CN108649190B - Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application - Google Patents
Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application Download PDFInfo
- Publication number
- CN108649190B CN108649190B CN201810263754.4A CN201810263754A CN108649190B CN 108649190 B CN108649190 B CN 108649190B CN 201810263754 A CN201810263754 A CN 201810263754A CN 108649190 B CN108649190 B CN 108649190B
- Authority
- CN
- China
- Prior art keywords
- tinb
- dimensional porous
- composite material
- graphene
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 41
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000001301 oxygen Substances 0.000 title claims description 3
- 229910052760 oxygen Inorganic materials 0.000 title claims description 3
- 239000002135 nanosheet Substances 0.000 claims abstract description 39
- 239000010936 titanium Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 229910000484 niobium oxide Inorganic materials 0.000 claims abstract description 9
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims abstract description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 27
- 238000001354 calcination Methods 0.000 claims description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 238000004729 solvothermal method Methods 0.000 claims description 9
- 229910010379 TiNb2O7 Inorganic materials 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 239000011258 core-shell material Substances 0.000 claims description 8
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 claims description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 229910001275 Niobium-titanium Inorganic materials 0.000 claims 2
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 claims 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 230000008021 deposition Effects 0.000 abstract description 7
- 239000007773 negative electrode material Substances 0.000 abstract description 6
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910013684 LiClO 4 Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用,该包括:在基体上垂直并交缠生长的石墨烯纳米片;包覆在所述石墨烯纳米片上的TiNb2O7,形成VG/TiNb2O7纳米片;以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层,形成VG/TiNb2O7@S‑C三维多孔阵列。本发明反合成了VG/TiNb2O7纳米阵列,以此为载体,通过恒电流阳极沉积,制备本发明复合材料。本发明复合材料具有高循环稳定性,高倍率性能和库伦效率等特点,与磷酸铁锂或三元材料匹配时,可显著提高全电池的能量密度/功率密度及循环稳定性。本发明的新型复合材料适合作为锂离子电池负极材料,可应用于各种电子设备以及电动汽车和混合动力汽车等等。
The invention discloses a vertical graphene/titanium niobium oxide/sulfur-carbon composite material with a three-dimensional porous array structure and a preparation method and application thereof, which include: a graphene nanosheet grown vertically and intertwined on a substrate; TiNb 2 O 7 on the graphene nanosheets to form VG/TiNb 2 O 7 nanosheets; and a sulfur-doped carbon layer coated on the VG/TiNb 2 O 7 nanosheets to form VG/TiNb 2 O 7 @ S‑C three-dimensional porous array. The present invention reversely synthesizes VG/TiNb 2 O 7 nanometer array, which is used as a carrier to prepare the composite material of the present invention through constant current anode deposition. The composite material of the invention has the characteristics of high cycle stability, high rate performance and Coulomb efficiency, and can significantly improve the energy density/power density and cycle stability of the full battery when matched with lithium iron phosphate or ternary materials. The novel composite material of the present invention is suitable as a negative electrode material for a lithium ion battery, and can be applied to various electronic devices, electric vehicles, hybrid vehicles and the like.
Description
技术领域technical field
本发明涉及锂离子二次电池负极材料的技术领域,具体涉及一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和作为锂离子电池负极材料的应用。The invention relates to the technical field of negative electrode materials for lithium ion secondary batteries, in particular to a vertical graphene/titanium niobium oxide/sulfur carbon composite material with a three-dimensional porous array structure, a preparation method thereof, and an application as a negative electrode material for lithium ion batteries.
背景技术Background technique
锂离子电池作为目前最重要的电能存储装置被广泛应用到交通运输、信息电子等领域。锂离子电池的快速发展主要取决于正负极材料的革新。而商业化应用最为广泛的负极活性石墨材料易形成枝晶,硅、锡基化物又存在严重的体积膨胀问题,而且,易形成SEI膜(固体电解质界面膜,solid electrolyte interface),安全性较差。钛酸锂虽不形成SEI膜,但是理论容量较低,铌酸钛化合物(TiNbxO2+2.5x)在循环过程中不形成SEI膜,而且理论容量相对较高,引起了极大的关注。在铌酸钛化合物中,应用较为广泛的是TiNb2O7和Ti2Nb10O29,理论容量分别为388和396mAh g-1。其中,TiNb2O7,首先被Goodenough的课题组提出,在其工作电压范围内,没有SEI膜的形成,而且理论容量较高,略高于石墨的理论容量。但是,铌酸钛材料本征电子/离子传导率较低,限制了高倍率电化学性能。因此要想将铌酸钛材料设计成高性能的锂离子电池电极,必须对其改性。Lithium-ion batteries are widely used in transportation, information electronics and other fields as the most important electrical energy storage device. The rapid development of lithium-ion batteries mainly depends on the innovation of positive and negative electrode materials. However, the most widely used negative electrode active graphite material is easy to form dendrites, and silicon and tin-based compounds have serious volume expansion problems. Moreover, it is easy to form SEI film (solid electrolyte interface), which has poor safety. . Although lithium titanate does not form an SEI film, its theoretical capacity is low. Titanium niobate compound (TiNb x O 2+2.5x ) does not form an SEI film during cycling, and its theoretical capacity is relatively high, which has attracted great attention. . Among the titanium niobate compounds, TiNb 2 O 7 and Ti 2 Nb 10 O 29 are widely used, with theoretical capacities of 388 and 396mAh g -1 , respectively. Among them, TiNb 2 O 7 was first proposed by Goodenough's research group. In its working voltage range, there is no SEI film formation, and the theoretical capacity is higher, slightly higher than that of graphite. However, the intrinsic electronic/ionic conductivity of titanium niobate materials is low, which limits the high-rate electrochemical performance. Therefore, in order to design the titanium niobate material into a high-performance lithium-ion battery electrode, it must be modified.
针对以上问题,国内外研究人员通常利用以下一些改性方式来优化其电化学储锂性能:主要有纳米化、金属离子掺杂和表面包覆等三种方式。将电极材料设计合成为纳米管、纳米线、纳米颗粒等纳米结构,减少电子/锂离子传输路径,加快传输速度,从而提高电子/离子传输效率;采用Ru4+,Cu2+,Mo6+等金属离子进行掺杂,提供更多的空位便于离子传输,从而提高其高倍率电化学性能;采用Ag、CNTs(碳纳米管)、graphene(石墨烯)等高导电性包覆层改善其电极/电解液之间的接触界面,降低界面电化学阻抗,提高电子传导率。但是,上述大部分改性方式基于粉末材料。粉末电极存在粘结剂和添加剂,限制了其电化学性能的进一步改善。薄膜复合材料不需要粘结剂/添加剂,适合作为粉末材料的替代品。因此,寻找一种高比表面积、高电导率的基底材料是非常迫切的,同时也是构建高性能铌酸钛基锂离子电池的首选方案。但是在所述阵列结构中,电极材料TiNb2O7将与电解液直接接触,缺少了电子快速传输通道。高效的表面导电包覆层可为其提供通道并进一步提高电化学性能。上述合成的VG/TiNb2O7@S-C复合多孔阵列电极具有高倍率性能、循环稳定性和库伦效率有望成为能商业化应用的高功率密度和能量密度的锂离子电池负极材料。In response to the above problems, researchers at home and abroad usually use the following modification methods to optimize its electrochemical lithium storage performance: there are mainly three methods: nanometerization, metal ion doping, and surface coating. The electrode material is designed and synthesized into nanostructures such as nanotubes, nanowires, nanoparticles, etc., which reduces the electron/lithium ion transmission path and accelerates the transmission speed, thereby improving the electron/ion transmission efficiency; using Ru 4+ , Cu 2+ , Mo 6+ Doping with other metal ions provides more vacancies to facilitate ion transport, thereby improving its high-rate electrochemical performance; using Ag, CNTs (carbon nanotubes), graphene (graphene) and other highly conductive coating layers to improve its electrodes / Electrolyte contact interface, reduce the electrochemical impedance of the interface and improve the electronic conductivity. However, most of the above modifications are based on powder materials. The presence of binders and additives in powder electrodes limits the further improvement of their electrochemical performance. Thin film composites do not require binders/additives and are suitable as an alternative to powdered materials. Therefore, it is very urgent to find a substrate material with high specific surface area and high electrical conductivity, and it is also the first choice for constructing high-performance titanium niobate-based lithium-ion batteries. However, in the array structure, the electrode material TiNb 2 O 7 will be in direct contact with the electrolyte, lacking a fast electron transport channel. Efficient surface conductive cladding can provide channels for it and further enhance the electrochemical performance. The VG/TiNb 2 O 7 @SC composite porous array electrodes synthesized above have high rate performance, cycling stability and Coulombic efficiency, and are expected to be commercialized high power density and energy density lithium-ion battery anode materials.
发明内容SUMMARY OF THE INVENTION
针对背景技术中的问题,本发明的目的在于合成高比表面积的VG/TiNb2O7@S-C复合多孔阵列电极,通过三维纳米多孔阵列基底和表面包覆碳层进行协同优化,改善本征电子/离子迁移率低的问题。In view of the problems in the background technology, the purpose of the present invention is to synthesize VG/TiNb 2 O 7 @SC composite porous array electrodes with high specific surface area, and synergistically optimize the three-dimensional nanoporous array substrate and the surface-coated carbon layer to improve the intrinsic electron / low ion mobility problem.
本发明提供了一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和作为锂离子电池负极材料的应用,具有核壳结构的VG/TiNb2O7@S-C复合多孔阵列电极,所述材料包括VG纳米多孔阵列基底,TiNb2O7活性材料以及S-C无定形表面包覆碳层。VG/TiNb2O7@S-C复合多孔阵列电极采用等离子体化学气相沉积(PECVD),溶剂热法以及恒电流阳极沉积法进行制备,所述VG/TiNb2O7纳米片厚度为20-50nm,VG/TiNb2O7@S-C核壳阵列厚度为50-120nm。The invention provides a vertical graphene/titanium niobium oxide/sulfur carbon composite material with a three-dimensional porous array structure, a preparation method thereof, and an application as a negative electrode material for a lithium ion battery, and a VG/TiNb 2 O 7 @ The SC composite porous array electrode includes a VG nanoporous array substrate, a TiNb 2 O 7 active material, and an SC amorphous surface-coated carbon layer. The VG/TiNb 2 O 7 @SC composite porous array electrode was prepared by plasma chemical vapor deposition (PECVD), solvothermal method and galvanostatic anodic deposition. The thickness of the VG/TiNb 2 O 7 nanosheet was 20-50 nm, The thickness of the VG/TiNb 2 O 7 @SC core-shell array is 50-120 nm.
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,包括:Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composites with a three-dimensional porous array structure, including:
在基体上垂直并交缠生长的石墨烯纳米片(VG),形成三维纳米多孔结构;Vertical and entangled graphene nanosheets (VG) on the substrate to form a three-dimensional nanoporous structure;
包覆在所述石墨烯纳米片上的TiNb2O7(即TNO),形成VG/TiNb2O7纳米片;The TiNb 2 O 7 (ie TNO) coated on the graphene nanosheets forms VG/TiNb 2 O7 nanosheets;
以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层(S-C),形成VG/TiNb2O7@S-C三维多孔阵列。and the sulfur-doped carbon layer (SC) coated on the VG/TiNb 2 O 7 nanosheets to form a VG/TiNb 2 O 7 @SC three-dimensional porous array.
所述的石墨烯纳米片的厚度为5-8nm,所述的VG/TiNb2O7纳米片的厚度为20-50nm,最后得到的VG/TiNb2O7@S-C三维多孔阵列的厚度(即VG/TiNb2O7@S-C核壳阵列纳米片厚度)为50-120nm。The thickness of the graphene nanosheet is 5-8 nm, the thickness of the VG/TiNb 2 O 7 nano sheet is 20-50 nm, and the thickness of the VG/TiNb 2 O 7 @SC three-dimensional porous array finally obtained (ie VG/TiNb 2 O 7 @SC core-shell array nanosheet thickness) is 50-120 nm.
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,即用于提高电子/离子传导率的高能量密度/功率密度复合锂离子电池负极材料,该材料由三维纳米多孔阵列基底和表面包覆碳层构成并协同优化。Vertical graphene/titanium niobium oxide/sulfur-carbon composite material with three-dimensional porous array structure, i.e. high energy density/power density composite lithium-ion battery anode material for improving electron/ion conductivity, the material is composed of three-dimensional nanoporous array substrate It is composed and synergistically optimized with the surface-coated carbon layer.
所述的复合VG/TiNb2O7@S-C三维多孔阵列,由交缠生长的垂直石墨烯纳米薄片(VG~5-8nm)构成的纳米多孔阵列为导电基底,溶剂热生长包覆TNO,形成(VG/TiNb2O7)核心后包覆无定形硫掺杂碳层(S-C),所述VG/TiNb2O7纳米片厚度为20-50nm,VG/TiNb2O7@S-C核壳阵列纳米片厚度为50-120nm。The composite VG/TiNb 2 O 7 @SC three-dimensional porous array is composed of a nanoporous array composed of entangled vertical graphene nanosheets (VG ~ 5-8 nm) as a conductive substrate, and solvothermally grown to coat TNO to form (VG/TiNb 2 O 7 ) core with an amorphous sulfur-doped carbon layer (SC) with a thickness of 20-50 nm, VG/TiNb 2 O 7 @SC core - shell array The nanosheet thickness is 50-120 nm.
一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料的制备方法,包括步骤如下:A method for preparing a vertical graphene/titanium niobium oxide/sulfur-carbon composite material with a three-dimensional porous array structure, comprising the following steps:
(1)垂直石墨烯(VG)的制备方法:通过等离子体增强化学气相沉积方法(PECVD),将石墨烯阵列有序沉积于碳布上,得到垂直石墨烯纳米片(VG);(1) Preparation method of vertical graphene (VG): by plasma-enhanced chemical vapor deposition (PECVD), the graphene array is deposited on carbon cloth in an orderly manner to obtain vertical graphene nanosheets (VG);
(2)VG/TiNb2O7的制备方法:将垂直石墨烯纳米片烘干,以该垂直石墨烯纳米片作为生长基底,利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行溶剂热反应,反应完之后清洗、烘干,热处理煅烧,得到VG/TiNb2O7纳米片;(2) Preparation method of VG/TiNb 2 O 7 : drying the vertical graphene nanosheets, using the vertical graphene nanosheets as a growth substrate, using isopropyl titanate (C 12 H 28 O 4 Ti) and five Niobium chloride (NbCl 5 ) is used as a precursor to carry out a solvothermal reaction, and after the reaction is completed, cleaning, drying, heat treatment and calcination are performed to obtain VG/TiNb 2 O 7 nanosheets;
(3)VG/TiNb2O7@S-C的制备方法:将3,4-乙撑二氧噻吩(EDOT)和LiClO4溶解于乙腈中,通过恒电流阳极沉积,在制备的VG/TiNb2O7纳米片上沉积PEDOT(EDOT的聚合物)后,煅烧,得到具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料。(3) Preparation method of VG/TiNb 2 O 7 @SC: 3,4-ethylenedioxythiophene (EDOT) and LiClO 4 were dissolved in acetonitrile, and the prepared VG/TiNb 2 O was deposited by galvanostatic anodic deposition. After depositing PEDOT (a polymer of EDOT) on the 7 -nanometer sheet, and calcining, a vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with a three-dimensional porous array structure was obtained.
步骤(1)中,等离子体增强化学气相沉积方法中,微波频率为2.2~2.6GHz和微波功率1.5kW~2.5kW,进一步优选,微波频率为2.45GHz和微波功率2kW。In step (1), in the plasma-enhanced chemical vapor deposition method, the microwave frequency is 2.2-2.6GHz and the microwave power is 1.5kW-2.5kW, and further preferably, the microwave frequency is 2.45GHz and the microwave power is 2kW.
具体包括:Specifically include:
首先,将碳布置于腔体中并使其气压达到10mTorr;First, the carbon is placed in the cavity and its gas pressure reaches 10 mTorr;
其次,将腔体温度升高到400℃后,使腔体内产生氢等离子体,氢等离子体通过500W微波等离子体在90sccm流速的H2气流中产生,同时通入甲烷,在整个反应过程中,氢气与甲烷的体积比为3:2,反应时间保持为2h;Secondly, after raising the chamber temperature to 400°C, hydrogen plasma was generated in the chamber, and the hydrogen plasma was generated in the H2 gas flow with a flow rate of 90sccm by 500W microwave plasma, and methane was introduced at the same time. During the whole reaction process, The volume ratio of hydrogen and methane is 3:2, and the reaction time is kept at 2h;
最后,冷却,得到垂直生长在碳布上的石墨烯纳米片,即垂直石墨烯纳米片(VG)。Finally, it is cooled to obtain graphene nanosheets vertically grown on the carbon cloth, namely vertical graphene nanosheets (VG).
步骤(2)中,所述的钛酸异丙酯(C12H28O4Ti)与五氯化铌(NbCl5)的质量比为1:1.5~2.5,进一步优选,0.5684g:1.08g。In step (2), the mass ratio of isopropyl titanate (C 12 H 28 O 4 Ti) to niobium pentachloride (NbCl 5 ) is 1:1.5-2.5, more preferably, 0.5684g:1.08g .
所述的溶剂热反应的反应条件为:180℃~220℃反应4h~8h,进一步优选,200℃反应6h。The reaction conditions of the solvothermal reaction are: 180°C~220°C for 4h~8h, more preferably, 200°C for 6h.
所述的热处理煅烧的条件为:600℃~800℃热处理煅烧1h~3h,进一步优选,700℃热处理煅烧2h。The conditions for the heat treatment and calcination are: 600°C~800°C heat treatment and calcination for 1h~3h, more preferably, 700°C heat treatment and calcination for 2h.
所述的热处理煅烧在氩气保护气氛下进行。The heat treatment and calcination are carried out in an argon protective atmosphere.
步骤(3)中,所述的3,4-乙撑二氧噻吩(EDOT)、LiClO4和乙腈的配比为0.3mL~0.7mL:0.5g~1.5g:80mL~120mL,进一步优选为0.5mL:1g:100ml。In step (3), the ratio of 3,4-ethylenedioxythiophene (EDOT), LiClO 4 and acetonitrile is 0.3mL-0.7mL: 0.5g-1.5g: 80mL-120mL, more preferably 0.5 mL: 1g: 100ml.
所述的煅烧的条件为:600℃~800℃煅烧1h~3h,进一步优选,700℃煅烧2h。The calcination conditions are: calcination at 600°C to 800°C for 1h to 3h, more preferably, calcination at 700°C for 2h.
所述的煅烧在氩气保护气氛下进行。The calcination is carried out under an argon protective atmosphere.
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,具有三维多孔阵列结构,非常适合作为锂离子电池负极材料。The vertical graphene/titanium niobium oxide/sulfur-carbon composite material with a three-dimensional porous array structure has a three-dimensional porous array structure, which is very suitable as a negative electrode material for lithium ion batteries.
本发明相比于现有技术具有如下优点及突出效果:Compared with the prior art, the present invention has the following advantages and outstanding effects:
本发明中,VG/TiNb2O7@S-C复合多孔阵列为薄膜材料,无添加剂和粘结剂,具有优越的循环稳定性和高倍率性能;VG多孔导电基底具有三维纳米多孔结构,增大了电极/电解液接触面积,缩短了锂离子传输路径;硫掺杂的碳层包覆为电解液与电极之间的电子传输提供快速通道,改善界面,降低界面转移电阻,从而提高电子传导率,降低材料本征低电子/离子传导率的影响。该复合负极提高了锂离子电池的安全性能与循环性能,有助于推进高能量密度、高稳定性的锂金属二次电池的发展。In the present invention, the VG/TiNb 2 O 7 @SC composite porous array is a thin film material, without additives and binders, and has superior cycle stability and high rate performance; the VG porous conductive substrate has a three-dimensional nanoporous structure, which increases the The electrode/electrolyte contact area shortens the lithium ion transmission path; the sulfur-doped carbon layer coating provides a fast channel for electron transfer between the electrolyte and the electrode, improves the interface, reduces the interface transfer resistance, and thus improves the electron conductivity, Reduces the effects of the material's intrinsic low electronic/ionic conductivity. The composite negative electrode improves the safety performance and cycle performance of lithium ion batteries, and helps to promote the development of lithium metal secondary batteries with high energy density and high stability.
附图说明Description of drawings
图1为实施例2中制得的VG/TiNb2O7阵列的扫描电镜图;Fig. 1 is the scanning electron microscope image of the VG/TiNb 2 O 7 array prepared in Example 2;
图2为实施例2中制得的VG/TiNb2O7阵列的透射电镜图;Fig. 2 is the TEM image of the VG/TiNb 2 O 7 array obtained in Example 2;
图3中a为实施例2中制得的VG/TiNb2O7@S-C的扫描电镜图,图3中b为实施例2中制得的VG/TiNb2O7@S-C的Ti元素分布谱图,图3中c为实施例2中制得的VG/TiNb2O7@S-C的Nb元素分布谱图,图3中d为实施例2中制得的VG/TiNb2O7@S-C的O元素分布谱图,图3中e为实施例2中制得的VG/TiNb2O7@S-C的C元素分布谱图,图3中f为实施例2中制得的VG/TiNb2O7@S-C的S元素分布谱图;In Fig. 3 a is the scanning electron microscope image of VG/TiNb 2 O 7 @SC prepared in Example 2, and b in Fig. 3 is the Ti element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2 Fig. 3, c is the Nb element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2, and d in Fig. 3 is the VG/TiNb 2 O 7 @SC prepared in Example 2. O element distribution spectrum, e in Figure 3 is the C element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2, and f in Figure 3 is VG/TiNb 2 O prepared in Example 2 7 The S element distribution spectrum of @SC;
图4为实施例2中制得的VG/TiNb2O7@S-C复合纳米多孔阵列的扫描电镜图。FIG. 4 is a scanning electron microscope image of the VG/TiNb 2 O 7 @SC composite nanoporous array prepared in Example 2. FIG.
具体实施方式Detailed ways
下面结合实施例来详细说明本发明,但本发明并不仅限于此。The present invention will be described in detail below with reference to the embodiments, but the present invention is not limited thereto.
(1)垂直石墨烯(VG)的制备方法:通过等离子体增强化学气相沉积方法(PECVD),将VG阵列有序沉积于碳布上(微波频率为2.45GHz和微波功率2kW)。首先,将碳布置于腔体中并使其气压达到10mTorr,其次,将腔体温度升高到400℃后,使腔体内产生氢等离子体,氢等离子体通过500W微波等离子体在90sccm流速的H2气流中产生,同时通入甲烷。在整个反应过程中,氢气与甲烷的比例为3:2,反应时间保持为2h,最后,冷却至室温25℃,VG样品制备完成。(1) Preparation method of vertical graphene (VG): The VG array was deposited on carbon cloth in an orderly manner by plasma-enhanced chemical vapor deposition (PECVD) (the microwave frequency was 2.45 GHz and the microwave power was 2 kW). First, carbon was placed in the cavity and its gas pressure was 10 mTorr. Second, after the cavity temperature was raised to 400 °C, hydrogen plasma was generated in the cavity. The hydrogen plasma was passed through a 500 W microwave plasma at a flow rate of 90 sccm. 2 is produced in the gas stream, and methane is fed into it at the same time. During the whole reaction process, the ratio of hydrogen to methane was 3:2, the reaction time was kept for 2 h, and finally, the VG sample was prepared by cooling to room temperature 25 °C.
(2)VG/TiNb2O7的制备方法:将VG基底在烘箱中12h烘干并称重,称完后以该垂直石墨烯(VG)作为生长基底,利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行溶剂热反应。取0.5684g C12H28O4Ti和1.08g NbCl5于烧杯中搅拌15分钟,后转移至水热釜中200℃反应6h,随炉冷却。然后将样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下将其在管式炉中热处理煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。(2) Preparation method of VG/TiNb 2 O 7 : the VG substrate was dried in an oven for 12 h and weighed. After weighing, the vertical graphene (VG) was used as the growth substrate, and isopropyl titanate (C 12 H 28 O 4 Ti) and niobium pentachloride (NbCl 5 ) were used as precursors for a solvothermal reaction. 0.5684g of C 12 H 28 O 4 Ti and 1.08g of NbCl 5 were taken and stirred in a beaker for 15 minutes, then transferred to a hydrothermal kettle for reaction at 200° C. for 6 hours, and cooled in the furnace. Then, the sample was washed several times with deionized water and absolute ethanol and dried. Under the protective atmosphere of argon, it was heat-treated and calcined in a tube furnace at 700 °C for 2 h, and the heating rate was 5 °C/min to obtain VG/min. TiNb2O7 thin film sample.
(3)VG/TiNb2O7@S-C的制备方法:将0.5mlEDOT和1gLiClO4溶解于100ml乙腈中,通过恒电流阳极沉积(1mA cm-2),在制备的VG/TiNb2O7薄膜上沉积PEDOT后,在700℃高温下于管式炉中煅烧2h(Ar气氛),升温速度为5℃/min,获得VG/TiNb2O7@S-C三维多孔阵列。(3) Preparation method of VG/TiNb 2 O 7 @SC: 0.5 ml EDOT and 1 g LiClO 4 were dissolved in 100 ml acetonitrile, and galvanostatic anodic deposition (1 mA cm −2 ) was carried out on the prepared VG/TiNb 2 O 7 thin film. After PEDOT was deposited, it was calcined in a tube furnace at a high temperature of 700 °C for 2 h (Ar atmosphere) with a heating rate of 5 °C/min to obtain a VG/TiNb 2 O 7 @SC three-dimensional porous array.
实施例1Example 1
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约10s后,PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。The VG substrate was dried in a vacuum oven. Using isopropyl titanate (C 12 H 28 O 4 Ti) and niobium pentachloride (NbCl 5 ) as precursors, a solvothermal reaction was carried out at 200° C. for 6 h, followed by cooling in a furnace. The obtained sample was washed several times with deionized water and absolute ethanol, dried, and calcined at 700 °C for 2 h under an argon protective atmosphere with a heating rate of 5 °C/min to obtain a VG/TiNb 2 O 7 thin film sample. Galvanostatic anodic deposition was performed with VG/TiNb 2 O 7 as the core in EDOT and LiClO 4 in acetonitrile solution. After about 10 s, the PEDOT polymer will be uniformly deposited on the VG/TiNb 2 O 7 array to form a core-shell structure, and then calcined in a tube furnace at a high temperature of 700 °C for 2 h (Ar atmosphere) to obtain VG/TiNb 2 O 7 @SC Three-dimensional porous array.
实施例2Example 2
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约20s后,The VG substrate was dried in a vacuum oven. Using isopropyl titanate (C 12 H 28 O 4 Ti) and niobium pentachloride (NbCl 5 ) as precursors, a solvothermal reaction was carried out at 200° C. for 6 h, followed by cooling in a furnace. The obtained sample was washed several times with deionized water and absolute ethanol, dried, and calcined at 700 °C for 2 h under an argon protective atmosphere with a heating rate of 5 °C/min to obtain a VG/TiNb 2 O 7 thin film sample. Galvanostatic anodic deposition was performed with VG/TiNb 2 O 7 as the core in EDOT and LiClO 4 in acetonitrile solution. After about 20s,
PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。The PEDOT polymer will be uniformly deposited on the VG/TiNb 2 O 7 array to form a core-shell structure, and then calcined in a tube furnace at 700 °C for 2 h (Ar atmosphere) to obtain VG/TiNb 2 O 7 @SC three-dimensional porous array.
实施例2中制得的VG/TiNb2O7阵列的扫描电镜图如图1所示;实施例2中制得的VG/TiNb2O7阵列的透射电镜图如图2所示;图3中a为实施例2中制得的VG/TiNb2O7@S-C的扫描电镜图,图3中b为实施例2中制得的VG/TiNb2O7@S-C的Ti元素分布谱图,图3中c为实施例2中制得的VG/TiNb2O7@S-C的Nb元素分布谱图,图3中d为实施例2中制得的VG/TiNb2O7@S-C的O元素分布谱图,图3中e为实施例2中制得的VG/TiNb2O7@S-C的C元素分布谱图,图3中f为实施例2中制得的VG/TiNb2O7@S-C的S元素分布谱图;图4为实施例2中制得的VG/TiNb2O7@S-C复合纳米多孔阵列的扫描电镜图。The SEM image of the VG/TiNb 2 O 7 array prepared in Example 2 is shown in Figure 1; the TEM image of the VG/TiNb 2 O 7 array prepared in Example 2 is shown in Figure 2; Figure 3 In a is the scanning electron microscope image of VG/TiNb 2 O 7 @SC prepared in Example 2, and b in FIG. 3 is the Ti element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2, In Fig. 3 c is the Nb element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2, and d in Fig. 3 is O element of VG/TiNb 2 O 7 @SC prepared in Example 2 Distribution spectrum, e in Figure 3 is the C element distribution spectrum of VG/TiNb 2 O 7 @SC prepared in Example 2, and f in Figure 3 is VG/TiNb 2 O 7 @ prepared in Example 2 S element distribution spectrum of SC; FIG. 4 is a scanning electron microscope image of the VG/TiNb 2 O 7 @SC composite nanoporous array prepared in Example 2.
由图可知,本发明具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,包括:在基体上垂直并交缠生长的石墨烯纳米片(VG),形成三维纳米多孔结构;包覆在所述石墨烯纳米片上的TiNb2O7(即TNO),形成VG/TiNb2O7纳米片;以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层(S-C),形成VG/TiNb2O7@S-C三维多孔阵列。所述的石墨烯纳米片的厚度为5-8nm,所述的VG/TiNb2O7纳米片的厚度为20-50nm,最后得到的VG/TiNb2O7@S-C三维多孔阵列的厚度(即VG/TiNb2O7@S-C核壳阵列纳米片厚度)为50-120nm。As can be seen from the figure, the vertical graphene/titanium niobium oxide/sulfur-carbon composite material with a three-dimensional porous array structure of the present invention includes: graphene nanosheets (VG) grown vertically and intertwined on the substrate to form a three-dimensional nanoporous structure; TiNb 2 O 7 (ie TNO) coated on the graphene nanosheets to form VG/TiNb 2 O7 nanosheets ; and a sulfur-doped carbon layer ( SC) to form VG/TiNb 2 O 7 @SC three-dimensional porous arrays. The thickness of the graphene nanosheet is 5-8 nm, the thickness of the VG/TiNb 2 O 7 nano sheet is 20-50 nm, and the thickness of the VG/TiNb 2 O 7 @SC three-dimensional porous array finally obtained (ie VG/TiNb 2 O 7 @SC core-shell array nanosheet thickness) is 50-120 nm.
实施例3Example 3
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约40s后,PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。The VG substrate was dried in a vacuum oven. Using isopropyl titanate (C 12 H 28 O 4 Ti) and niobium pentachloride (NbCl 5 ) as precursors, a solvothermal reaction was carried out at 200° C. for 6 h, followed by cooling in a furnace. The obtained sample was washed several times with deionized water and absolute ethanol, dried, and calcined at 700 °C for 2 h under an argon protective atmosphere with a heating rate of 5 °C/min to obtain a VG/TiNb 2 O 7 thin film sample. Galvanostatic anodic deposition was performed with VG/TiNb 2 O 7 as the core in EDOT and LiClO 4 in acetonitrile solution. After about 40 s, the PEDOT polymer will be uniformly deposited on the VG/TiNb 2 O 7 array to form a core-shell structure, and then calcined in a tube furnace at a high temperature of 700 °C for 2 h (Ar atmosphere) to obtain VG/TiNb 2 O 7 @SC Three-dimensional porous array.
性能测试Performance Testing
将上述实施例1~3制成的VG/TiNb2O7@S-C三维多孔电极材料分别作为扣式电池的对电极和工作电极,金属锂圆片为对电极,1M的LiPF6+EC/DMC(1:1)为电解液。将负极片、电解液、隔膜、对电极极片依次加入电池壳中进行电池组装,组装好后将电池在全自动封装机中压紧密封,静置12h以上后进行电化学测试。充放电测试在室温进行,仪器为蓝电电池测试系统,测试主要采用恒电流充放电测试和循环伏安测试。恒流充放电测试是非常重要的电化学测试手段,其指标主要有:比容量、倍率性能、循环性能、库仑效率。测试电压范围为相对于Li/Li+1.0-2.5V,倍率测试电流为1C,2C,5C,10C,20C,40C,80C,160C,循环测试电流为10C。The VG/TiNb 2 O 7 @SC three-dimensional porous electrode materials prepared in the above examples 1 to 3 were used as the counter electrode and the working electrode of the coin cell respectively, the metal lithium disc was used as the counter electrode, and 1M LiPF 6 +EC/DMC (1:1) is the electrolyte. The negative electrode sheet, electrolyte, separator, and counter electrode electrode sheet are sequentially added to the battery case for battery assembly. After assembly, the battery is pressed and sealed in an automatic packaging machine, and the electrochemical test is performed after standing for more than 12 hours. The charge and discharge test is carried out at room temperature. The instrument is a blue battery test system. The test mainly adopts constant current charge and discharge test and cyclic voltammetry test. The constant current charge-discharge test is a very important electrochemical test method, and its main indicators are: specific capacity, rate performance, cycle performance, and Coulombic efficiency. The test voltage range is relative to Li/Li + 1.0-2.5V, the rate test current is 1C, 2C, 5C, 10C, 20C, 40C, 80C, 160C, and the cycle test current is 10C.
性能测试结果如下:The performance test results are as follows:
实施例1、实施例2和实施例3的VG/TiNb2O7@S-C三维多孔电极在10C电流密度下放电比电容分别为134mAh/g、182mAh/g和165mAh/g。此外,循环10000圈循环后,放电比容量保持率达65%以上,库伦效率高达95%以上。可见,上述制得的VG/TiNb2O7@S-C三维多孔电极组装电池后循环稳定性好,库伦效率高。实施例1、实施例2和实施例3的VG/TiNb2O7@S-C三维多孔电极在160C电流密度下放电比电容分别为145mAh/g、225mAh/g和180mAh/g。可见,上述制得的VG/TiNb2O7@S-C三维多孔电极材料高倍率性能较好。The discharge specific capacitances of the VG/TiNb 2 O 7 @SC three-dimensional porous electrodes of Example 1, Example 2 and Example 3 were 134mAh/g, 182mAh/g and 165mAh/g at 10C current density, respectively. In addition, after 10,000 cycles, the discharge specific capacity retention rate is over 65%, and the Coulomb efficiency is over 95%. It can be seen that the VG/TiNb 2 O 7 @SC three-dimensional porous electrode prepared above has good cycle stability and high Coulombic efficiency after the assembled battery. The discharge specific capacitances of the VG/TiNb 2 O 7 @SC three-dimensional porous electrodes of Example 1, Example 2 and Example 3 were 145mAh/g, 225mAh/g and 180mAh/g at a current density of 160C, respectively. It can be seen that the VG/TiNb 2 O 7 @SC three-dimensional porous electrode material prepared above has better high rate performance.
VG导电基底具有三维纳米多孔结构,纳米化为电子和锂离子增大了电极/电解液接触面积,缩短了锂离子传输路径;另一方面,三维多孔的VG基底与硫掺杂的碳层均具有较高的电子传导率,能促进颗粒与颗粒之间的电子传导,从而提高其电子/离子传导率。The VG conductive substrate has a three-dimensional nanoporous structure, and the nano-ization into electrons and lithium ions increases the electrode/electrolyte contact area and shortens the lithium ion transport path; on the other hand, the three-dimensional porous VG substrate and the sulfur-doped carbon layer are both With high electronic conductivity, it can promote the electronic conduction between particles, thereby improving its electronic/ionic conductivity.
因此,本发明VG/TiNb2O7@S-C三维多孔电极具有高循环稳定性,高倍率性能和库伦效率等特点,使其有望成为能商业化应用的高功率密度和能量密度的锂离子电池负极材料。Therefore, the VG/TiNb 2 O 7 @SC three-dimensional porous electrode of the present invention has the characteristics of high cycle stability, high rate capability and Coulomb efficiency, etc., making it promising to be a high power density and energy density lithium-ion battery negative electrode for commercial application Material.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810263754.4A CN108649190B (en) | 2018-03-28 | 2018-03-28 | Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810263754.4A CN108649190B (en) | 2018-03-28 | 2018-03-28 | Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108649190A CN108649190A (en) | 2018-10-12 |
CN108649190B true CN108649190B (en) | 2020-12-08 |
Family
ID=63744994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810263754.4A Active CN108649190B (en) | 2018-03-28 | 2018-03-28 | Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108649190B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE065423T2 (en) | 2015-12-16 | 2024-05-28 | 6K Inc | Method of producing spheroidal dehydrogenated titanium alloy particles |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
US10639712B2 (en) | 2018-06-19 | 2020-05-05 | Amastan Technologies Inc. | Process for producing spheroidized powder from feedstock materials |
CN109686582A (en) * | 2019-01-11 | 2019-04-26 | 中山大学 | A method of combination electrode is prepared based on graphene and polyethylene dioxythiophene |
CN109950489A (en) * | 2019-03-21 | 2019-06-28 | 浙江大学 | Carbon cloth/carbon fiber array supported titanium-niobium-oxygen composite material and its preparation method and application |
CN110277554B (en) * | 2019-03-22 | 2022-04-19 | 北方奥钛纳米技术有限公司 | Positive electrode material, positive plate, preparation methods of positive electrode material and positive plate, and lithium ion battery |
US11311938B2 (en) | 2019-04-30 | 2022-04-26 | 6K Inc. | Mechanically alloyed powder feedstock |
CN112151762B (en) * | 2019-06-26 | 2022-06-10 | 重庆大学 | A lithium-sulfur battery positive electrode material and a preparation method thereof, a lithium-sulfur battery positive electrode and a preparation method thereof, and a lithium-sulfur battery |
CN110518251A (en) * | 2019-09-19 | 2019-11-29 | 哈尔滨工业大学(深圳) | A kind of three-dimensional grapheme powder body material and preparation method thereof |
WO2021118762A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
CN110993908A (en) * | 2019-11-27 | 2020-04-10 | 浙江大学 | Vertical graphene/manganese dioxide composite material and preparation method and application thereof |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
CN111403718B (en) * | 2020-03-31 | 2021-06-15 | 浙江大学 | Titanium niobium oxide/vertical graphene/titanium carbide-carbon composite material and its preparation method and application |
CA3180426A1 (en) | 2020-06-25 | 2021-12-30 | Richard K. Holman | Microcomposite alloy structure |
CN116547068A (en) | 2020-09-24 | 2023-08-04 | 6K有限公司 | Systems, devices and methods for initiating a plasma |
CN112038629B (en) * | 2020-09-30 | 2022-07-05 | 合肥国轩高科动力能源有限公司 | Integrated high-rate lithium iron phosphate positive electrode material and preparation method and application thereof |
CN116600915A (en) | 2020-10-30 | 2023-08-15 | 6K有限公司 | Systems and methods for synthesizing spheroidized metal powders |
AU2022246797A1 (en) | 2021-03-31 | 2023-10-05 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
CN113921826B (en) * | 2021-10-09 | 2023-08-04 | 深圳石墨烯创新中心有限公司 | Upright graphene/nano silver composite material and preparation method and application thereof |
US12261023B2 (en) | 2022-05-23 | 2025-03-25 | 6K Inc. | Microwave plasma apparatus and methods for processing materials using an interior liner |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
WO2024044498A1 (en) | 2022-08-25 | 2024-02-29 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip) |
US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868112A (en) * | 2015-05-12 | 2015-08-26 | 吉林大学 | Carbon-coated titanium dioxide nanosheet array and graphene composite electrode material and preparation method thereof |
EP2980891A1 (en) * | 2014-07-30 | 2016-02-03 | Kabushiki Kaisha Toshiba | Composite |
CN105304887A (en) * | 2015-12-09 | 2016-02-03 | 南阳师范学院 | Mesoporous microspherical titanium niobate/carbon composite material and preparation method thereof |
CN106784692A (en) * | 2016-12-23 | 2017-05-31 | 浙江大学 | Graphene array load lithium titanate/carbon/carbon nano tube composite array electrode material and its preparation method and application |
-
2018
- 2018-03-28 CN CN201810263754.4A patent/CN108649190B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2980891A1 (en) * | 2014-07-30 | 2016-02-03 | Kabushiki Kaisha Toshiba | Composite |
CN104868112A (en) * | 2015-05-12 | 2015-08-26 | 吉林大学 | Carbon-coated titanium dioxide nanosheet array and graphene composite electrode material and preparation method thereof |
CN105304887A (en) * | 2015-12-09 | 2016-02-03 | 南阳师范学院 | Mesoporous microspherical titanium niobate/carbon composite material and preparation method thereof |
CN106784692A (en) * | 2016-12-23 | 2017-05-31 | 浙江大学 | Graphene array load lithium titanate/carbon/carbon nano tube composite array electrode material and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
垂直取向石墨烯的常压制备及储能应用基础研究;马伟;《浙江大学研究生学位论文》;20141231;第1-70页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108649190A (en) | 2018-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108649190B (en) | Vertical graphene/titanium-niobium-oxygen/sulfur-carbon composite material with three-dimensional porous array structure and its preparation method and application | |
CN103474632B (en) | A kind of negative material for lithium battery and its preparation method and application | |
Ju et al. | Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor | |
CN106784692A (en) | Graphene array load lithium titanate/carbon/carbon nano tube composite array electrode material and its preparation method and application | |
CN106410150A (en) | A core-shell structure MoO2-MoS2 sodium-ion battery negative electrode material and preparation method thereof | |
CN108923037B (en) | A kind of silicon-rich SiOx-C material and its preparation method and application | |
CN105186004A (en) | Copper current collector for lithium-ion battery anodes as well as preparation method and application of copper current collector | |
Ou et al. | Carbon coated Si nanoparticles anchored to graphene sheets with excellent cycle performance and rate capability for Lithium-ion battery anodes | |
CN110304658B (en) | Nb for lithium ion battery18W16O93Negative electrode material and preparation method thereof | |
CN107634206B (en) | A kind of flexible negative electrode material for lithium ion battery and preparation method thereof | |
Li et al. | 3D heterostructure Fe3O4/Ni/C nanoplate arrays on Ni foam as binder-free anode for high performance lithium-ion battery | |
CN108306009A (en) | A kind of silicon-carbon oxide composite negative pole material, preparation method and lithium ion battery | |
CN103413920B (en) | A kind of lithium ion battery silicon/aligned carbon nanotube composite negative pole material and preparation method thereof | |
CN104347858A (en) | Lithium ion secondary cell cathode active material and preparation method thereof, lithium ion secondary cell cathode pole piece and lithium ion secondary cell | |
CN112875680B (en) | Preparation method of flaky Fe-based alloy catalytic growth carbon nanotube array | |
CN109850886B (en) | Porous graphite material and preparation method and application thereof | |
Lu et al. | Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook | |
Zhao et al. | A novel three-dimensional architecture of Co–Ge nanowires towards high-rate lithium and sodium storage | |
CN103647047A (en) | A carbon nanotube/SnO2 coaxial composite array lithium-ion battery negative electrode material | |
CN108428877A (en) | Nanometer Fe3O4@C In-situ reaction porous lithium ion cell negative materials and preparation method thereof | |
CN113257583B (en) | Li 3 V 2 O 5 -carbon nanotube composite material, preparation method thereof and application thereof in lithium ion hybrid capacitor | |
CN113044840B (en) | An activated carbon loaded molybdenum and nitrogen double-doped carbon nanosheet array composite material and its preparation method and application | |
Zhou et al. | Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode | |
CN108711608A (en) | Three-dimensional leader shape all-solid lithium-ion battery cathode, preparation method and battery | |
CN102956890B (en) | Low-temperature carbon-coated composite material, its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |