |
| CN102593217B (en) | Intelligent photovoltaic assembly capable of preventing hot spot | |
| CN103094977A (en) | Photovoltaic distribution system | |
| CN203895990U (en) | Photovoltaic grid-connected system | |
| CN102655381A (en) | Novel photovoltaic system | |
| CN113972891B (en) | A photovoltaic power generation system | |
| AU2016286182B2 (en) | Energy management system for an energy generation system | |
| Kanase et al. | Energy Management Using Smart Inverter | |
| CN205176722U (en) | Photovoltaic power optimizer and photovoltaic power generation system | |
| CN210744761U (en) | Grid-connected solar photovoltaic power generation system for building | |
| CN103904680B (en) | Power supply equipment, power generation unit and power generation system | |
| Upadhyay | A review on power electronics in renewable source of energy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| ASS | Succession or assignment of patent right |
Owner name: HUAZHONG SCINECE AND TECHNOLOGY UNIV |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| C53 | Correction of patent for invention or patent application | ||
| CB03 | Change of inventor or designer information |
Inventor after: Zhou Zhiwen Inventor after: Li Minying Inventor after: Li Shuming Inventor after: Zhang Yu Inventor before: Zhou Zhiwen Inventor before: Li Minying Inventor before: Li Shuming |
|
| COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: ZHOU ZHIWEN LI MINYING LI SHUMING TO: ZHOU ZHIWEN LI MINYING LI SHUMING ZHANG YU |
|
| TA01 | Transfer of patent application right |
Effective date of registration: 20110412 Address after: 523710, Tangxia City, Guangdong province Dongguan Tian heart Industrial Zone Guangdong Zhicheng Champion Group Co., Ltd. Applicant after: Guangdong Zhicheng Champoin Group Co., Ltd. Co-applicant after: Huazhong University of Science and Technology Address before: 523710, Tangxia City, Guangdong province Dongguan Tian heart Industrial Zone Guangdong Zhicheng Champion Group Co., Ltd. Applicant before: Guangdong Zhicheng Champoin Group Co., Ltd. |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |