+

CN108804784A - A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models - Google Patents

A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models Download PDF

Info

Publication number
CN108804784A
CN108804784A CN201810516991.7A CN201810516991A CN108804784A CN 108804784 A CN108804784 A CN 108804784A CN 201810516991 A CN201810516991 A CN 201810516991A CN 108804784 A CN108804784 A CN 108804784A
Authority
CN
China
Prior art keywords
gaussian
parameters
data
training
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810516991.7A
Other languages
Chinese (zh)
Inventor
熊伟丽
祁成
马君霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201810516991.7A priority Critical patent/CN108804784A/en
Publication of CN108804784A publication Critical patent/CN108804784A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于贝叶斯高斯混合模型的即时学习软测量建模方法,属于复杂工业过程建模和软测量领域。本发明用于具有非线性、非高斯性的时变工业过程,通过一种在线实时更新局部的策略,采用贝叶斯信息准则确定最优的高斯成分个数,当新的测试数据到来时,计算其隶属于每个高斯成分的后验概率,并求出其与训练数据之间的马氏距离,将两者融合作为相似度指标;最后,从原始的训练样本中选取相似度最大的一组数据来建立当前的GPR模型,并进行模型输出预测,达到了提高产品质量,降低生产成本的效果。

The invention discloses an instant learning soft sensor modeling method based on a Bayesian Gaussian mixture model, which belongs to the field of complex industrial process modeling and soft sensor. The present invention is used for nonlinear and non-Gaussian time-varying industrial processes. Through an online real-time local update strategy, the Bayesian information criterion is used to determine the optimal number of Gaussian components. When new test data arrives, Calculate the posterior probability that it belongs to each Gaussian component, and find the Mahalanobis distance between it and the training data, and use the fusion of the two as the similarity index; finally, select the one with the largest similarity from the original training samples Group data to establish the current GPR model and predict the output of the model, achieving the effect of improving product quality and reducing production costs.

Description

一种基于贝叶斯高斯混合模型的即时学习软测量建模方法An Instant Learning Soft Sensor Modeling Method Based on Bayesian Gaussian Mixture Model

技术领域technical field

本发明涉及一种基于贝叶斯高斯混合模型的即时学习软测量建模方法,属于复杂工业过程建模和软测量领域。The invention relates to an instant learning soft sensor modeling method based on a Bayesian Gaussian mixture model, which belongs to the fields of complex industrial process modeling and soft sensor.

背景技术Background technique

对于一些存在非线性、时变和非高斯性的工业过程,且对过程中产品质量的要求不断提高,需要对一些直接决定产品质量的过程变量进行严格的监测和控制。但是由于某些测量仪器价格昂贵或者技术条件的制约,使得这些变量无法用在线仪器测量得到。For some non-linear, time-varying and non-Gaussian industrial processes, and the continuous improvement of product quality requirements in the process, it is necessary to strictly monitor and control some process variables that directly determine product quality. However, due to the high price of some measuring instruments or the restriction of technical conditions, these variables cannot be measured by online instruments.

为了解决这些问题,可以通过建立软测量模型的方法进行估计和预测,常用的软测量方法有偏最小二乘法(partial least squares,PLS)、人工神经网络(artificialneural networks,ANN)、支持向量机(support vector machine,SVM)等。PLS可以很好的处理过程的线性问题,然而实际工业过程常常呈现非线性,因此线性方法不再适用。非线性建模方法如ANN、SVM等,虽然可以较好地处理过程的非线性,但存在优化参数较多等问题。In order to solve these problems, it is possible to estimate and predict by establishing a soft sensor model. Commonly used soft sensor methods include partial least squares (PLS), artificial neural networks (ANN), support vector machine ( support vector machine, SVM), etc. PLS can deal with the linear problem of the process very well, but the actual industrial process is often nonlinear, so the linear method is no longer applicable. Although nonlinear modeling methods such as ANN and SVM can handle the nonlinearity of the process well, there are problems such as many optimization parameters.

近年来,高斯过程回归(Gaussian process regression,GPR)受到了越来越多的关注,作为一种非参数概率模型,它不仅能够得到模型的预测值,还能得到预测值对模型的信任值。与ANN、SVM等方法相比,GPR需要优化的参数较少,在解决小样本、非线性问题中具有独特的优势。因此选择GPR建模。In recent years, Gaussian process regression (GPR) has received more and more attention. As a non-parametric probability model, it can not only obtain the predicted value of the model, but also obtain the trust value of the predicted value to the model. Compared with ANN, SVM and other methods, GPR needs fewer parameters to be optimized, and has unique advantages in solving small sample and nonlinear problems. Hence the choice of GPR modeling.

在离线建立好的模型投入运行以后,由于生产环境的一些变化以及对产品质量要求的不断改变等原因,之前建立好的模型可能会出现不再适用于当前工况的情况,预测的结果不能满足精度要求。针对这一问题,常用的解决方法有基于滑动窗(Moving window,MW)和基于即时学习(Just-in-time learning,JITL)的方法,但是MW的窗口长度难以确定且不适用于过程的突变,JITL方法根据相似输入产生相似输出的原理,选择与测试样本最相似的一组训练样本来建立局部模型进行预测,可以较好地解决过程突变问题。After the model established offline is put into operation, due to some changes in the production environment and continuous changes in product quality requirements, the previously established model may no longer be applicable to the current working conditions, and the predicted results cannot meet the requirements. Accuracy requirements. Aiming at this problem, commonly used solutions are based on sliding window (Moving window, MW) and based on instant learning (Just-in-time learning, JITL) method, but the window length of MW is difficult to determine and is not suitable for the sudden change of the process. According to the principle that similar input produces similar output, the JITL method selects a group of training samples most similar to the test sample to build a local model for prediction, which can better solve the problem of process mutation.

然而,对于一些呈现非高斯性的时变工业过程,传统的JITL方法是基于欧氏距离或者和角度相结合的相似度准则来选择相似数据,无法充分考虑到过程数据的非高斯性。However, for some non-Gaussian time-varying industrial processes, the traditional JITL method selects similar data based on the Euclidean distance or the similarity criterion combined with the angle, which cannot fully consider the non-Gaussian nature of the process data.

发明内容Contents of the invention

为了解决目前存在的问题,本发明提出一种基于贝叶斯高斯混合模型的即时学习软测量建模方法,它不仅考虑到了过程的时变性,而且在选择相似数据建立局部GPR模型时,充分考虑到数据的非高斯特性,更为合理的选择相似数据。所述方法包括:In order to solve the existing problems, the present invention proposes a real-time learning soft sensor modeling method based on the Bayesian Gaussian mixture model, which not only takes into account the time-varying nature of the process, but also fully considers the Due to the non-Gaussian nature of the data, it is more reasonable to choose similar data. The methods include:

步骤1:收集输入、输出数据得到历史训练数据集;Step 1: Collect input and output data to obtain a historical training data set;

步骤2:X为已知训练样本,利用贝叶斯信息准则BIC确定最优的高斯成分个数K,BIC的描述如公式(1):Step 2: X is a known training sample, use Bayesian information criterion BIC to determine the optimal number of Gaussian components K, the description of BIC is as formula (1):

BIC=-2logp(X|Θ)+dlog(N) (1)BIC=-2logp(X|Θ)+dlog(N) (1)

式(1)中logp(X|Θ)表示训练样本的对数似然函数,d表示K个高斯成分所具有的自由参数的个数,N表示训练样本的个数In formula (1), logp(X|Θ) represents the logarithmic likelihood function of the training samples, d represents the number of free parameters of the K Gaussian components, and N represents the number of training samples

步骤3:根据最优的高斯成分个数K后和给定高斯混合模型GMM的初始参数,利用式(5)、(6)、(7)不断迭代,直到前后两次参数的差值小于设定好的阈值,得到最终GMM的参数Θ,GMM的详细描述如下:Step 3: According to the optimal number K of Gaussian components and the initial parameters of the given Gaussian mixture model GMM, use formulas (5), (6), and (7) to iterate continuously until the difference between the two parameters is less than the set value After setting the threshold, the parameter Θ of the final GMM is obtained. The detailed description of the GMM is as follows:

包含N个训练样本的数据集X{xi∈Rm,i=1,2…N},m表示输入数据的维数,该数据集的概率密度函数表示为:A data set X{x i ∈ R m ,i=1,2…N} containing N training samples, m represents the dimension of the input data, and the probability density function of the data set is expressed as:

其中,Θ=[α111;α222;……;αkkk]是GMM的参数,K是高斯成分的个数,θk为第k个高斯成分的参数,θk=(μkk),μk和Σk分别为第k个高斯成分的均值和协方差矩阵,αk为第k个高斯成分所占的比例,且0<αk<1,其中第k个高斯成分的概率密度函数为:Among them, Θ=[α 1 , μ 1 , Σ 1 ; α 2 , μ 2 , Σ 2 ; ...; α k , μ k , Σ k ] are parameters of GMM, K is the number of Gaussian components, θ k is the parameter of the kth Gaussian component, θ k = (μ kk ), μ k and Σ k are the mean value and covariance matrix of the kth Gaussian component respectively, and α k is the proportion of the kth Gaussian component ratio, and 0<α k <1, where the probability density function of the kth Gaussian component is:

通过期望最大化算法对GMM方法中的未知参数进行求解,具体求解过程分为E步和M步,其描述如下:The unknown parameters in the GMM method are solved by the expectation maximization algorithm. The specific solution process is divided into E step and M step, which are described as follows:

E步:根据当前第l次更新的参数通过贝叶斯公式计算第i个训练样本属于第k个高斯成分的概率其中Ck表示第k个高斯成分Step E: According to the parameters updated for the current lth time and Calculate the probability that the i-th training sample belongs to the k-th Gaussian component by Bayesian formula where C k denotes the kth Gaussian component

M步:更新算法参数Step M: update algorithm parameters

步骤4:当来到一个新的输入数据xq,采用即时学习JITL算法从历史数据集中选择与之最相似的一组数据建立局部的高斯过程回归GPR模型,JITL算法和GPR建模方法的详细描述分别如下:Step 4: When a new input data x q comes, use the real-time learning JITL algorithm to select the most similar set of data from the historical data set to establish a local Gaussian process regression GPR model, the details of the JITL algorithm and GPR modeling method The descriptions are as follows:

JITL算法:JITL方法是根据相似输入产生相似输出的思想,从训练样本中选择与当前到来的测试样本最相似的一组训练样本来建模,JITL的核心是相似度准则的选取,基于欧式距离和角度的相似度准则是一种常用的方法,即:JITL algorithm: The JITL method is based on the idea of similar inputs to generate similar outputs. From the training samples, a group of training samples that are most similar to the current incoming test samples are selected to model. The core of JITL is the selection of similarity criteria, based on Euclidean distance The similarity criterion of and angle is a commonly used method, namely:

其中,距离d表示当前到来的测试样本与训练样本之间的2范数,θ表示这两个样本之间的夹角,γ为一系数,取值在0到1之间;Among them, the distance d represents the 2-norm between the currently arriving test sample and the training sample, θ represents the angle between the two samples, and γ is a coefficient with a value between 0 and 1;

然而,对于一些非高斯工业过程,GMM可以较好地对过程的非高斯性进行描述,相比于传统的相似度准则,基于贝叶斯高斯混合模型BGMM的相似度准则可以更好地选择相似样本来建立GPR模型,由步骤2和3分别得到的最优的高斯成分个数K和各个成分的参数Θ,对应的相似度准则可以表示为:However, for some non-Gaussian industrial processes, GMM can better describe the non-Gaussian nature of the process. Compared with the traditional similarity criterion, the similarity criterion based on the Bayesian Gaussian mixture model BGMM can better select similar samples to establish a GPR model, the optimal number of Gaussian components K and the parameters Θ of each component obtained by steps 2 and 3 respectively, the corresponding similarity criterion can be expressed as:

其中xq表示新到来的样本,xi表示第i个训练样本,p(Ck|xq)表示新到来的样本xq属于第k个高斯成分的后验概率,为两样本之间的马氏距离,针对当前到来的xq,利用上述相似度准则,选择与xq最相似的一组数据建立当前的GPR模型where x q represents the new incoming sample, x i represents the i-th training sample, p(C k |x q ) represents the posterior probability that the new incoming sample x q belongs to the k-th Gaussian component, is the Mahalanobis distance between two samples, for the current incoming x q , using the above similarity criterion, select a set of data most similar to x q to establish the current GPR model

GPR建模方法:已知训练样本集X{xi∈Rm,i=1,2…N}和Y{yi∈R,i=1,2…N}分别代表m维输入数据和1维输出数据,输入和输出之间的关系可以表示为:GPR modeling method: the known training sample sets X{ xi ∈R m ,i=1,2…N} and Y{y i ∈R,i=1,2…N} represent m-dimensional input data and 1 Dimensional output data, the relationship between input and output can be expressed as:

yi=f(xi)+ε (10)y i =f(x i )+ε (10)

其中f表示一种未知的函数形式,ε表示均值为0,方差为的白噪声Where f represents an unknown function form, ε represents the mean value is 0, and the variance is white noise

对于新的测试样本xq,则它的输出预测值yq也满足高斯分布,其均值和方差分别表示为:For a new test sample x q , its output prediction value y q also satisfies the Gaussian distribution, and its mean and variance are expressed as:

yq(xq)=cT(xq)C-1Y (11)y q (x q )=c T (x q )C -1 Y (11)

其中,c(xq)=[c(xq,x1),…,c(xq,xN)]T是测试输入数据与训练输入数据的协方差矩阵,为训练输入数据之间的协方差矩阵,c(xq,xq)表示测试输入数据与本身的协方差值;Among them, c(x q )=[c(x q ,x 1 ),…,c(x q ,x N )] T is the covariance matrix of the test input data and the training input data, is the covariance matrix between the training input data, c(x q , x q ) represents the covariance value between the test input data and itself;

GPR选择径向基协方差函数,其函数描述如下:GPR selects the radial basis covariance function, and its function is described as follows:

其中,v表示先验知识的总体度量,ωt表示每维数据相对应的权重,δij为Kronecher算子,表示各辅助变量的相对重要程度;Among them, v represents the overall measure of prior knowledge, ω t represents the weight corresponding to each dimension of data, and δ ij is the Kronecher operator, representing the relative importance of each auxiliary variable;

采用极大似然估计得到式(13)中的参数其对数似然函数为:The parameters in formula (13) are obtained by maximum likelihood estimation Its log-likelihood function is:

使用训练集和验证集将参数θ试凑出来,然后用共轭梯度法得到优化的参数,参数确定后,对于新的测试数据,可由式(11)得到软测量模型输出;Use the training set and verification set to try out the parameter θ, and then use the conjugate gradient method to obtain the optimized parameters. After the parameters are determined, for the new test data, the output of the soft sensor model can be obtained by formula (11);

步骤5:将新到来的样本点xq带入步骤4建立好的局部GPR模型,得到最终的估计值yqStep 5: Bring the newly arrived sample point x q into the local GPR model established in step 4 to obtain the final estimated value y q .

可选的,所述方法为应用于复杂工业过程中对无法直接测量的变量的预测方法。Optionally, the method is a prediction method applied to variables that cannot be directly measured in complex industrial processes.

可选的,所述复杂工业过程包括化工、冶金及发酵过程。Optionally, the complex industrial process includes chemical industry, metallurgy and fermentation process.

可选的,所述方法为应用于脱丁烷塔过程中对于丁烷浓度的预测方法。Optionally, the method is a prediction method for butane concentration applied in the debutanizer process.

本发明有益效果是:The beneficial effects of the present invention are:

通过一种在线实时更新局部的策略,采用贝叶斯信息准则确定最优的高斯成分个数,当新的测试数据到来时,计算其隶属于每个高斯成分的后验概率,并求出其与训练数据之间的马氏距离,将两者融合作为相似度指标;最后,从原始的训练样本中选取相似度最大的一组数据来建立当前的GPR模型,并进行模型输出预测,达到了提高产品质量,降低生产成本的效果。Through an online real-time local update strategy, the Bayesian information criterion is used to determine the optimal number of Gaussian components. When new test data arrives, the posterior probability of each Gaussian component is calculated, and its The Mahalanobis distance between the training data and the fusion of the two is used as a similarity index; finally, a set of data with the largest similarity is selected from the original training samples to establish the current GPR model, and the model output prediction is achieved, reaching Improve product quality and reduce production costs.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.

图1为基于BGMM的JITL软测量建模流程图;Figure 1 is a flow chart of JITL soft sensor modeling based on BGMM;

图2为不同高斯成分个数所对应的BIC值;Figure 2 shows the BIC values corresponding to different numbers of Gaussian components;

图3为选取训练样本的不同比例建模的RMSE。Figure 3 shows the RMSE modeled at different ratios of selected training samples.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.

实施例:Example:

本实施例提供一种于贝叶斯高斯混合模型的即时学习软测量建模方法,本实施例以常见的化工过程——脱丁烷塔过程为例。实验数据来自于脱丁烷塔过程,对丁烷浓度进行预测,参见图1,所述方法包括:This embodiment provides a real-time learning soft sensor modeling method based on the Bayesian Gaussian mixture model. This embodiment takes a common chemical process——butanizer process as an example. The experimental data comes from the debutanizer process, and the butane concentration is predicted, as shown in Figure 1. The method includes:

步骤1:收集输入、输出数据得到历史训练数据集。Step 1: Collect input and output data to obtain a historical training data set.

步骤2:已知训练样本X,利用BIC确定最优的高斯成分个数K。BIC的描述如公式(1):Step 2: Given the training sample X, use BIC to determine the optimal number K of Gaussian components. The description of BIC is as formula (1):

BIC=-2logp(X|Θ)+dlog(N) (1)BIC=-2logp(X|Θ)+dlog(N) (1)

式(1)中logp(X|Θ)表示训练样本的对数似然函数,d表示K个高斯成分所具有的自由参数的个数,N表示训练样本的个数In formula (1), logp(X|Θ) represents the logarithmic likelihood function of the training samples, d represents the number of free parameters of the K Gaussian components, and N represents the number of training samples

步骤3:得到最优的高斯成分个数K后,给定高斯混合模型(Gaussian mixturemodel,GMM)的初始参数,GMM算法的详细描述如下:Step 3: After obtaining the optimal number K of Gaussian components, given the initial parameters of the Gaussian mixture model (GMM), the detailed description of the GMM algorithm is as follows:

已知包含N个训练样本的数据集X{xi∈Rm,i=1,2…N},m表示输入数据的维数,它的概率密度函数可以表示为:Given a data set X{ xi ∈ R m , i=1,2…N} containing N training samples, m represents the dimension of the input data, and its probability density function can be expressed as:

其中Θ=[α111;α222;……;αkkk]是GMM的参数,K是高斯成分的个数,θk为第k个高斯成分的参数,θk=(μkk),μk和Σk分别为第k个高斯成分的均值和协方差矩阵,αk为第k个高斯成分所占的比例,且0<αk<1,其中第k个高斯成分的概率密度函数为:Where Θ=[α 1 , μ 1 , Σ 1 ; α 2 , μ 2 , Σ 2 ; ...; α k , μ k , Σ k ] are parameters of GMM, K is the number of Gaussian components, θ k is The parameters of the k-th Gaussian component, θ k = (μ kk ), μ k and Σ k are the mean and covariance matrix of the k-th Gaussian component respectively, and α k is the proportion of the k-th Gaussian component ,and 0<α k <1, where the probability density function of the kth Gaussian component is:

通过期望最大化算法对GMM方法中的未知参数进行求解。具体求解过程分为E步和M步,其描述如下:The unknown parameters in the GMM method are solved by the expectation maximization algorithm. The specific solution process is divided into E step and M step, which are described as follows:

E步:用当前第l次更新的参数通过贝叶斯公式计算第i个训练样本属于第k个高斯成分的概率,如式(4)所示:其中Ck表示第k个高斯成分。Step E: Use the parameters of the current lth update and The probability that the i-th training sample belongs to the k-th Gaussian component is calculated by the Bayesian formula, as shown in formula (4): where C k represents the k-th Gaussian component.

M步:利用如公式(5)、(6)、(7)更新算法参数。Step M: Utilize formulas (5), (6), and (7) to update algorithm parameters.

得到GMM的初始参数后,利用式(5)、(6)、(7)不断迭代,直到前后两次参数的差值小于设定好的阈值,得到最终GMM的参数Θ。After obtaining the initial parameters of the GMM, use formulas (5), (6), and (7) to iterate continuously until the difference between the two parameters is less than the set threshold, and the final parameter Θ of the GMM is obtained.

步骤4:当来到一个新的输入数据xq,采用即时学习(Just-in-time learning,JITL)算法从历史数据集中选择与之最相似的一组数据建立局部的高斯过程回归(Gaussian process regression,GPR)模型。JITL算法和GPR建模方法的详细描述分别如下:Step 4: When a new input data x q comes, use the Just-in-time learning (JITL) algorithm to select a set of data most similar to it from the historical data set to establish a local Gaussian process regression (Gaussian process regression) regression, GPR) model. The detailed descriptions of the JITL algorithm and the GPR modeling method are as follows:

JITL算法:JITL方法是根据相似输入产生相似输出的思想,从训练样本中选择与当前到来的测试样本最相似的一组训练样本来建模;JITL的核心是相似度准则的选取,基于欧式距离和角度的相似度准则是一种常用的方法,即:JITL algorithm: The JITL method is based on the idea of similar inputs to generate similar outputs, and selects a group of training samples from the training samples that are most similar to the current incoming test samples to model; the core of JITL is the selection of similarity criteria, based on Euclidean distance The similarity criterion of and angle is a commonly used method, namely:

其中,距离d表示当前到来的测试样本与训练样本之间的2范数,θ表示这两个样本之间的夹角,γ为一系数,取值在0到1之间;Among them, the distance d represents the 2-norm between the currently arriving test sample and the training sample, θ represents the angle between the two samples, and γ is a coefficient with a value between 0 and 1;

然而,对于一些非高斯工业过程,GMM可以较好地对过程的非高斯性进行描述,相比于传统的相似度准则,基于贝叶斯高斯混合模型BGMM的相似度准则可以更好地选择相似样本来建立GPR模型,由步骤2和3分别得到的最优的高斯成分个数K和各个成分的参数Θ,对应的相似度准则可以表示为:However, for some non-Gaussian industrial processes, GMM can better describe the non-Gaussian nature of the process. Compared with the traditional similarity criterion, the similarity criterion based on the Bayesian Gaussian mixture model BGMM can better select similar samples to establish a GPR model, the optimal number of Gaussian components K and the parameters Θ of each component obtained by steps 2 and 3 respectively, the corresponding similarity criterion can be expressed as:

其中xq表示新到来的样本,xi表示第i个训练样本,p(Ck|xq)表示新到来的样本xq属于第k个高斯成分的后验概率,为两样本之间的马氏距离,针对当前到来的xq,利用上述相似度准则,选择与xq最相似的一组数据建立当前的GPR模型。where x q represents the new incoming sample, x i represents the i-th training sample, p(C k |x q ) represents the posterior probability that the new incoming sample x q belongs to the k-th Gaussian component, As the Mahalanobis distance between two samples, for the current incoming x q , use the above similarity criterion to select a group of data most similar to x q to establish the current GPR model.

GPR建模方法:已知训练样本集X{xi∈Rm,i=1,2…N}和Y{yi∈R,i=1,2…N}分别代表m维输入数据和1维输出数据。输入和输出之间的关系可以表示如公式(10):GPR modeling method: the known training sample sets X{ xi ∈R m ,i=1,2…N} and Y{y i ∈R,i=1,2…N} represent m-dimensional input data and 1 dimension output data. The relationship between input and output can be expressed as formula (10):

yi=f(xi)+ε (10)y i =f(x i )+ε (10)

其中f表示一种未知的函数形式,ε表示均值为0,方差为的白噪声。Where f represents an unknown function form, ε represents the mean value is 0, and the variance is of white noise.

对于新的测试样本xq,则它的输出预测值yq也满足高斯分布,其均值和方差可以分别表示为公式(11)、(12):For a new test sample x q , its output prediction value y q also satisfies the Gaussian distribution, and its mean and variance can be expressed as formulas (11), (12):

yq(xq)=cT(xq)C-1Y (11)y q (x q )=c T (x q )C -1 Y (11)

其中c(xq)=[c(xq,x1),…,c(xq,xN)]T是测试输入数据与训练输入数据的协方差矩阵,为训练输入数据之间的协方差矩阵,c(xq,xq)表示测试输入数据与本身的协方差值。Where c(x q )=[c(x q ,x 1 ),…,c(x q ,x N )] T is the covariance matrix of the test input data and the training input data, is the covariance matrix between the training input data, and c(x q , x q ) represents the covariance value between the test input data and itself.

GPR可以选择不同的协方差函数,本文选择径向基协方差函数,其函数描述如公式(12):其中v表示先验知识的总体度量,ωt表示每维数据相对应的权重,δij为Kronecher算子,表示各辅助变量的相对重要程度。GPR can choose different covariance functions. This paper chooses the radial basis covariance function, and its function description is as in formula (12): where v represents the overall measure of prior knowledge, ω t represents the weight corresponding to each dimension of data, and δ ij is the Kronecher operator, indicating the relative importance of each auxiliary variable.

一般用极大似然估计得到式(13)中的参数其对数似然函数为:Generally, the parameters in formula (13) are obtained by maximum likelihood estimation Its log-likelihood function is:

先将参数θ设置为一个合理的初值,然后用共轭梯度法得到优化的参数,一般使用训练集和验证集将参数θ试凑出来,使其在一个合理范围内;参数确定后,对于新的测试数据,可由式(11)得到软测量模型输出。First set the parameter θ to a reasonable initial value, and then use the conjugate gradient method to obtain the optimized parameters. Generally, use the training set and verification set to try out the parameter θ to make it within a reasonable range; after the parameters are determined, for The new test data can be obtained from the formula (11) to get the output of the soft sensor model.

步骤5:将新到来的样本点xq带入步骤4建立好的局部GPR模型,得到最终的估计值yqStep 5: Bring the newly arrived sample point x q into the local GPR model established in step 4 to obtain the final estimated value y q .

图3是选取不同的比例数据建立局部模型所对应的均方根误差,并且采用基于欧式距离和角度的JITL方法与本发明所提方法比较。由图可知,基于贝叶斯高斯混合模型的即时学习软测量建模方法能够更好的估计丁烷浓度。Fig. 3 is the root mean square error corresponding to building a local model by selecting different proportion data, and using the JITL method based on Euclidean distance and angle to compare with the method proposed in the present invention. It can be seen from the figure that the real-time learning soft sensor modeling method based on the Bayesian Gaussian mixture model can better estimate the butane concentration.

本发明通过一种在线实时更新局部的策略,采用贝叶斯信息准则确定最优的高斯成分个数,当新的测试数据到来时,计算其隶属于每个高斯成分的后验概率,并求出其与训练数据之间的马氏距离,将两者融合作为相似度指标;最后,从原始的训练样本中选取相似度最大的一组数据来建立当前的GPR模型,并进行模型输出预测,达到了提高产品质量,降低生产成本的效果。The present invention adopts an online real-time local updating strategy, adopts the Bayesian information criterion to determine the optimal number of Gaussian components, and when new test data arrives, calculates its posterior probability belonging to each Gaussian component, and calculates Find the Mahalanobis distance between it and the training data, and use the fusion of the two as the similarity index; finally, select a set of data with the largest similarity from the original training samples to establish the current GPR model, and predict the model output. The effect of improving product quality and reducing production cost has been achieved.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (4)

1.一种基于贝叶斯高斯混合模型的即时学习软测量建模方法,其特征在于,所述方法包括:1. a kind of instant learning soft sensor modeling method based on Bayesian Gaussian mixture model, it is characterized in that, described method comprises: 步骤1:收集输入、输出数据得到历史训练数据集;Step 1: Collect input and output data to obtain a historical training data set; 步骤2:X为已知训练样本,利用贝叶斯信息准则BIC确定最优的高斯成分个数K,BIC的描述如公式(1):Step 2: X is a known training sample, use Bayesian information criterion BIC to determine the optimal number of Gaussian components K, the description of BIC is as formula (1): BIC=-2logp(X|Θ)+dlog(N) (1)BIC=-2logp(X|Θ)+dlog(N) (1) 式(1)中logp(X|Θ)表示训练样本的对数似然函数,d表示K个高斯成分所具有的自由参数的个数,N表示训练样本的个数;In formula (1), logp(X|Θ) represents the logarithmic likelihood function of the training sample, d represents the number of free parameters that K Gaussian components have, and N represents the number of training samples; 步骤3:根据最优的高斯成分个数K后和给定高斯混合模型GMM的初始参数,利用式(5)、(6)、(7)不断迭代,直到前后两次参数的差值小于设定好的阈值,得到最终GMM的参数Θ,GMM的详细描述如下:Step 3: According to the optimal number K of Gaussian components and the initial parameters of the given Gaussian mixture model GMM, use formulas (5), (6), and (7) to iterate continuously until the difference between the two parameters is less than the set value After setting the threshold, the parameter Θ of the final GMM is obtained. The detailed description of the GMM is as follows: 包含N个训练样本的数据集X{xi∈Rm,i=1,2…N},m表示输入数据的维数,该数据集的概率密度函数表示为:A data set X{x i ∈ R m ,i=1,2…N} containing N training samples, m represents the dimension of the input data, and the probability density function of the data set is expressed as: 其中,Θ=[α111;α222;……;αkkk]是GMM的参数,K是高斯成分的个数,θk为第k个高斯成分的参数,θk=(μkk),μk和Σk分别为第k个高斯成分的均值和协方差矩阵,αk为第k个高斯成分所占的比例,且0<αk<1,其中第k个高斯成分的概率密度函数为:Among them, Θ=[α 1 , μ 1 , Σ 1 ; α 2 , μ 2 , Σ 2 ; ...; α k , μ k , Σ k ] are parameters of GMM, K is the number of Gaussian components, θ k is the parameter of the kth Gaussian component, θ k = (μ kk ), μ k and Σ k are the mean value and covariance matrix of the kth Gaussian component respectively, and α k is the proportion of the kth Gaussian component ratio, and 0<α k <1, where the probability density function of the kth Gaussian component is: 通过期望最大化算法对GMM方法中的未知参数进行求解,具体求解过程分为E步和M步,其描述如下:The unknown parameters in the GMM method are solved by the expectation maximization algorithm. The specific solution process is divided into E step and M step, which are described as follows: E步:根据当前第l次更新的参数通过贝叶斯公式计算第i个训练样本属于第k个高斯成分的概率其中Ck表示第k个高斯成分Step E: According to the parameters updated for the current lth time and Calculate the probability that the i-th training sample belongs to the k-th Gaussian component by Bayesian formula where C k denotes the kth Gaussian component M步:更新算法参数Step M: update algorithm parameters 步骤4:当来到一个新的输入数据xq,采用即时学习JITL算法从历史数据集中选择与之最相似的一组数据建立局部的高斯过程回归GPR模型,JITL算法和GPR建模方法的详细描述分别如下:Step 4: When a new input data x q comes, use the real-time learning JITL algorithm to select the most similar set of data from the historical data set to establish a local Gaussian process regression GPR model, the details of the JITL algorithm and GPR modeling method The descriptions are as follows: JITL算法:JITL方法是根据相似输入产生相似输出的思想,从训练样本中选择与当前到来的测试样本最相似的一组训练样本来建模,JITL的核心是相似度准则的选取,基于欧式距离和角度的相似度准则是一种常用的方法,即:JITL algorithm: The JITL method is based on the idea of similar inputs to generate similar outputs. From the training samples, a group of training samples that are most similar to the current incoming test samples are selected to model. The core of JITL is the selection of similarity criteria, based on Euclidean distance The similarity criterion of and angle is a commonly used method, namely: 其中,距离d表示当前到来的测试样本与训练样本之间的2范数,θ表示这两个样本之间的夹角,γ为一系数,取值在0到1之间;Among them, the distance d represents the 2-norm between the currently arriving test sample and the training sample, θ represents the angle between the two samples, and γ is a coefficient with a value between 0 and 1; 然而,对于一些非高斯工业过程,GMM可以较好地对过程的非高斯性进行描述,相比于传统的相似度准则,基于贝叶斯高斯混合模型BGMM的相似度准则可以更好地选择相似样本来建立GPR模型,由步骤2和3分别得到的最优的高斯成分个数K和各个成分的参数Θ,对应的相似度准则可以表示为:However, for some non-Gaussian industrial processes, GMM can better describe the non-Gaussian nature of the process. Compared with the traditional similarity criterion, the similarity criterion based on the Bayesian Gaussian mixture model BGMM can better select similar samples to establish a GPR model, the optimal number of Gaussian components K and the parameters Θ of each component obtained by steps 2 and 3 respectively, the corresponding similarity criterion can be expressed as: 其中xq表示新到来的样本,xi表示第i个训练样本,p(Ck|xq)表示新到来的样本xq属于第k个高斯成分的后验概率,为两样本之间的马氏距离,针对当前到来的xq,利用上述相似度准则,选择与xq最相似的一组数据建立当前的GPR模型where x q represents the new incoming sample, x i represents the i-th training sample, p(C k |x q ) represents the posterior probability that the new incoming sample x q belongs to the k-th Gaussian component, is the Mahalanobis distance between two samples, for the current incoming x q , using the above similarity criterion, select a set of data most similar to x q to establish the current GPR model GPR建模方法:已知训练样本集X{xi∈Rm,i=1,2…N}和Y{yi∈R,i=1,2…N}分别代表m维输入数据和1维输出数据,输入和输出之间的关系可以表示为:GPR modeling method: the known training sample sets X{ xi ∈R m ,i=1,2…N} and Y{y i ∈R,i=1,2…N} represent m-dimensional input data and 1 Dimensional output data, the relationship between input and output can be expressed as: yi=f(xi)+ε (10)y i =f(x i )+ε (10) 其中f表示一种未知的函数形式,ε表示均值为0,方差为的白噪声Where f represents an unknown function form, ε represents the mean value is 0, and the variance is white noise 对于新的测试样本xq,则它的输出预测值yq也满足高斯分布,其均值和方差分别表示为:For a new test sample x q , its output prediction value y q also satisfies the Gaussian distribution, and its mean and variance are expressed as: yq(xq)=cT(xq)C-1Y (11)y q (x q )=c T (x q )C -1 Y (11) 其中,c(xq)=[c(xq,x1),…,c(xq,xN)]T是测试输入数据与训练输入数据的协方差矩阵,为训练输入数据之间的协方差矩阵,c(xq,xq)表示测试输入数据与本身的协方差值;Among them, c(x q )=[c(x q ,x 1 ),…,c(x q ,x N )] T is the covariance matrix of the test input data and the training input data, is the covariance matrix between the training input data, c(x q , x q ) represents the covariance value between the test input data and itself; GPR选择径向基协方差函数,其函数描述如下:GPR selects the radial basis covariance function, and its function is described as follows: 其中,v表示先验知识的总体度量,ωt表示每维数据相对应的权重,δij为Kronecher算子,表示各辅助变量的相对重要程度;Among them, v represents the overall measure of prior knowledge, ω t represents the weight corresponding to each dimension of data, and δ ij is the Kronecher operator, representing the relative importance of each auxiliary variable; 采用极大似然估计得到式(13)中的参数其对数似然函数为:The parameters in formula (13) are obtained by maximum likelihood estimation Its log-likelihood function is: 使用训练集和验证集将参数θ试凑出来,然后用共轭梯度法得到优化的参数,参数确定后,对于新的测试数据,可由式(11)得到软测量模型输出;Use the training set and verification set to try out the parameter θ, and then use the conjugate gradient method to obtain the optimized parameters. After the parameters are determined, for the new test data, the output of the soft sensor model can be obtained by formula (11); 步骤5:将新到来的样本点xq带入步骤4建立好的局部GPR模型,得到最终的估计值yqStep 5: Bring the newly arrived sample point x q into the local GPR model established in step 4 to obtain the final estimated value y q . 2.根据权利要求1所述的方法,其特征在于,所述方法为应用于复杂工业过程中对无法直接测量的变量的预测方法。2. The method according to claim 1, characterized in that, the method is a forecasting method applied to variables that cannot be directly measured in complex industrial processes. 3.根据权利要求2所述的方法,其特征在于,所述复杂工业过程包括化工、冶金及发酵过程。3. The method according to claim 2, characterized in that, the complex industrial process comprises chemical industry, metallurgy and fermentation process. 4.根据权利要求3所述的方法,其特征在于,所述方法为应用于脱丁烷塔过程中对于丁烷浓度的预测方法。4. The method according to claim 3, characterized in that, the method is applied to a predictive method for butane concentration in a debutanizer process.
CN201810516991.7A 2018-05-25 2018-05-25 A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models Pending CN108804784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810516991.7A CN108804784A (en) 2018-05-25 2018-05-25 A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810516991.7A CN108804784A (en) 2018-05-25 2018-05-25 A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models

Publications (1)

Publication Number Publication Date
CN108804784A true CN108804784A (en) 2018-11-13

Family

ID=64089100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810516991.7A Pending CN108804784A (en) 2018-05-25 2018-05-25 A kind of instant learning soft-measuring modeling method based on Bayes's gauss hybrid models

Country Status (1)

Country Link
CN (1) CN108804784A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046377A (en) * 2019-02-28 2019-07-23 昆明理工大学 A kind of selective ensemble instant learning soft-measuring modeling method based on isomery similarity
CN110046378A (en) * 2019-02-28 2019-07-23 昆明理工大学 A kind of integrated Gaussian process recurrence soft-measuring modeling method of the selective layering based on Evolutionary multiobjective optimization
CN110083065A (en) * 2019-05-21 2019-08-02 浙江大学 A kind of adaptive soft-sensor method having supervision factorial analysis based on streaming variation Bayes
CN110197286A (en) * 2019-05-10 2019-09-03 武汉理工大学 A kind of Active Learning classification method based on mixed Gauss model and sparse Bayesian
CN110309491A (en) * 2019-06-26 2019-10-08 大连海事大学 A Transient Phase Division Method and System Based on Local Gaussian Mixture Model
CN110442942A (en) * 2019-07-26 2019-11-12 北京科技大学 A kind of multiechelon system analysis method for reliability based on Bayes's mixing
CN110516282A (en) * 2019-07-03 2019-11-29 杭州电子科技大学 A Bayesian Statistics-Based Modeling Method for Indium Phosphide Transistors
CN110717601A (en) * 2019-10-15 2020-01-21 厦门铅笔头信息科技有限公司 Anti-fraud method based on supervised learning and unsupervised learning
CN110728024A (en) * 2019-09-16 2020-01-24 华东理工大学 Vine copula-based soft measurement method and system
CN110737938A (en) * 2019-09-28 2020-01-31 桂林理工大学 Method and device for predicting shrinkage and creep of recycled concrete based on GPR
CN110795841A (en) * 2019-10-24 2020-02-14 北京交通大学 A Mathematical Modeling Method for Uncertainty of Intermittent Energy Output
CN111222708A (en) * 2020-01-13 2020-06-02 浙江大学 Power plant combustion furnace temperature prediction method based on transfer learning dynamic modeling
CN111539444A (en) * 2020-02-12 2020-08-14 南阳理工学院 A Modified Gaussian Mixture Model Method for Pattern Recognition and Statistical Modeling
CN111612101A (en) * 2020-06-04 2020-09-01 华侨大学 Gene expression data clustering method, device and equipment for nonparametric Watson mixture model
CN111797574A (en) * 2020-07-17 2020-10-20 浙江工业大学 Integrated Gaussian Process Regression Model Method for Polymer Molecular Weight Distribution
CN111858991A (en) * 2020-08-06 2020-10-30 南京大学 A Few-Sample Learning Algorithm Based on Covariance Metrics
CN113570070A (en) * 2021-09-23 2021-10-29 深圳市信润富联数字科技有限公司 Streaming data sampling and model updating method, device, system and storage medium
CN113792799A (en) * 2021-09-16 2021-12-14 平安科技(深圳)有限公司 Bayesian-based data matching method, device, equipment and readable storage medium
CN113962081A (en) * 2021-10-20 2022-01-21 江南大学 A method and system for estimating energy consumption per ton of distillation column based on auxiliary measurement information
CN115096359A (en) * 2022-06-17 2022-09-23 北京航空航天大学 A metal roof health monitoring system and method
CN115375956A (en) * 2021-05-20 2022-11-22 华为技术有限公司 Lane line detection method and related device
CN116434867A (en) * 2022-04-30 2023-07-14 西南大学 A method and system for assisting production decision-making in methanol-to-olefins process
CN116679026A (en) * 2023-06-27 2023-09-01 江南大学 Self-adaptive unbiased finite impulse response filtering sewage dissolved oxygen concentration estimation method
CN117688367A (en) * 2024-01-25 2024-03-12 国能日新科技股份有限公司 Wind power generation ultra-short term power prediction method and device based on instant learning
CN118193998A (en) * 2024-04-16 2024-06-14 四川大学 Light-weight hidden network service real-time identification method based on Gao Sibei phyllos model
CN119357652A (en) * 2024-12-26 2025-01-24 山东科技大学 Closed-loop industrial process anomaly monitoring method based on multi-feature Gaussian mixture modeling
CN119784597A (en) * 2024-12-11 2025-04-08 西安交通大学 Low-dose CT chordogram restoration method and system based on multi-Gaussian electronic noise modeling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927412A (en) * 2014-04-01 2014-07-16 浙江大学 Real-time learning debutanizer soft measurement modeling method on basis of Gaussian mixture models
CN104699894A (en) * 2015-01-26 2015-06-10 江南大学 JITL (just-in-time learning) based multi-model fusion modeling method adopting GPR (Gaussian process regression)
CN106056127A (en) * 2016-04-07 2016-10-26 江南大学 GPR (gaussian process regression) online soft measurement method with model updating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927412A (en) * 2014-04-01 2014-07-16 浙江大学 Real-time learning debutanizer soft measurement modeling method on basis of Gaussian mixture models
CN104699894A (en) * 2015-01-26 2015-06-10 江南大学 JITL (just-in-time learning) based multi-model fusion modeling method adopting GPR (Gaussian process regression)
CN106056127A (en) * 2016-04-07 2016-10-26 江南大学 GPR (gaussian process regression) online soft measurement method with model updating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊伟丽 等: "一种基于EGMM的高斯过程回归软测量建模", 《信息与控制》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046378A (en) * 2019-02-28 2019-07-23 昆明理工大学 A kind of integrated Gaussian process recurrence soft-measuring modeling method of the selective layering based on Evolutionary multiobjective optimization
CN110046377A (en) * 2019-02-28 2019-07-23 昆明理工大学 A kind of selective ensemble instant learning soft-measuring modeling method based on isomery similarity
CN110046377B (en) * 2019-02-28 2022-06-14 昆明理工大学 Selective integration instant learning soft measurement modeling method based on heterogeneous similarity
CN110046378B (en) * 2019-02-28 2022-09-13 昆明理工大学 Selective hierarchical integration Gaussian process regression soft measurement modeling method based on evolutionary multi-objective optimization
CN110197286A (en) * 2019-05-10 2019-09-03 武汉理工大学 A kind of Active Learning classification method based on mixed Gauss model and sparse Bayesian
CN110197286B (en) * 2019-05-10 2021-03-16 武汉理工大学 An Active Learning Classification Method Based on Mixture Gaussian Model and Sparse Bayesian
CN110083065B (en) * 2019-05-21 2020-07-10 浙江大学 An Adaptive Soft Sensing Method Based on Streaming Variational Bayesian Supervised Factor Analysis
CN110083065A (en) * 2019-05-21 2019-08-02 浙江大学 A kind of adaptive soft-sensor method having supervision factorial analysis based on streaming variation Bayes
CN110309491A (en) * 2019-06-26 2019-10-08 大连海事大学 A Transient Phase Division Method and System Based on Local Gaussian Mixture Model
CN110309491B (en) * 2019-06-26 2022-10-14 大连海事大学 Transient phase partitioning method and system based on local Gaussian mixture model
CN110516282A (en) * 2019-07-03 2019-11-29 杭州电子科技大学 A Bayesian Statistics-Based Modeling Method for Indium Phosphide Transistors
CN110516282B (en) * 2019-07-03 2022-11-15 杭州电子科技大学 A Modeling Method of Indium Phosphide Transistor Based on Bayesian Statistics
CN110442942A (en) * 2019-07-26 2019-11-12 北京科技大学 A kind of multiechelon system analysis method for reliability based on Bayes's mixing
CN110728024A (en) * 2019-09-16 2020-01-24 华东理工大学 Vine copula-based soft measurement method and system
CN110737938A (en) * 2019-09-28 2020-01-31 桂林理工大学 Method and device for predicting shrinkage and creep of recycled concrete based on GPR
CN110717601A (en) * 2019-10-15 2020-01-21 厦门铅笔头信息科技有限公司 Anti-fraud method based on supervised learning and unsupervised learning
CN110717601B (en) * 2019-10-15 2022-05-03 厦门铅笔头信息科技有限公司 Anti-fraud method based on supervised learning and unsupervised learning
CN110795841A (en) * 2019-10-24 2020-02-14 北京交通大学 A Mathematical Modeling Method for Uncertainty of Intermittent Energy Output
CN110795841B (en) * 2019-10-24 2021-10-22 北京交通大学 A Mathematical Modeling Method for Uncertainty of Intermittent Energy Output
CN111222708A (en) * 2020-01-13 2020-06-02 浙江大学 Power plant combustion furnace temperature prediction method based on transfer learning dynamic modeling
CN111222708B (en) * 2020-01-13 2022-09-20 浙江大学 A method for predicting the temperature of a power plant combustion furnace based on dynamic modeling of transfer learning
CN111539444A (en) * 2020-02-12 2020-08-14 南阳理工学院 A Modified Gaussian Mixture Model Method for Pattern Recognition and Statistical Modeling
CN111539444B (en) * 2020-02-12 2023-10-31 湖南理工学院 A modified Gaussian mixture model method for formal pattern recognition and statistical modeling
CN111612101A (en) * 2020-06-04 2020-09-01 华侨大学 Gene expression data clustering method, device and equipment for nonparametric Watson mixture model
CN111612101B (en) * 2020-06-04 2023-02-07 华侨大学 Gene expression data clustering method, device and equipment of non-parametric Watson mixed model
CN111797574B (en) * 2020-07-17 2024-09-27 浙江工业大学 Ensemble Gaussian Process Regression Model Method for Polymer Molecular Weight Distribution
CN111797574A (en) * 2020-07-17 2020-10-20 浙江工业大学 Integrated Gaussian Process Regression Model Method for Polymer Molecular Weight Distribution
CN111858991A (en) * 2020-08-06 2020-10-30 南京大学 A Few-Sample Learning Algorithm Based on Covariance Metrics
CN115375956A (en) * 2021-05-20 2022-11-22 华为技术有限公司 Lane line detection method and related device
CN113792799A (en) * 2021-09-16 2021-12-14 平安科技(深圳)有限公司 Bayesian-based data matching method, device, equipment and readable storage medium
CN113570070A (en) * 2021-09-23 2021-10-29 深圳市信润富联数字科技有限公司 Streaming data sampling and model updating method, device, system and storage medium
CN113962081B (en) * 2021-10-20 2022-05-31 江南大学 Rectifying tower single-ton energy consumption estimation method and system based on auxiliary measurement information
CN113962081A (en) * 2021-10-20 2022-01-21 江南大学 A method and system for estimating energy consumption per ton of distillation column based on auxiliary measurement information
CN116434867A (en) * 2022-04-30 2023-07-14 西南大学 A method and system for assisting production decision-making in methanol-to-olefins process
CN115096359A (en) * 2022-06-17 2022-09-23 北京航空航天大学 A metal roof health monitoring system and method
CN116679026A (en) * 2023-06-27 2023-09-01 江南大学 Self-adaptive unbiased finite impulse response filtering sewage dissolved oxygen concentration estimation method
CN117688367A (en) * 2024-01-25 2024-03-12 国能日新科技股份有限公司 Wind power generation ultra-short term power prediction method and device based on instant learning
CN117688367B (en) * 2024-01-25 2024-05-03 国能日新科技股份有限公司 Wind power generation ultra-short term power prediction method and device based on instant learning
CN118193998A (en) * 2024-04-16 2024-06-14 四川大学 Light-weight hidden network service real-time identification method based on Gao Sibei phyllos model
CN119784597A (en) * 2024-12-11 2025-04-08 西安交通大学 Low-dose CT chordogram restoration method and system based on multi-Gaussian electronic noise modeling
CN119357652A (en) * 2024-12-26 2025-01-24 山东科技大学 Closed-loop industrial process anomaly monitoring method based on multi-feature Gaussian mixture modeling

Similar Documents

Publication Publication Date Title
CN108804784A (en) A kind of instant learning soft-measuring modeling method based on Bayes&#39;s gauss hybrid models
CN104699894B (en) Gaussian process based on real-time learning returns multi-model Fusion Modeling Method
CN109060001B (en) Multi-working-condition process soft measurement modeling method based on feature transfer learning
CN105205224B (en) Time difference Gaussian process based on fuzzy curve analysis returns soft-measuring modeling method
CN106600059B (en) Intelligent power grid short-term load prediction method based on improved RBF neural network
CN110707763B (en) AC/DC power distribution network load prediction method based on ensemble learning
CN107451102B (en) Method for predicting concentration of butane at bottom of debutanizer tower based on improved self-training algorithm semi-supervised Gaussian process regression soft measurement modeling
CN110598842A (en) Deep neural network hyper-parameter optimization method, electronic device and storage medium
CN106056127A (en) GPR (gaussian process regression) online soft measurement method with model updating
CN102831269A (en) Method for determining technological parameters in flow industrial process
CN108710905A (en) Spare part quantity prediction method and system based on multi-model combination
CN108764295A (en) A kind of soft-measuring modeling method based on semi-supervised integrated study
CN111079856B (en) Multi-period intermittent process soft measurement modeling method based on CSJITL-RVM
US11987855B2 (en) Method and system for determining converter tapping quantity
CN115017671B (en) Industrial process soft sensor modeling method and system based on online clustering analysis of data streams
CN105425583A (en) Control method of penicillin production process based on cooperative training local weighted partial least squares (LWPLS)
CN105913078A (en) Multi-mode soft measurement method for improving adaptive affine propagation clustering
JP2019067299A (en) Label estimation apparatus and label estimation program
CN105242572A (en) Mixing identification method and system for thermal process of thermal power plant
CN109583645A (en) A kind of public building short-term load forecasting method
CN108984851B (en) Weighted Gaussian model soft measurement modeling method with time delay estimation
CN116437290A (en) A Model Fusion Method Based on CSI Fingerprint Location
CN116432037A (en) Online migration learning method, device, equipment and storage medium
CN106296434A (en) A kind of Grain Crop Yield Prediction method based on PSO LSSVM algorithm
CN110674883A (en) Active learning method based on k nearest neighbor and probability selection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载