CN109547076A - Mixing precoding algorithms in the extensive MIMO of millimeter wave based on DSBO - Google Patents
Mixing precoding algorithms in the extensive MIMO of millimeter wave based on DSBO Download PDFInfo
- Publication number
- CN109547076A CN109547076A CN201910014059.9A CN201910014059A CN109547076A CN 109547076 A CN109547076 A CN 109547076A CN 201910014059 A CN201910014059 A CN 201910014059A CN 109547076 A CN109547076 A CN 109547076A
- Authority
- CN
- China
- Prior art keywords
- algorithm
- pavilion
- theta
- dsbo
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
本发明公开了毫米波大规模MIMO中基于DSBO的混合预编码算法,包括以下步骤:首先以最大化系统可达和速率为出发点将预编码矩阵的设计问题转化为最优化问题,然后利用提出来的DSBO智能搜索算法求解最优化问题,获得能使系统可达和速率最大的预编码矩阵。本发明的优点是:在部分连接结构毫米波大规模MIMO系统中,与现有的基于BSA的混合预编码算法和纯模拟预编码算法相比,本发明能够显著地提高系统可达和速率和降低系统的误码率。
The invention discloses a DSBO-based hybrid precoding algorithm in millimeter-wave massive MIMO, which includes the following steps: first, the design problem of the precoding matrix is transformed into an optimization problem with the starting point of maximizing the reachability and rate of the system, and then using the proposed The DSBO intelligent search algorithm based on DSBO solves the optimization problem and obtains the precoding matrix that can maximize the reachability and rate of the system. The advantages of the present invention are: in the partial connection structure millimeter wave massive MIMO system, compared with the existing BSA-based hybrid precoding algorithm and pure analog precoding algorithm, the present invention can significantly improve the reachability, rate and rate of the system. Reduce the bit error rate of the system.
Description
技术领域technical field
本发明涉及通信系统预编码技术领域,尤其涉及一种部分连接结构毫米波大规模MIMO系统的混合预编码算法。The present invention relates to the technical field of communication system precoding, in particular to a hybrid precoding algorithm of a partially connected structure millimeter wave massive MIMO system.
背景技术Background technique
毫米波频段包括30-300GHz频率,能够获得很高的带宽,从而极大地提高通信系统的传输速率,成为5G的关键技术之一。毫米波较小的波长使在小孔径内装配大量天线成为可能,由此产生的阵列增益可以弥补毫米波的路径损耗,利用这一特点,毫米波大规模MIMO系统在基站端应用了大天线阵列,从而允许了多数据流的传输,使得系统有更高的数据传输速率。在毫米波大规模MIMO系统中,预编码技术利用信道的状态信息,在发射端调整发射策略,接收端进行均衡,使用户更好地获得天线复用增益,提高了系统容量。The millimeter wave frequency band includes frequencies of 30-300GHz, which can obtain a high bandwidth, thereby greatly improving the transmission rate of the communication system, and has become one of the key technologies of 5G. The smaller wavelength of mmWave makes it possible to install a large number of antennas in a small aperture, and the resulting array gain can compensate for the path loss of mmWave. Taking advantage of this feature, mmWave massive MIMO systems use large antenna arrays at the base station. , thus allowing the transmission of multiple data streams, making the system have a higher data transmission rate. In the millimeter-wave massive MIMO system, the precoding technology uses the state information of the channel to adjust the transmission strategy at the transmitter and equalize at the receiver, so that the user can better obtain the antenna multiplexing gain and improve the system capacity.
在数字预编码技术中,所需要的射频链路数与发送天线数相等,导致其应用在大规模MIMO系统中时有很高的射频链路成本和硬件损耗。为解决此问题,有文献提出了一种纯模拟预编码方案。此方案用廉价、低耗的模拟移相器代替数字预编码中的射频链路。但是,由于移相器只能控制发射信号的相位,此方案的性能大大低于数字预编码。为了平衡硬件成本与系统的性能,有文献提出了混合预编码方案。该方案在基带进行低维的数字预编码,并通过少量的射频链路与移相器相连,有效地减少了基站端硬件成本。传统的混合预编码方案基于全连接结构,此种结构能够充分地利用天线的增益,但同时需要大量的移相器和相加器,导致系统硬件成本和功耗很高。针对此问题,有学者研究了基于部分连接结构的混合预编码方案,即每个射频链路通过移相器固定地与有限数量的发送天线相连,大大地减少了所需移相器的数量,并且不需要相加器,降低了硬件损耗和实现复杂度,但是由于这种结构的限制,预编码矩阵将受限于块对角矩阵的形式,从而性能上会低于全连接结构。现有的基于BSA(Bird SwarmAlgorithm,鸟群算法)的部分连接结构混合预编码算法,在基站端采用了经典的ZF(Zero-Forcing,迫零)数字预编码算法,在模拟预编码部分用BSA算法求取最优模拟预编码矩阵,降低了设计复杂度,然而算法性能较差。SBO(satin bowerbirdoptimization)算法是2017年Seyyed HamidSamareh Moosavi等人受缎蓝园丁鸟求偶行为的启发而提出的群体智能搜索算法,虽然SBO算法在求解高维复杂函数问题上具有优越的性能,但是SBO算法存在易陷于局部最优的缺点。因而亟需发明一种基于DSBO(SatinBowerbird Optimization Based on Dynamic Mutation Probability)的部分连接结构毫米波大规模MIMO系统混合预编码算法,使系统获得更高的可达和速率和更低的误码率。In the digital precoding technology, the required number of radio frequency links is equal to the number of transmit antennas, resulting in high radio frequency link cost and hardware loss when it is applied in massive MIMO systems. To solve this problem, some literatures propose a pure analog precoding scheme. This scheme replaces the RF link in digital precoding with inexpensive, low-cost analog phase shifters. However, since the phase shifter can only control the phase of the transmitted signal, the performance of this scheme is much lower than that of digital precoding. In order to balance the hardware cost and system performance, some literatures propose a hybrid precoding scheme. The scheme performs low-dimensional digital precoding in the baseband, and is connected to the phase shifter through a small number of radio frequency links, which effectively reduces the hardware cost of the base station. The traditional hybrid precoding scheme is based on a fully connected structure, which can fully utilize the gain of the antenna, but requires a large number of phase shifters and adders at the same time, resulting in high system hardware cost and power consumption. In response to this problem, some scholars have studied a hybrid precoding scheme based on a partial connection structure, that is, each radio frequency link is fixedly connected to a limited number of transmitting antennas through a phase shifter, which greatly reduces the number of required phase shifters. And no adder is needed, which reduces hardware loss and implementation complexity. However, due to the limitation of this structure, the precoding matrix will be limited to the form of a block diagonal matrix, so the performance will be lower than that of the fully connected structure. The existing hybrid precoding algorithm of partial connection structure based on BSA (Bird Swarm Algorithm, bird flock algorithm) adopts the classic ZF (Zero-Forcing, zero-forcing) digital precoding algorithm at the base station, and uses BSA in the analog precoding part. The algorithm obtains the optimal analog precoding matrix, which reduces the design complexity, but the performance of the algorithm is poor. The SBO (satin bowerbird optimization) algorithm is a swarm intelligent search algorithm proposed by Seyyed Hamid Samareh Moosavi et al in 2017, inspired by the courtship behavior of satin blue gardener birds. Although the SBO algorithm has superior performance in solving high-dimensional complex function problems, the SBO algorithm It has the disadvantage of being easily trapped in local optimum. Therefore, it is urgent to invent a hybrid precoding algorithm for a partially connected millimeter-wave massive MIMO system based on DSBO (Satin Bowerbird Optimization Based on Dynamic Mutation Probability), so that the system can obtain a higher reachable sum rate and a lower bit error rate.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种能使系统获得更高的可达和速率和更低的误码率的毫米波大规模MIMO中基于DSBO的混合预编码算法。The purpose of the present invention is to provide a hybrid precoding algorithm based on DSBO in millimeter-wave massive MIMO that enables the system to obtain higher reachable sum rate and lower bit error rate.
为实现上述目的,本发明采用了如下技术方案:毫米波大规模MIMO中基于DSBO的混合预编码算法,包括以下步骤:To achieve the above object, the present invention adopts the following technical scheme: a DSBO-based hybrid precoding algorithm in millimeter-wave massive MIMO, comprising the following steps:
步骤(1):将最优模拟预编码矩阵的设计问题转化为如下最优化问题:Step (1): Transform the design problem of the optimal analog precoding matrix into the following optimization problem:
θ=argmintr(FRF(θ)HH*HTFRF(θ))-1 θ=argmintr(F RF (θ) H H * H T F RF (θ)) -1
s.t.0<θj<2π,j=1,2,…,Nt st0<θ j <2π,j=1,2,…,N t
其中,H为信道矩阵,向量fi∈CM×1,i=1,2,…,N中的元素N为射频链路数,M为每个射频链路所连接的发射天线数;FRF关于唯一变化,元素θj=θi+(l-1)N=θil为第j个移相器的相位,其中j=1,2,...,Nt,i=1,2,…,N,l=1,2,…,M,Nt=MN为毫米波大规模MIMO系统发射天线数,(·)H、(·)T、(·)-1、(·)*分别表示取矩阵的共轭转置、转置、逆、共轭,tr(·)表示取矩阵的迹,tr(FRF(θ)HH*HTFRF(θ))-1为该最优化问题的目标函数;where H is the channel matrix, vector f i ∈ C M×1 , i=1,2,..., elements in N N is the number of radio frequency chains, M is the number of transmit antennas connected to each radio frequency chain; F RF is about The only change, the element θ j =θ i+(l-1)N =θ il is the phase of the jth phase shifter, where j=1,2,...,N t , i=1,2,..., N, l=1,2,...,M,N t =MN is the number of transmit antennas of the millimeter-wave massive MIMO system, (·) H , (·) T , (·) -1 , (·) * respectively The conjugate transpose, transpose, inverse, and conjugate of the matrix, tr( ) represents the trace of the matrix, tr(F RF (θ) H H * H T F RF (θ)) -1 is the optimization problem the objective function;
步骤(2):初始化DSBO算法参数:凉亭数nPop=50,凉亭长度Nt,t为迭代次数,初始化时设t=0,最大迭代次数MaxIt=250,定义凉亭的一般表达式为:即每个凉亭对应一个θ向量;随机生成nPop个长度为Nt的第0次迭代时的θ向量,记为计算每个θ0向量对应的目标函数值即 Step (2): Initialize the parameters of the DSBO algorithm: the number of pavilions nPop=50, the length of the pavilion N t , t is the number of iterations, set t=0 during initialization, and the maximum number of iterations MaxIt=250, the general expression defining the pavilion is: That is, each pavilion corresponds to a θ vector; the θ vector at the 0th iteration of nPop length N t is randomly generated, denoted as Calculate the objective function value corresponding to each theta 0 vector which is
步骤(3):用来计算nPop个凉亭的适应度,适应度越大,凉亭对雌鸟的吸引力越大;当t<MaxIt时,计算的适应度 Step (3): use To calculate the fitness of nPop pavilions, the greater the fitness, the more attractive the pavilion is to female birds; when t<MaxIt, calculate fitness
其中 in
步骤(4):根据步骤(3)的计算结果选出当前迭代的nPop个凉亭中最吸引雌鸟的凉亭,即适应度最大的方案,将其作为当前最佳方案,记为θ′,为其他雄鸟建造凉亭提供经验和正确的方向;Step (4): According to the calculation result of step (3), select the pavilion that most attracts female birds among the nPop pavilions in the current iteration, that is, the plan with the largest fitness, and take it as the current best plan, denoted as θ′, as Other males build gazebos to provide experience and the right direction;
步骤(5):雄鸟在建造凉亭时会通过模仿历史最佳凉亭以及当前最佳凉亭来改善自己的凉亭,根据这一特点,按照记录下的历史最佳方案和当前最佳方案的合方向移动将代入下式得到 Step (5): When building the pavilion, the male bird will improve his pavilion by imitating the best pavilion in history and the best pavilion at present. move Will Substitute into the following formula to get
其中 in
其中,分别表示当前迭代中的第k个元素和变化后的新方案的第k个元素,θelite,k、θk′分别表示历史最佳方案θelite和当前最佳方案θ′的第k个元素,prob′表示当前最佳方案θ′的适应度值,α=0.94;in, respectively represent the current iteration The k-th element of and the new scheme after the change The k-th element of , θ elite,k , θ k ′ represent the k-th element of the historical best program θ elite and the current best program θ′ respectively, prob′ represents the fitness value of the current best program θ′, α =0.94;
在雄鸟忙于建造凉亭时,它们可能受到其他动物的攻击行为,因此,在迭代的过程中,需要对依概率施加一定的突变,如果rand<pMutation(rand表示区间[0,1]内均匀分布的随机数),则将代入下式计算,得到施加突变后的方案:While males are busy building their gazebos, they may be attacked by other animals, so in an iterative process, it is necessary to A certain mutation is applied according to the probability. If rand<pMutation (rand represents a random number uniformly distributed in the interval [0,1]), then the Substitute into the following formula to calculate the scheme after applying mutation:
其中δ=z×(varmax-varmin); Where δ=z×(var max -var min );
其中,varmax、varmin分别表示向量θ中每个元素的上限和下限,z=0.02,N(0,1)表示服从标准正态分布的随机数;pMutation为突变概率,pMutation设定为随迭代次数t非线性下降的变量,遵循下式:Among them, var max and var min represent the upper limit and lower limit of each element in the vector θ, respectively, z=0.02, N(0,1) represents the random number obeying the standard normal distribution; pMutation is the mutation probability, and pMutation is set as the random number The variable for which the number of iterations t decreases nonlinearly, according to the following formula:
其中,pMutation(t)表示第t次迭代时pMutation的取值,pMutationmax、pMutationmin分别表示最大和最小突变概率,MaxIt为算法最大迭代次数,exp表示以自然常数为底的指数函数;Among them, pMutation(t) represents the value of pMutation at the t-th iteration, pMutation max and pMutation min represent the maximum and minimum mutation probability, respectively, MaxIt is the maximum number of iterations of the algorithm, and exp represents an exponential function based on a natural constant;
步骤(6):根据目标函数值评估nPop个既得方案,保留表现更好的θ向量,记录为θelite;当t<MaxIt时,如果则迭代次数t=t+1,当迭代次数小于MaxIt时,返回步骤(3),否则进入步骤(7);Step (6): according to the objective function value, evaluate nPop existing schemes, keep the θ vector with better performance, and record as θ elite ; when t<MaxIt, if but The number of iterations t=t+1, when the number of iterations is less than MaxIt, return to step (3), otherwise go to step (7);
步骤(7):当算法达到最大迭代次数后,即t=MaxIt时,输出最优向量θelite;Step (7): when the algorithm reaches the maximum number of iterations, that is, when t=MaxIt, the optimal vector θ elite is output;
步骤(8):由步骤(7)得到的θelite生成最优模拟预编码矩阵FRF;即FRF=diag{f1,f2,…,fN};其中, Step (8): generate an optimal analog precoding matrix F RF from θ elite obtained in step (7); that is, F RF =diag{f 1 ,f 2 ,...,f N }; where,
进一步地,前述的毫米波大规模MIMO中基于DSBO的混合预编码算法,其中:在步骤(5)中,varmax取为2π、varmin取为0。Further, in the aforementioned hybrid precoding algorithm based on DSBO in millimeter-wave massive MIMO, in step (5), var max is taken as 2π, and var min is taken as 0.
进一步地,前述的毫米波大规模MIMO中基于DSBO的混合预编码算法,其中:在步骤(5)中,pMutationmax取为1/8,pMutationmin取为1/30。Further, in the aforementioned DSBO-based hybrid precoding algorithm in millimeter-wave massive MIMO, in step (5), pMutation max is taken as 1/8, and pMutation min is taken as 1/30.
通过上述技术方案的实施,本发明的有益效果是:本发明将SBO算法中的突变概率pMutation从固定值改为随迭代次数非线性下降的变量,首次提出了基于动态突变概率的DSBO算法,并用于解决本发明中的最优化问题;同时将函数tr(FRF HH*HTFRF)-1作为DSBO算法的目标函数,每个凉亭对应搜索对象θ的一种方案,最后以搜索到的最优的向量θ生成模拟预编码矩阵;使得在部分连接结构毫米波大规模MIMO系统中,与现有的基于BSA的混合预编码算法和纯模拟预编码算法相比,本发明能够显著地提高系统可达和速率和降低系统的误码率。Through the implementation of the above technical solutions, the beneficial effects of the present invention are: the present invention changes the mutation probability pMutation in the SBO algorithm from a fixed value to a variable that decreases nonlinearly with the number of iterations, and proposes the DSBO algorithm based on the dynamic mutation probability for the first time, and uses In order to solve the optimization problem in the present invention; at the same time, the function tr(F RF H H * H T F RF ) -1 is used as the objective function of the DSBO algorithm, and each pavilion corresponds to a scheme of the search object θ. The optimal vector θ generates an analog precoding matrix; so that in the partially connected structure millimeter wave massive MIMO system, compared with the existing BSA-based hybrid precoding algorithm and pure analog precoding algorithm, the present invention can significantly improve Improve system reachability and rate and reduce system bit error rate.
附图说明Description of drawings
图1为部分连接结构毫米波大规模MIMO系统模型。Figure 1 shows a model of a millimeter-wave massive MIMO system with a partial connection structure.
图2为发射天线数为128时各预编码算法的系统可达和速率比较示意图。FIG. 2 is a schematic diagram showing the system reachability and rate comparison of each precoding algorithm when the number of transmit antennas is 128.
图3为发射天线数为256时各预编码算法的系统可达和速率比较示意图。FIG. 3 is a schematic diagram showing the system reachability and rate comparison of each precoding algorithm when the number of transmit antennas is 256.
图4为不同射频数时各预编码算法的系统可达和速率比较示意图。FIG. 4 is a schematic diagram showing the comparison of the system reachability and rate of each precoding algorithm when the number of radio frequencies is different.
图5为各预编码算法的误码率比较示意图。FIG. 5 is a schematic diagram showing the comparison of bit error rates of various precoding algorithms.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明的技术方案做进一步的详细说明。The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
所述的毫米波大规模MIMO中基于DSBO的混合预编码算法,包括以下步骤:The DSBO-based hybrid precoding algorithm in millimeter-wave massive MIMO includes the following steps:
步骤(1):将最优模拟预编码矩阵的设计问题转化为如下最优化问题:Step (1): Transform the design problem of the optimal analog precoding matrix into the following optimization problem:
θ=argmintr(FRF(θ)HH*HTFRF(θ))-1 θ=argmintr(F RF (θ) H H * H T F RF (θ)) -1
s.t.0<θj<2π,j=1,2,…,Nt st0<θ j <2π,j=1,2,…,N t
其中,H为信道矩阵,向量fi∈CM×1,i=1,2,…,N中的元素N为射频链路数,M为每个射频链路所连接的发射天线数;FRF关于唯一变化,元素θj=θi+(l-1)N=θil为第j个移相器的相位,其中j=1,2,...,Nt,i=1,2,…,N,l=1,2,…,M,Nt=MN为毫米波大规模MIMO系统发射天线数,(·)H、(·)T、(·)-1、(·)*分别表示取矩阵的共轭转置、转置、逆、共轭,tr(·)表示取矩阵的迹,tr(FRF(θ)HH*HTFRF(θ))-1为该最优化问题的目标函数;where H is the channel matrix, vector f i ∈ C M×1 , i=1,2,..., elements in N N is the number of radio frequency chains, M is the number of transmit antennas connected to each radio frequency chain; F RF is about The only change, the element θ j =θ i+(l-1)N =θ il is the phase of the jth phase shifter, where j=1,2,...,N t , i=1,2,..., N, l=1,2,...,M,N t =MN is the number of transmit antennas of the millimeter-wave massive MIMO system, (·) H , (·) T , (·) -1 , (·) * respectively The conjugate transpose, transpose, inverse, and conjugate of the matrix, tr( ) represents the trace of the matrix, tr(F RF (θ) H H * H T F RF (θ)) -1 is the optimization problem the objective function;
在本实施例中,将最优模拟预编码矩阵的设计问题转化为最优化问题的具体转化过程为:In this embodiment, the specific conversion process for converting the design problem of the optimal analog precoding matrix into an optimization problem is:
(一)系统模型及信道模型(1) System model and channel model
本发明考虑下行多用户毫米波大规模MIMO系统中的混合预编码问题,基站采用部分连接方式,如图1所示;发射机配置N个射频链路,每个射频链路固定地连接M个移相器,发射天线数Nt=MN,发送数据流为Ns,接收天线数为K。发射机首先通过数字预编码器对Ns个数据流进行数字预编码,然后通过射频链路传输到模拟预编码部分进行模拟预编码,模拟预编码完成后,数据被映射到发射天线上发送给接收天线;此系统中,用户接收信号y∈CK×1可以表示如下:The present invention considers the hybrid precoding problem in the downlink multi-user millimeter wave massive MIMO system, and the base station adopts a partial connection mode, as shown in Figure 1; the transmitter is configured with N radio frequency links, and each radio frequency link is fixedly connected to M For the phase shifter, the number of transmit antennas is N t =MN, the transmit data stream is N s , and the number of receive antennas is K. The transmitter first performs digital precoding on N s data streams through the digital precoder, and then transmits it to the analog precoding part through the radio frequency link for analog precoding. After the analog precoding is completed, the data is mapped to the transmitting antenna and sent to the transmitter. Receiving antenna; in this system, the user's received signal y∈C K×1 can be expressed as follows:
y=HFRFFBBs+n (1)y=HF RF F BB s+n (1)
其中,为发送信号,满足Ns≤N;H=[h1,h2,…,hK]T∈CK×MN为信道矩阵,这里假设H矩阵已通过用户侧下行信道估计和信道状态反馈过程得到;FRF∈CMN×N为模拟预编码矩阵,形式为FRF=diag{f1,f2,…,fN},其中fn∈CM×1,n=1,2,…,N,fni表示向量fn中的第i个元素,i=1,2,…,M;为数字预编码矩阵,其中本发明中FBB由ZF预编码算法求得;n∈CK×1表示加性高斯白噪声,即n~CN(0,σ2IK),σ2表示方差,IK表示K阶单位矩阵。FRF与FBB满足总发射功率约束,即 in, In order to transmit signals, N s ≤ N; H=[h 1 , h 2 ,...,h K ] T ∈ C K×MN is the channel matrix, here it is assumed that the H matrix has passed the user side downlink channel estimation and channel state feedback process Obtained; F RF ∈ C MN×N is an analog precoding matrix in the form of F RF =diag{f 1 ,f 2 ,…,f N }, where f n ∈ C M×1 , n=1,2,… ,N, f ni represents the ith element in the vector f n , i=1,2,...,M; is the digital precoding matrix, where In the present invention, F BB is obtained by ZF precoding algorithm; n∈C K×1 represents additive white Gaussian noise, that is, n~CN(0,σ 2 I K ), σ 2 represents variance, and I K represents K-order unit matrix. F RF and F BB satisfy the total transmit power constraint, i.e.
由于毫米波频段较高的路径损耗导致了其有限的空间选择性以及紧密排列的天线阵列产生了很高的天线相关性,因此传统的信道模型已经不适于毫米波大规模MIMO系统;本发明考虑毫米波大规模MIMO系统中常用的扩展Saleh-Valenzuela模型,该模型很好地捕捉了毫米波信道的特点,信道矩阵如下所示:Due to the limited spatial selectivity of the millimeter-wave frequency band due to the higher path loss and the high antenna correlation caused by the closely-arranged antenna array, the traditional channel model is no longer suitable for the millimeter-wave massive MIMO system; the present invention considers The extended Saleh-Valenzuela model commonly used in millimeter-wave massive MIMO systems captures the characteristics of millimeter-wave channels well. The channel matrix is as follows:
其中,Nt为基站发送天线数,K为接收天线数,L为毫米波散射波束路径数,δi表示第i条散射波束路径的增益,θi∈[0,2π]分别表示第i条路径的离开角和到达角,αBS(θi)分别表示用户天线阵列响应矢量和基站天线阵列响应矢量;这两个表达式的形式由天线阵列的分布方式决定;常见的天线阵列有均匀线性阵列和均匀平面阵列;本发明采用均匀线性阵列,αBS(θi)表示如下:Among them, N t is the number of transmitting antennas of the base station, K is the number of receiving antennas, L is the number of millimeter-wave scattering beam paths, δ i is the gain of the i-th scattering beam path, θ i ∈ [0, 2π] represents the departure angle and arrival angle of the i-th path, respectively, α BS (θ i ) represents the user antenna array response vector and the base station antenna array response vector respectively; the form of these two expressions is determined by the distribution mode of the antenna array; common antenna arrays include uniform linear arrays and uniform planar arrays; the present invention Using a uniform linear array, α BS (θ i ) is expressed as follows:
其中λ表示电磁波的波长,d表示天线间的距离。Where λ represents the wavelength of the electromagnetic wave, and d represents the distance between the antennas.
(二)目标函数的获取(2) Obtaining the objective function
本发明的混合预编码系统中K个用户的可达和速率可由下式表示:The reachable sum rate of K users in the hybrid precoding system of the present invention can be represented by the following formula:
其中,γk是第k个用户的信干噪比,表示如下:Among them, γ k is the signal-to-interference-noise ratio of the kth user, which is expressed as follows:
由于本发明中毫米波大规模MIMO系统是基于部分连接结构的,因此,模拟预编码矩阵将会受限于块对角矩阵的形式,如下所示:Since the millimeter-wave massive MIMO system in the present invention is based on a partial connection structure, the analog precoding matrix will be limited to the form of a block-diagonal matrix, as shown below:
式中,向量fi∈CM×1,i=1,2,…,N中的元素由此可见,模拟预编码矩阵FRF是随向量唯一变化的矩阵,其中元素θj=θi+(l-1)N=θil,j=1,2,...,Nt,i=1,2,…,N,l=1,2,…,M为第j个移相器的相位;本发明的基带数字预编码采用经典的ZF预编码算法,在此种情况下,系统可达和速率可以表示为下式:In the formula, the vector f i ∈ C M×1 , i=1,2,…, elements in N It can be seen that the analog precoding matrix F RF is a random vector Uniquely varying matrix with elements θ j = θ i+(l-1)N = θ il , j=1,2,...,N t , i=1,2,...,N,l=1,2 ,...,M is the phase of the jth phase shifter; the baseband digital precoding of the present invention adopts the classical ZF precoding algorithm, in this case, the reachable sum rate of the system can be expressed as the following formula:
其中,R表示系统可达和速率,snrk表示第k个用户的信噪比;由此式可见,系统可达和速率最大等价于tr(FRF HH*HTFRF)-1达到最小值,因此我们将tr(FRF HH*HTFRF)-1作为本发明算法的目标函数,混合预编码的设计问题等价于下式表示的最优化问题:Among them, R represents the reachable sum rate of the system, and snr k represents the signal-to-noise ratio of the kth user; it can be seen from this formula that the reachable sum rate of the system is at most equivalent to tr(F RF H H * H T F RF ) -1 The minimum value is reached, so we take tr(F RF H H * H T F RF ) -1 as the objective function of the algorithm of the present invention, and the design problem of hybrid precoding is equivalent to the optimization problem expressed by the following formula:
步骤(2):初始化DSBO算法参数:凉亭数nPop=50,凉亭长度Nt,t为迭代次数,初始化时设t=0,最大迭代次数MaxIt=250,定义凉亭的一般表达式为:即每个凉亭对应一个θ向量;随机生成nPop个长度为Nt的第0次迭代时的θ向量,记为计算每个θ0向量对应的目标函数值即 Step (2): Initialize the parameters of the DSBO algorithm: the number of pavilions nPop=50, the length of the pavilion N t , t is the number of iterations, set t=0 during initialization, and the maximum number of iterations MaxIt=250, the general expression defining the pavilion is: That is, each pavilion corresponds to a θ vector; the θ vector at the 0th iteration of nPop length N t is randomly generated, denoted as Calculate the objective function value corresponding to each theta 0 vector which is
步骤(3):用来计算nPop个凉亭的适应度,适应度越大,凉亭对雌鸟的吸引力越大;当t<MaxIt时,计算的适应度 Step (3): use To calculate the fitness of nPop pavilions, the greater the fitness, the more attractive the pavilion is to female birds; when t<MaxIt, calculate fitness
其中 in
步骤(4):根据步骤(3)的计算结果选出当前迭代的nPop个凉亭中最吸引雌鸟的凉亭,即适应度最大的方案,将其作为当前最佳方案,记为θ′,为其他雄鸟建造凉亭提供经验和正确的方向;Step (4): According to the calculation result of step (3), select the pavilion that most attracts female birds among the nPop pavilions in the current iteration, that is, the plan with the largest fitness, and take it as the current best plan, denoted as θ′, as Other males build gazebos to provide experience and the right direction;
步骤(5):雄鸟在建造凉亭时会通过模仿历史最佳凉亭以及当前最佳凉亭来改善自己的凉亭,根据这一特点,按照记录下的历史最佳方案和当前最佳方案的合方向移动将代入下式得到 Step (5): When building the pavilion, the male bird will improve his pavilion by imitating the best pavilion in history and the best pavilion at present. move Will Substitute into the following formula to get
其中 in
其中,分别表示当前迭代中的第k个元素和变化后的新方案的第k个元素,θelite,k、θk′分别表示历史最佳方案θelite和当前最佳方案θ′的第k个元素,prob′表示当前最佳方案θ′的适应度值,α=0.94;in, respectively represent the current iteration The k-th element of and the new scheme after the change The k-th element of , θ elite,k , θ k ′ represent the k-th element of the historical best program θ elite and the current best program θ′ respectively, prob′ represents the fitness value of the current best program θ′, α =0.94;
在雄鸟忙于建造凉亭时,它们可能受到其他动物的攻击行为,因此,在迭代的过程中,需要对依概率施加一定的突变,如果rand<pMutation(rand表示区间[0,1]内均匀分布的随机数),则将代入下式计算,得到施加突变后的方案:While males are busy building their gazebos, they may be attacked by other animals, so in an iterative process, it is necessary to A certain mutation is applied according to the probability. If rand<pMutation (rand represents a random number uniformly distributed in the interval [0,1]), then the Substitute into the following formula to calculate the scheme after applying mutation:
其中δ=z×(varmax-varmin); Where δ=z×(var max -var min );
其中,varmax、varmin分别表示向量θ中每个元素的上限和下限,在本实施例中,varmax取为2π、varmin取为0,z=0.02,N(0,1)表示服从标准正态分布的随机数;pMutation为突变概率,pMutation设定为随迭代次数t非线性下降的变量,遵循下式:Among them, var max and var min respectively represent the upper limit and lower limit of each element in the vector θ. In this embodiment, var max is taken as 2π, var min is taken as 0, z=0.02, and N(0,1) means obeying A random number from a standard normal distribution; pMutation is the mutation probability, and pMutation is set to a variable that decreases nonlinearly with the number of iterations t, according to the following formula:
其中,pMutation(t)表示第t次迭代时pMutation的取值,pMutationmax、pMutationmin分别表示最大和最小突变概率,在本实施例中,pMutationmax取为1/8,pMutationmin取为1/30,MaxIt为算法最大迭代次数,exp表示以自然常数为底的指数函数;Among them, pMutation(t) represents the value of pMutation at the t-th iteration, and pMutation max and pMutation min represent the maximum and minimum mutation probability respectively. In this embodiment, pMutation max is taken as 1/8, and pMutation min is taken as 1/ 30, MaxIt is the maximum number of iterations of the algorithm, and exp represents an exponential function based on a natural constant;
步骤(6):根据目标函数值评估nPop个既得方案,保留表现更好的θ向量,记录为θelite;当t<MaxIt时,如果则迭代次数t=t+1,当迭代次数小于MaxIt时,返回步骤(3),否则进入步骤(7);Step (6): according to the objective function value, evaluate nPop existing schemes, keep the θ vector with better performance, and record as θ elite ; when t<MaxIt, if but The number of iterations t=t+1, when the number of iterations is less than MaxIt, return to step (3), otherwise go to step (7);
步骤(7):当算法达到最大迭代次数后,即t=MaxIt时,输出最优向量θelite;Step (7): when the algorithm reaches the maximum number of iterations, that is, when t=MaxIt, the optimal vector θ elite is output;
步骤(8):由步骤(7)得到的θelite生成最优模拟预编码矩阵FRF;即FRF=diag{f1,f2,…,fN};其中, Step (8): generate an optimal analog precoding matrix F RF from θ elite obtained in step (7); that is, F RF =diag{f 1 ,f 2 ,...,f N }; where,
本发明的优点是:本发明将SBO算法中的突变概率pMutation从固定值改为随迭代次数非线性下降的变量,首次提出了基于动态突变概率的DSBO算法,并用于解决本发明中的最优化问题;同时将函数tr(FRF HH*HTFRF)-1作为DSBO算法的目标函数,每个凉亭对应搜索对象θ的一种方案,最后以搜索到的最优的向量θ生成模拟预编码矩阵;使得在部分连接结构毫米波大规模MIMO系统中,与现有的基于BSA的混合预编码算法和纯模拟预编码算法相比,本发明能够显著地提高系统可达和速率和降低系统的误码率。The advantages of the present invention are: the present invention changes the mutation probability pMutation in the SBO algorithm from a fixed value to a variable that decreases nonlinearly with the number of iterations, and proposes the DSBO algorithm based on dynamic mutation probability for the first time, and is used to solve the optimization in the present invention At the same time, the function tr(F RF H H * H T F RF ) -1 is used as the objective function of the DSBO algorithm, each pavilion corresponds to a scheme of the search object θ, and finally the searched optimal vector θ is used to generate a simulation precoding matrix; so that in the partially connected millimeter wave massive MIMO system, compared with the existing BSA-based hybrid precoding algorithm and pure analog precoding algorithm, the present invention can significantly improve the system reachability and rate and reduce The bit error rate of the system.
下面通过仿真说明本混合预编码算法对提高部分连接结构毫米波大规模MIMO系统的系统容量和误码率性能的有益效果,通过仿真说明由算法1得到的预编码矩阵与其他算法相比,能使部分连接毫米波大规模MIMO系统有更高的系统可达和速率和更低的误码率。The beneficial effects of this hybrid precoding algorithm on improving the system capacity and bit error rate performance of the partially connected millimeter-wave massive MIMO system are described below through simulation. It enables the partially connected millimeter wave massive MIMO system to have higher system reachability and lower bit error rate.
仿真结果:Simulation results:
对于单小区部分连接结构毫米波大规模MIMO系统,将本发明算法与基于BSA的混合预编码算法和纯模拟预编码算法作对比。仿真参数为:毫米波波束的散射体数L=10,基站发射功率为1w,天线间距d=λ/2,λ为毫米波波长,调制方式采用4QAM调制。For a millimeter-wave massive MIMO system with a partially connected structure in a single cell, the algorithm of the present invention is compared with the hybrid precoding algorithm based on BSA and the pure analog precoding algorithm. The simulation parameters are: the number of scatterers of the millimeter wave beam L=10, the base station transmit power is 1w, the antenna spacing d=λ/2, λ is the millimeter wave wavelength, and the modulation method adopts 4QAM modulation.
图2、图3分别给出了当系统为Nt=MN=128,N=K=32和Nt=MN=256,N=K=32时各预编码算法系统可达和速率的性能对比。由两图可见,图2与图3的趋势是相似的,即各算法性能随着信噪比和发射天线数的增加而增加,且本发明的DSBO算法性能大大优于基于BSA的混合预编码算法和纯模拟预编码算法的性能;当发射天线数增加到256时,本发明DSBO算法性能优势更为明显。Figure 2 and Figure 3 respectively show the performance comparison of each precoding algorithm system reachability and rate when the system is N t = MN = 128, N = K = 32 and N t = MN = 256, N = K = 32 . It can be seen from the two figures that the trends in Figure 2 and Figure 3 are similar, that is, the performance of each algorithm increases with the increase of the signal-to-noise ratio and the number of transmit antennas, and the performance of the DSBO algorithm of the present invention is much better than the hybrid precoding based on BSA. The performance of the algorithm and the pure analog precoding algorithm; when the number of transmit antennas increases to 256, the performance advantage of the DSBO algorithm of the present invention is more obvious.
图4给出了当系统为Nt=MN=200,K=10,发射信噪比snr=10dB时各预编码算法系统可达和速率与射频链路数之间的关系,从图中可以看出,三种部分连接结构预编码算法的系统可达和速率均随着射频数的增加而增加,并最终接近纯数字ZF预编码算法的性能。另外,本发明所提DSBO算法的性能优于基于BSA的混合预编码算法的性能。Figure 4 shows the relationship between the reachable sum rate of each precoding algorithm and the number of radio frequency links when the system is N t = MN = 200, K = 10, and the transmit signal-to-noise ratio snr = 10dB. It can be seen that the system reachability and rate of the three partial connection structure precoding algorithms all increase with the increase of the number of radio frequencies, and finally approach the performance of the pure digital ZF precoding algorithm. In addition, the performance of the DSBO algorithm proposed in the present invention is better than that of the hybrid precoding algorithm based on BSA.
图5给出了当系统为Nt=MN=128,N=K=32时各预编码算法的系统误码率随信噪比的变化关系。由图可见,本发明DSBO算法的系统误码率性能优于基于BSA的混合预编码算法,增益约2.5dB,且误码率大大低于纯模拟预编码算法。Fig. 5 shows the relationship between the systematic bit error rate of each precoding algorithm and the signal-to-noise ratio when the system is N t =MN=128 and N=K=32. It can be seen from the figure that the system bit error rate performance of the DSBO algorithm of the present invention is better than that of the hybrid precoding algorithm based on BSA, the gain is about 2.5dB, and the bit error rate is much lower than that of the pure analog precoding algorithm.
就复杂度而言,本发明DSBO算法的复杂度主要来自于的计算,此式在算法每次迭代过程中会被计算两次,即计算和因此,在算法达到最大迭代次数MaxIt时,总的复杂度可以表示为O(2nPopMaxItNtN2)。其中,N为射频链路数。基于BSA的混合预编码算法的复杂度可以表示为O(popTNtN2),其中pop、T分别表示BSA算法的初始种群数和最大迭代次数,由此可见,本发明算法的复杂度与BSA算法复杂度处于同一量级。In terms of complexity, the complexity of the DSBO algorithm of the present invention mainly comes from The calculation of this formula will be calculated twice in each iteration of the algorithm, that is, the calculation and Therefore, when the algorithm reaches the maximum number of iterations MaxIt, the total complexity can be expressed as O(2nPopMaxItN t N 2 ). Among them, N is the number of radio frequency links. The complexity of the hybrid precoding algorithm based on BSA can be expressed as O(popTN t N 2 ), where pop and T represent the initial population number and the maximum number of iterations of the BSA algorithm, respectively. It can be seen that the complexity of the algorithm of the present invention is the same as that of the BSA algorithm. The algorithmic complexity is in the same order of magnitude.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910014059.9A CN109547076B (en) | 2019-01-07 | 2019-01-07 | Hybrid precoding method in millimeter wave large-scale MIMO system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910014059.9A CN109547076B (en) | 2019-01-07 | 2019-01-07 | Hybrid precoding method in millimeter wave large-scale MIMO system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109547076A true CN109547076A (en) | 2019-03-29 |
| CN109547076B CN109547076B (en) | 2021-05-18 |
Family
ID=65834519
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910014059.9A Active CN109547076B (en) | 2019-01-07 | 2019-01-07 | Hybrid precoding method in millimeter wave large-scale MIMO system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109547076B (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110535507A (en) * | 2019-06-17 | 2019-12-03 | 南京邮电大学 | Mixing precoding algorithms of the millimeter wave MIMO based on maximum equivalent channel gain |
| CN111555782A (en) * | 2020-03-08 | 2020-08-18 | 郑州大学 | Mixed precoding design method based on multi-user millimeter wave MIMO-OFDM system |
| CN112468202A (en) * | 2020-05-14 | 2021-03-09 | 哈尔滨工程大学 | Low-complexity millimeter wave large-scale MIMO hybrid precoding method |
| CN114665929A (en) * | 2022-03-15 | 2022-06-24 | 江南大学 | Hybrid precoding method based on dynamic connection structure and MIMO system |
| CN115021779A (en) * | 2022-06-15 | 2022-09-06 | 中南大学 | RIS assisted MIMO system discrete phase shift design method and apparatus |
| CN115348610A (en) * | 2022-10-18 | 2022-11-15 | 成都市以太节点科技有限公司 | Millimeter wave multilink self-adaptive communication method, electronic equipment and storage medium |
| CN115460616A (en) * | 2022-06-17 | 2022-12-09 | 东南大学 | A Genetic Algorithm Based User Grouping Method for Millimeter Wave Massive MIMO System |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140334564A1 (en) * | 2013-05-09 | 2014-11-13 | Samsung Electronics Co., Ltd | Method and system for providing low-complexity hybrid precoding in wireless communication systems |
| CN108449121A (en) * | 2018-02-13 | 2018-08-24 | 杭州电子科技大学 | Low Complexity Hybrid Precoding Method in Millimeter Wave Massive MIMO System |
| CN108880635A (en) * | 2018-06-25 | 2018-11-23 | 北京邮电大学 | A kind of transmit-receive combination mixing method for precoding of the millimeter wave mimo system based on orthogonal code book |
| CN108933619A (en) * | 2018-07-09 | 2018-12-04 | 重庆邮电大学 | A kind of extensive MIMO mixing precoding codebook design method |
-
2019
- 2019-01-07 CN CN201910014059.9A patent/CN109547076B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140334564A1 (en) * | 2013-05-09 | 2014-11-13 | Samsung Electronics Co., Ltd | Method and system for providing low-complexity hybrid precoding in wireless communication systems |
| CN108449121A (en) * | 2018-02-13 | 2018-08-24 | 杭州电子科技大学 | Low Complexity Hybrid Precoding Method in Millimeter Wave Massive MIMO System |
| CN108880635A (en) * | 2018-06-25 | 2018-11-23 | 北京邮电大学 | A kind of transmit-receive combination mixing method for precoding of the millimeter wave mimo system based on orthogonal code book |
| CN108933619A (en) * | 2018-07-09 | 2018-12-04 | 重庆邮电大学 | A kind of extensive MIMO mixing precoding codebook design method |
Non-Patent Citations (1)
| Title |
|---|
| 项建弘等: "基于BSA的MIB-OMP毫米波大规模MIMO混合预编码", 《应用科技》 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110535507A (en) * | 2019-06-17 | 2019-12-03 | 南京邮电大学 | Mixing precoding algorithms of the millimeter wave MIMO based on maximum equivalent channel gain |
| CN111555782A (en) * | 2020-03-08 | 2020-08-18 | 郑州大学 | Mixed precoding design method based on multi-user millimeter wave MIMO-OFDM system |
| CN112468202A (en) * | 2020-05-14 | 2021-03-09 | 哈尔滨工程大学 | Low-complexity millimeter wave large-scale MIMO hybrid precoding method |
| CN114665929A (en) * | 2022-03-15 | 2022-06-24 | 江南大学 | Hybrid precoding method based on dynamic connection structure and MIMO system |
| CN114665929B (en) * | 2022-03-15 | 2023-05-05 | 江南大学 | Hybrid precoding method based on dynamic connection structure and MIMO system |
| CN115021779A (en) * | 2022-06-15 | 2022-09-06 | 中南大学 | RIS assisted MIMO system discrete phase shift design method and apparatus |
| CN115460616A (en) * | 2022-06-17 | 2022-12-09 | 东南大学 | A Genetic Algorithm Based User Grouping Method for Millimeter Wave Massive MIMO System |
| CN115348610A (en) * | 2022-10-18 | 2022-11-15 | 成都市以太节点科技有限公司 | Millimeter wave multilink self-adaptive communication method, electronic equipment and storage medium |
| CN115348610B (en) * | 2022-10-18 | 2023-03-24 | 成都市以太节点科技有限公司 | Millimeter wave multilink self-adaptive communication method, electronic equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109547076B (en) | 2021-05-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109547076B (en) | Hybrid precoding method in millimeter wave large-scale MIMO system | |
| CN113411110B (en) | A beam training method for millimeter wave communication based on deep reinforcement learning | |
| CN111181619A (en) | Millimeter wave hybrid beam forming design method based on deep reinforcement learning | |
| CN110535500B (en) | Millimeter wave MIMO mixed beam forming optimization method based on deep learning | |
| CN110365388B (en) | Low-complexity millimeter wave multicast beam forming method | |
| CN107135024A (en) | A Low Complexity Iterative Design Method for Hybrid Beamforming | |
| CN110943768B (en) | Mixed precoding codebook joint design method of millimeter wave large-scale MIMO system | |
| CN110138427B (en) | Partial Connection Based Massive Multiple-Input Multiple-Output Hybrid Beamforming Algorithm | |
| CN110311717B (en) | A Robust Hybrid Beamforming Design Method Based on Directional Modulation | |
| CN115021779B (en) | Discrete phase shift design method and device for RIS (radio-frequency identification) assisted MIMO (multiple input multiple output) system | |
| CN110719127B (en) | A beamforming method for mmWave MIMO systems with constant modulus constraints | |
| CN113193893A (en) | Millimeter wave large-scale MIMO intelligent hybrid beam forming design method | |
| CN112564754B (en) | Wave beam selection method based on self-adaptive cross entropy under millimeter wave Massive MIMO system | |
| CN110768704A (en) | Mixed beam forming matrix optimization method based on residual error neural network | |
| CN117097595A (en) | Information geometric channel estimation method, device and medium based on deep learning | |
| CN106452533B (en) | An Antenna Selection Method at the Receiver Based on Maximizing Capacity | |
| CN111431567B (en) | A mmWave Massive Beam Spatial MIMO System | |
| CN117560043B (en) | Non-cellular network power control method based on graph neural network | |
| CN111313945A (en) | Method for reducing peak-to-average power ratio of millimeter wave MIMO system | |
| Jiao et al. | Unsupervised learning-based joint precoding and phase shift design for RIS-Assisted mmWave communication systems | |
| Jiang et al. | Active sensing for two-sided beam alignment using ping-pong pilots | |
| CN105610476B (en) | Divergence type numerical model analysis receives and dispatches the analog beam vector optimization method in communication system | |
| CN112165344B (en) | Mixed precoding method based on gradient descent method | |
| CN112242860B (en) | Beamforming method, device and massive MIMO system for adaptive antenna grouping | |
| CN109547071B (en) | A single-cell MU-MISO hybrid precoding system and its analog beam selection method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |