CN107768819B - An end-fire millimeter-wave antenna with controllable radiation direction - Google Patents
An end-fire millimeter-wave antenna with controllable radiation direction Download PDFInfo
- Publication number
- CN107768819B CN107768819B CN201711042862.0A CN201711042862A CN107768819B CN 107768819 B CN107768819 B CN 107768819B CN 201711042862 A CN201711042862 A CN 201711042862A CN 107768819 B CN107768819 B CN 107768819B
- Authority
- CN
- China
- Prior art keywords
- dielectric substrate
- metal
- millimeter
- shaped dielectric
- radiation direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 230000005284 excitation Effects 0.000 claims abstract description 31
- 230000008878 coupling Effects 0.000 claims abstract description 26
- 238000010168 coupling process Methods 0.000 claims abstract description 26
- 238000005859 coupling reaction Methods 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims description 127
- 239000002184 metal Substances 0.000 claims description 127
- 238000005452 bending Methods 0.000 claims description 15
- 238000004891 communication Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种端射毫米波天线,尤其是一种辐射方向可控的端射毫米波天线,属于无线移动通信技术领域。The invention relates to an end-fired millimeter-wave antenna, in particular to an end-fired millimeter-wave antenna with controllable radiation direction, which belongs to the technical field of wireless mobile communication.
背景技术Background technique
随着低频电磁波频谱资源日益趋于枯竭,毫米波频段的频谱资源的利用越来越引起学术界的关注。端射天线相较于边射天线更适合运用于终端设备中,因为端射天线的辐射不易受到手的影响而边射天线的辐射可能会受到手的阻挡,从而影响通讯质量。高前后比的天线能够有效抑制背向辐射,同时能够避免接收到来自天线背端的信号。一般的波束可控天线都是通过利用二极管的单向导电性来实现的,但是目前二极管最高的工作频率只能达到15GHz左右,因此毫米波天线实现波束可控不能采用加载二极管的方法。目前毫米波实现波束可控一般通过使用巴特勒矩形的方法,但是巴特勒矩阵的结构过于复杂,并且体积十分的庞大。零折射率超材料由于能够有效提高天线的辐射增益并且具有结构简单便于与天线集成设计等优点,被广泛的应用在各种天线设计中。为了提高天线覆盖距离距离减小天线的体积同时提高终端设备的通讯质量,设计一款可实现波束可控的端射毫米波天线是十分必要的。With the depletion of low-frequency electromagnetic spectrum resources, the utilization of spectrum resources in the millimeter wave band has attracted more and more attention from the academic community. Compared with side-fire antennas, end-fire antennas are more suitable for use in terminal equipment, because the radiation of end-fire antennas is not easily affected by hands, while the radiation of side-fire antennas may be blocked by hands, thereby affecting communication quality. An antenna with a high front-to-back ratio can effectively suppress back radiation and avoid receiving signals from the back end of the antenna. General beam steerable antennas are realized by using the unidirectional conductivity of diodes, but currently the highest operating frequency of diodes can only reach about 15GHz, so millimeter wave antennas cannot use the method of loading diodes to achieve beam steerability. At present, beam controllability of millimeter waves is generally achieved by using the Butler rectangle method, but the structure of the Butler matrix is too complicated and the volume is very large. Zero-refractive index metamaterials are widely used in various antenna designs because they can effectively improve the radiation gain of antennas and have the advantages of simple structure and easy integration with antennas. In order to improve the antenna coverage distance and reduce the size of the antenna while improving the communication quality of the terminal equipment, it is necessary to design an end-fired millimeter-wave antenna that can realize beam control.
据调查与了解,已经公开的现有技术如下:According to investigation and understanding, the existing technologies that have been disclosed are as follows:
2016年,Hao-Tao Hu,Fu-Chang Chen,等人在“IEEE TRANSACTIONS ON ANTENNASAND PROPAGATION”发表题为“A Compact Directional Slot Antenna and ItsApplication in MIMO Array”的文章中,设计了一款高前后比的端射缝隙天线,通过使用两个已经具有一定方向性的缝隙天线组成一个间距相隔1/4波导波长馈电相位相差90度的二元阵,实现了高前后比的特性,最高的前后比达到了19.2dBi。但是该天线只能实现一个方向的定向辐射,并且最高增益只能达到5.5dBi左右。In 2016, Hao-Tao Hu, Fu-Chang Chen, et al. published an article titled "A Compact Directional Slot Antenna and Its Application in MIMO Array" in "IEEE TRANSACTIONS ON ANTENNASAND PROPAGATION", and designed a high front-to-back ratio End-fired slot antenna, by using two slot antennas that already have a certain directionality to form a binary array with a distance of 1/4 waveguide wavelength and a feeding phase difference of 90 degrees, it achieves the characteristics of high front-to-back ratio, and the highest front-to-back ratio reaches up to 19.2dBi. However, the antenna can only achieve directional radiation in one direction, and the highest gain can only reach about 5.5dBi.
2016年,Yujian Li,Kwai-Man Luk,等人在“IEEE TRANSACTIONS ON ANTENNASAND PROPAGATION”发表题为“A Multibeam End-Fire Magnetoelectric Dipole AntennaArray for Millimeter-Wave Applications”的文章中,设计了一种八波束的端射毫米波天线阵列,该天线的波束可控是采用8*8的巴特勒矩形实现的,并且天线单元采用了宽带的端射电磁偶极子天线,使整个天线阵列具有很宽的工作带宽。但是巴特勒矩形的结构十分的复杂,需要移相器、3dB耦合器、交叉结等器件,造成整个天线的结构十分的复杂,并且体积庞大。整个天线需要使用三层介质板,加工难度较大。In 2016, Yujian Li, Kwai-Man Luk, et al. published an article entitled "A Multibeam End-Fire Magnetoelectric Dipole AntennaArray for Millimeter-Wave Applications" in "IEEE TRANSACTIONS ON ANTENNASAND PROPAGATION", designing an eight-beam End-fire millimeter-wave antenna array, the beam control of the antenna is realized by using 8*8 Butler rectangle, and the antenna unit adopts a wide-band end-fire electromagnetic dipole antenna, so that the whole antenna array has a very wide working bandwidth . However, the structure of the Butler rectangle is very complicated, requiring components such as phase shifters, 3dB couplers, and cross junctions, resulting in a very complicated structure and a large volume of the entire antenna. The entire antenna needs to use three layers of dielectric boards, which is difficult to process.
发明内容Contents of the invention
本发明的目的是为了解决上述现有技术的不足之处,提供了一种辐射方向可控的端射毫米波天线,该天线的辐射方向可控,且方向性好、增益高、前后比高、结构简单、易加工、体积小、成本低,可以应用于毫米波短距离无线通讯系统之中。The purpose of the present invention is to solve the shortcomings of the above-mentioned prior art and provide an end-fired millimeter-wave antenna with a controllable radiation direction, which has a controllable radiation direction, good directivity, high gain, and high front-to-back ratio , simple in structure, easy to process, small in size and low in cost, and can be applied in millimeter wave short-distance wireless communication systems.
本发明的目的可以通过采取如下技术方案达到:The purpose of the present invention can be achieved by taking the following technical solutions:
一种辐射方向可控的端射毫米波天线,所述天线为轴对称结构,包括T形介质基板,所述T形介质基板上设有耦合器、两个激励端口和两个辐射体;An end-fire millimeter-wave antenna with controllable radiation direction, the antenna is an axisymmetric structure, including a T-shaped dielectric substrate, and a coupler, two excitation ports and two radiators are arranged on the T-shaped dielectric substrate;
所述耦合器设置在两个激励端口与两个辐射体之间,耦合器采用基板集成波导构成,基板集成波导的两排过孔之间设有一耦合窗口,所述耦合窗口与两排过孔之间分别设有耦合相位控制单元。The coupler is arranged between the two excitation ports and the two radiators. The coupler is composed of a substrate-integrated waveguide. A coupling window is provided between the two rows of via holes of the substrate-integrated waveguide. The coupling window is connected to the two rows of via holes. A coupling phase control unit is respectively arranged between them.
进一步的,所述两个激励端口均采用接地共面波导构成,两个激励端口的前端连接微波接头,末端呈喇叭状扩张。Further, the two excitation ports are both composed of grounded coplanar waveguides, the front ends of the two excitation ports are connected to microwave connectors, and the ends expand in the shape of a horn.
进一步的,所述两个辐射体均为电偶极子,两个电偶极子之间的间距为1/4波导波长。Further, the two radiators are both electric dipoles, and the distance between the two electric dipoles is 1/4 waveguide wavelength.
进一步的,每个电偶极子包括四条金属臂,其中两条金属臂位于T形介质基板的上表面,另外两条金属臂位于T形介质基板的下表面,所述T形介质基板上表面的两条金属臂通过金属过孔与T形介质基板下表面的两条金属臂一一对应相连。Further, each electric dipole includes four metal arms, wherein two metal arms are located on the upper surface of the T-shaped dielectric substrate, and the other two metal arms are located on the lower surface of the T-shaped dielectric substrate, and the upper surface of the T-shaped dielectric substrate is The two metal arms are connected to the two metal arms on the lower surface of the T-shaped dielectric substrate in one-to-one correspondence through metal via holes.
进一步的,所述T形介质基板上还设有四条下底宽上底细的等腰梯形金属带线;Further, four isosceles trapezoidal metal strip lines with a wide bottom and a thin top are arranged on the T-shaped dielectric substrate;
其中两条等腰梯形金属带线分别位于T形介质基板的上、下表面,构成宽带阶梯型平面耦合双线,该宽带阶梯型平面耦合双线与其中一个辐射体相连。Two of the isosceles trapezoidal metal strip lines are respectively located on the upper and lower surfaces of the T-shaped dielectric substrate to form a broadband stepped planar coupled double line, and the broadband stepped planar coupled double line is connected to one of the radiators.
另外两条等腰梯形金属带线也分别位于T形介质基板的上、下表面,也构成宽带阶梯型平面耦合双线,该宽带阶梯型平面耦合双线与另一个辐射体相连。The other two isosceles trapezoidal metal strip lines are also respectively located on the upper and lower surfaces of the T-shaped dielectric substrate, which also constitute a broadband stepped planar coupled double line, and the broadband stepped planar coupled double line is connected to another radiator.
进一步的,所述T形介质基板上表面的等腰梯形金属带线下底宽度大于T形介质基板下表面的等腰梯形金属带线下底宽度。Further, the lower base width of the isosceles trapezoidal metal strip line on the upper surface of the T-shaped dielectric substrate is greater than the lower base width of the isosceles trapezoidal metal strip line on the lower surface of the T-shaped dielectric substrate.
进一步的,所述T形介质基板上还设有两组ZIM,每组ZIM包括多个ZIM单元,每两个相邻的ZIM单元之间的间距相同。Further, two groups of ZIMs are arranged on the T-shaped dielectric substrate, each group of ZIMs includes a plurality of ZIM units, and the distance between every two adjacent ZIM units is the same.
进一步的,每组ZIM的ZIM单元为三个。Further, there are three ZIM units in each group of ZIMs.
进一步的,每个ZIM单元包括两条平行且相同的矩形金属带线和两条相同的“几”形金属弯折线,两条“几”形金属弯折线分别位于左、右两侧,且相连在一起,两条矩形金属带线与两条“几”形金属弯折线一一对应相连。Further, each ZIM unit includes two parallel and identical rectangular metal strip lines and two identical "several"-shaped metal bending lines, and the two "several"-shaped metal bending lines are respectively located on the left and right sides and connected Together, the two rectangular metal strip lines are connected to the two "several" shaped metal bending lines in one-to-one correspondence.
进一步的,所述T形介质基板上还设有与耦合器末端相连的三条矩形金属枝节,其中一条矩形金属枝节位于另外两条矩形金属枝节之间,且长度大于另外两条矩形金属枝节的长度,另外两条矩形金属枝节的长度相同。Further, the T-shaped dielectric substrate is also provided with three rectangular metal branches connected to the end of the coupler, one of which is located between the other two rectangular metal branches, and its length is greater than the length of the other two rectangular metal branches , and the other two rectangular metal branches have the same length.
本发明相对于现有技术具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明的端射毫米波天线设计了T形介质基板,T形介质基板上设置耦合器、两个激励端口和两个辐射体,耦合器采用基板集成波导构成,基板集成波导的两排过孔之间设有一耦合窗口,耦合窗口与两排过孔之间分别设有耦合相位控制单元,通过耦合相位控制单元可以控制耦合相位,实现了功率的等分输出并且相位相差90度,使得电磁信号从两个激励端口馈入形成的天线辐射方向图形状大致相同,但是方向完全反向,说明具有波束可控的特性;此外,只需要采用一层介质板,大大降低了天线的加工难度,不使用巴特勒矩形,只需要使用一个耦合器用于控制相位,大大减小了天线的体积与复杂程度,同时成本低,成品率高,制作过程简单,可以满足毫米波天线对低造价的要求。1. The end-fired millimeter-wave antenna of the present invention is designed with a T-shaped dielectric substrate. A coupler, two excitation ports and two radiators are arranged on the T-shaped dielectric substrate. The coupler is composed of a substrate-integrated waveguide, and two rows of substrate-integrated waveguides A coupling window is provided between the via holes, and a coupling phase control unit is respectively provided between the coupling window and the two rows of via holes. The coupling phase can be controlled by the coupling phase control unit, and the equal output of power is realized with a phase difference of 90 degrees, so that The shape of the radiation pattern of the antenna formed by feeding the electromagnetic signal from the two excitation ports is roughly the same, but the direction is completely reversed, indicating that it has the characteristics of beam control; in addition, only one layer of dielectric board is needed, which greatly reduces the difficulty of antenna processing , instead of using a Butler rectangle, only one coupler is needed to control the phase, which greatly reduces the size and complexity of the antenna, and at the same time has low cost, high yield, and simple manufacturing process, which can meet the requirements of millimeter-wave antennas for low cost. .
2、本发明的端射毫米波天线的两个激励端口末端呈喇叭状扩张,以实现接地共面波导与基板集成波导之间的阻抗匹配,从而实现接地共面波导与基板集成波导之间平滑过渡。2. The ends of the two excitation ports of the end-fired millimeter-wave antenna of the present invention are flared to achieve impedance matching between the grounded coplanar waveguide and the substrate-integrated waveguide, thereby achieving smoothness between the grounded coplanar waveguide and the substrate-integrated waveguide transition.
3、本发明的端射毫米波天线的两个辐射体均采用电偶极子,两个电偶极子之间的间距为1/4波导波长,经由耦合器等幅90度相位差馈电后,能够实现辐射方向图的高前后比特性。3. The two radiators of the end-fired millimeter-wave antenna of the present invention both use electric dipoles, the distance between the two electric dipoles is 1/4 waveguide wavelength, and the feed is fed by a coupler with a phase difference of 90 degrees. Finally, high front-to-back ratio characteristics of the radiation pattern can be achieved.
4、本发明的端射毫米波天线的T形介质基板上还可以设置四条下底宽上底细的等腰梯形金属带线,其中两条等腰梯形金属带线构成宽带阶梯型平面耦合双线,另外两条等腰梯形金属带线也构成宽带阶梯型平面耦合双线,通过宽带阶梯型平面耦合双线实现辐射体与基板集成波导的阻抗匹配。4. The T-shaped dielectric substrate of the end-fired millimeter-wave antenna of the present invention can also be provided with four isosceles trapezoidal metal strip lines with a wide bottom and a thin top bottom, wherein two isosceles trapezoidal metal strip lines constitute a broadband stepped planar coupling double line , the other two isosceles trapezoidal metal strip lines also constitute a broadband stepped planar coupled pair, and the impedance matching between the radiator and the substrate integrated waveguide is realized through the broadband stepped planar coupled pair.
5、本发明的端射毫米波天线的T形介质基板上还可以设置两组ZIM,每组ZIM包括多个ZIM单元,通过加载ZIM结构实现了天线增益的提高,使天线的最高增益达到了7.5dBi并且频带范围内的增益均高于5dBi。5. Two groups of ZIMs can also be set on the T-shaped dielectric substrate of the end-fired millimeter-wave antenna of the present invention, each group of ZIMs includes a plurality of ZIM units, and the antenna gain is improved by loading the ZIM structure, so that the highest gain of the antenna reaches 7.5dBi and the gain in the frequency band is higher than 5dBi.
6、本发明的端射毫米波天线的T形介质基板上还可以设置三条矩形金属枝节,三条矩形金属枝节均与耦合器的末端相连,且其中一条矩形金属枝节的长度大于另外两条矩形金属枝节的长度,另外两条矩形金属枝节的长度相同,通过引入这三条矩形金属枝节,天线的前后比得到了较大的提高。6. The T-shaped dielectric substrate of the end-fired millimeter-wave antenna of the present invention can also be provided with three rectangular metal branches, and the three rectangular metal branches are all connected to the end of the coupler, and the length of one of the rectangular metal branches is greater than that of the other two rectangular metal branches. The length of the other two rectangular metal branches is the same. By introducing these three rectangular metal branches, the front-to-back ratio of the antenna is greatly improved.
附图说明Description of drawings
图1为本发明实施例1的辐射方向可控的端射毫米波天线的立体图。FIG. 1 is a perspective view of an end-fired millimeter-wave antenna with controllable radiation direction according to
图2为本发明实施例1的辐射方向可控的端射毫米波天线的上表面结构图。FIG. 2 is a structural diagram of the upper surface of the end-fired millimeter-wave antenna with controllable radiation direction according to
图3为本发明实施例1的辐射方向可控的端射毫米波天线的下表面结构图。FIG. 3 is a structure diagram of the bottom surface of the end-fired millimeter-wave antenna with controllable radiation direction according to
图4为本发明实施例1的辐射方向可控的端射毫米波天线的辐射体结构图。FIG. 4 is a structural diagram of a radiator of an end-fired millimeter-wave antenna with controllable radiation direction according to
图5为本发明实施例1的辐射方向可控的端射毫米波天线ZIM单元的结构图。FIG. 5 is a structural diagram of a ZIM unit of an end-fired millimeter-wave antenna with controllable radiation direction according to
图6为本发明实施例1的辐射方向可控的端射毫米波天线ZIM单元的电磁仿真曲线。FIG. 6 is an electromagnetic simulation curve of the ZIM unit of the end-fired millimeter-wave antenna with controllable radiation direction according to
图7为本发明实施例1的辐射方向可控的端射毫米波天线的增益随频率变化的曲线。FIG. 7 is a curve of gain versus frequency of the end-fired millimeter-wave antenna with controllable radiation direction according to
图8为本发明实施例1的辐射方向可控的端射毫米波天线的回波损耗曲线。FIG. 8 is a return loss curve of the end-fired millimeter-wave antenna with controllable radiation direction according to
图9为本发明实施例1的辐射方向可控的端射毫米波天线的H面方向图(46GHz)。FIG. 9 is an H-plane pattern (46 GHz) of the end-fired millimeter-wave antenna with controllable radiation direction according to
图10为本发明实施例1的辐射方向可控的端射毫米波天线的E面方向图(46GHz)。FIG. 10 is an E-plane pattern (46 GHz) of the end-fired millimeter-wave antenna with controllable radiation direction according to
图11为本发明实施例1的辐射方向可控的端射毫米波天线的H面方向图(49GHz)。Fig. 11 is an H-plane pattern (49 GHz) of the end-fired millimeter-wave antenna with controllable radiation direction according to
图12为本发明实施例1的辐射方向可控的端射毫米波天线的E面方向图(49GHz)。FIG. 12 is an E-plane pattern (49 GHz) of the end-fired millimeter-wave antenna with controllable radiation direction according to
图13为本发明实施例1的辐射方向可控的端射毫米波天线的第一激励端口激励时天线的三维方向图。Fig. 13 is a three-dimensional radiation diagram of the end-fired millimeter-wave antenna with controllable radiation direction according to
图14为本发明实施例1的辐射方向可控的端射毫米波天线的第二激励端口激励时天线的三维方向图。Fig. 14 is a three-dimensional radiation diagram of the end-fired millimeter-wave antenna with controllable radiation direction according to
其中,1-T形介质基板,2-耦合器,3-第一激励端口,4-第二激励端口,5-第一电偶极子,501-第一金属臂,502-第二金属臂,503-第三金属臂,504-第四金属臂,505-第一金属过孔,506-第二金属过孔,6-第二电偶极子,7-第一矩形金属微带线,8-第二矩形金属枝节,9-第三矩形金属枝节,10-第一宽带阶梯型平面耦合双线,11-第二宽带阶梯型平面耦合双线,12-第一组ZIM,1201-第一矩形金属带线,1202-第二矩形金属带线,1203-第一“几”形金属弯折线,1204-第二“几”形金属弯折线,13-第二组ZIM。Among them, 1-T-shaped dielectric substrate, 2-coupler, 3-first excitation port, 4-second excitation port, 5-first electric dipole, 501-first metal arm, 502-second metal arm , 503-third metal arm, 504-fourth metal arm, 505-first metal via, 506-second metal via, 6-second electric dipole, 7-first rectangular metal microstrip line, 8-The second rectangular metal branch, 9-The third rectangular metal branch, 10-The first broadband stepped planar coupled double line, 11-The second broadband stepped planar coupled double line, 12-The first group of ZIMs, 1201-The first A rectangular metal strip line, 1202-the second rectangular metal strip line, 1203-the first "several"-shaped metal bending line, 1204-the second "several"-shaped metal bending line, 13-the second group of ZIMs.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1:Example 1:
如图1~图3所示,本实施例提供了一种辐射方向可控的端射毫米波天线,该天线为轴对称结构,其包括T形介质基板1,T形介质基板1上设有耦合器2、两个激励端口和两个辐射体。As shown in Figures 1 to 3, this embodiment provides an end-fired millimeter-wave antenna with a controllable radiation direction. The antenna is an axisymmetric structure, which includes a T-shaped
所述T形介质基板1是一块PCB板切割成T形的介质基板,T形介质基板1的中心轴即为天线的对称轴。The T-shaped
所述耦合器2为3dB定向耦合器,其采用基板集成波导(substrate integratedwaveguide,简称SIW)构成,由于天线为轴对称结构,基板集成波导的两排金属过孔关于T形介质基板1的中心轴对称,两排金属过孔作为两条基板集成波导馈线,且基板集成波导馈线的两端延伸,前端延伸到两个激励端口处,两条基板集成波导馈线之间具有一排共用金属过孔,共用金属过孔位于T形介质基板1的中心轴上,且将共用金属过孔的一部分去除,形成耦合窗口,该耦合窗口与两条基板集成波导馈线之间分别设有耦合相位控制单元,耦合相位控制单元也为一排金属过孔结构,可以控制耦合相位,实现了功率的等分输出并且相位相差90度。The
所述两个激励端口分别为第一激励端口3和第二激励端口4,由于天线为轴对称结构,第一激励端口3和第二激励端口4关于T形介质基板1的中心轴对称,均采用接地共面波导(grounded coplanar waveguide,GCPW)构成,前端连接微波接头,末端呈喇叭状扩张,以实现接地共面波导与基板集成波导之间的阻抗匹配,从而实现接地共面波导与基板集成波导之间平滑过渡。The two excitation ports are respectively the
所述两个辐射体分别为第一电偶极子5和第二电偶极子6,由于天线为轴对称结构,两个电偶极子关于T形介质基板1的中心轴对称,它们之间的间距近似于1/4波导波长,经耦合器2等幅90度相位差馈电后,能够实现辐射方向图的高前后比特性。The two radiators are the first
进一步地,第一电偶极子5和第二电偶极子的结构相同,如图1~图4所示,以第一电偶极子5为例,包括第一金属臂501、第二金属臂502、第三金属臂503和第四金属臂504,第一金属臂501和第二金属臂502位于T形介质基板1的上表面,第三金属臂503和第四金属臂504位于T形介质基板1的下表面,第一金属臂501与第三金属臂503相对应,并通过第一金属过孔505相连在一起,第二金属臂502与第四金属臂504相对应,并通过第二金属过孔506相连在一起;本领域技术人员可以理解,第二电偶极子6也包括第一金属臂、第二金属臂、第三金属臂和第四金属臂。Further, the first
如图1~图3所示,所述T形介质基板1上还设有第一矩形金属枝节7、第二矩形金属枝节8和第三矩形金属枝节9,第一矩形金属枝节7、第二矩形金属枝节8和第三矩形金属枝节9均为金属微带线,且位于T形介质基板1的上表面,并与耦合器2的末端相连,第一矩形金属枝节7和第三矩形金属枝节9关于T形介质基板1的中心轴对称,第二矩形金属枝节8位于T形介质基板1的中心轴上,第一矩形金属枝节7、第二矩形金属枝节8和第三矩形金属枝节9的宽度相同,且第二矩形金属枝节8的长度大于第一矩形金属枝节7和第三矩形金属枝节9,通过引入这三条矩形金属枝节,天线的前后比得到了较大的提高。As shown in Figures 1 to 3, the T-shaped
如图1~图4所示,所述T形介质基板1上还设有四条下底宽上底细的等腰梯形金属带线,其中两条等腰梯形金属带线分别位于T形介质基板的上、下表面,构成第一宽带阶梯型平面耦合双线10,另外两条等腰梯形金属带线也分别位于T形介质基板的上、下表面,构成第二宽带阶梯型平面耦合双线11,由于天线为轴对称结构,第一宽带阶梯型平面耦合双线10和第二宽带阶梯型平面耦合双线11关于T形介质基板1的中心轴对称。As shown in Figures 1 to 4, the T-shaped
进一步地,第一宽带阶梯型平面耦合双线10与第一电偶极子5相连,具体为第一宽带阶梯型平面耦合双线10在T形介质基板1上表面的等腰梯形金属带线与第一电偶极子5的第一金属臂501相连,在T形介质基板1下表面的等腰梯形金属带线与第四金属臂504相连;Further, the first broadband stepped planar coupled
第二宽带阶梯型平面耦合双线11与第二电偶极子6相连,具体为第二宽带阶梯型平面耦合双线11在T形介质基板1上表面的等腰梯形金属带线与第二电偶极子6的第一金属臂相连,在T形介质基板1下表面的等腰梯形金属带线与第二电偶极子6的第四金属臂相连。The second broadband stepped planar coupled
通过引入第一宽带阶梯型平面耦合双线10和第二宽带阶梯型平面耦合双线11,能够实现偶极子与基板集成波导之间的阻抗匹配,优选地,第一宽带阶梯型平面耦合双线10、第二宽带阶梯型平面耦合双线11在T形介质基板上表面的等腰梯形金属带线下底宽度大于在T形介质基板下表面的等腰梯形金属带线下底宽度,而上底的宽度一致。Impedance matching between the dipole and the substrate integrated waveguide can be achieved by introducing the first broadband stepped planar coupled
如图1~图5所示,所述T形介质基板1上还设有两组ZIM(Zero-IndexMetamaterial,零折射率超材料),两组ZIM分别为第一组ZIM 12和第二组ZIM 13,由于天线为轴对称结构,两组ZIM关于T形介质基板1的中心轴对称,第一组ZIM 12和第二组ZIM 13均包括三个ZIM单元,以第一组ZIM 12为例,每个ZIM单元包括第一矩形金属带线1201、第二矩形金属带线1202、第一“几”形金属弯折线1203和第二“几”形金属弯折线1204,第一矩形金属带线1201、第一“几”形金属弯折线1203、第二“几”形金属弯折线1204和第二矩形金属带线1202依次相连,第一“几”形金属弯折线1203和第二“几”形金属弯折线1204有公共部分,且分别位于图5中所示虚线的左、右两侧,图6展示的是这种ZIM结构的电磁仿真特性曲线,从图6可以看出,该结构能够在阻抗带宽范围内实现一个近零折射率特性,图7展示的是加载了ZIM结构的天线增益与未加载ZIM结构天线的增益的比较,通过对比可以看出加载ZIM结构能够有效提高天线的增益。As shown in FIGS. 1 to 5 , two sets of ZIMs (Zero-Index Metamaterial, zero-index metamaterial) are arranged on the T-shaped
调整本实施例的端射毫米波天线各部分的尺寸参数后,通过计算和电磁场仿真,对本实施例的端射毫米波天线进行了验证仿真,如图8所示,给出了该天线在40~50GHz频率范围内的|S11|参数(输入端口回波损耗)仿真结果的曲线;可以看到,在45.7GHz~49.6GHz频段范围内,|S11|曲线的值都小于-10dB。如图9和图10所示,给出了该天线在46GHz这个频点的H面方向图和E面的方向图,如图11和图12所示,给出了该天线在49GHz这个频点的H面方向图和E面的方向图,可以看到,在46GHz天线的前后比达到了13.4dBi,在49GHz天线的前后比达到了16.3dBi,仿真结果表明本实施例的辐射方向可控的端射毫米波天线具有很好的方向性。如图13和图14所示,给出了该天线的三维方向图,可以看到,激励第一激励端口3第二激励端口4接匹配负载时,天线的辐射方向是+X轴方向。激励第二激励端口4第一激励端口3接匹配负载时,天线的辐射方向是-X轴方向。说明该天线实现了辐射方向可控的特性,通过激励不同的激励端口,能够实现两个180度反向的辐射方向图。After adjusting the size parameters of each part of the end-fired millimeter-wave antenna of this embodiment, the end-fired millimeter-wave antenna of this embodiment is verified and simulated through calculation and electromagnetic field simulation, as shown in FIG. The curve of the |S11| parameter (input port return loss) simulation results in the frequency range of ~50GHz; it can be seen that the values of the |S11| curve are all less than -10dB in the frequency range of 45.7GHz to 49.6GHz. As shown in Figure 9 and Figure 10, the H-plane pattern and the E-plane pattern of the antenna at the frequency point of 46GHz are given. As shown in Figure 11 and Figure 12, the antenna at the frequency point of 49GHz is given. It can be seen that the front-to-back ratio of the 46GHz antenna reaches 13.4dBi, and the front-to-back ratio of the 49GHz antenna reaches 16.3dBi. The simulation results show that the radiation direction of this embodiment is controllable End-fire millimeter-wave antennas have good directivity. As shown in Figure 13 and Figure 14, the three-dimensional pattern of the antenna is given. It can be seen that when the
实施例2:Example 2:
本实施例的端射毫米波天线中,所述第一组ZIM 12和第二组ZIM 13还可以包括四个或四个以上的ZIM单元。其余同实施例1。In the end-fire millimeter wave antenna of this embodiment, the first group of ZIMs 12 and the second group of
上述实施例中,所述PCB板采用FR-4、聚酰亚胺、聚四氟乙烯玻璃布和共烧陶瓷中任意两种种材料构成;所述金属的材质可以为铝、铁、锡、铜、银、金和铂的任意一种,或为铝、铁、锡、铜、银、金和铂任意一种的合金。In the above embodiment, the PCB board is made of any two materials in FR-4, polyimide, polytetrafluoroethylene glass cloth and co-fired ceramics; the material of the metal can be aluminum, iron, tin, copper Any one of , silver, gold and platinum, or an alloy of any one of aluminum, iron, tin, copper, silver, gold and platinum.
综上所述,本发明的端射毫米波天线设计了T形介质基板,T形介质基板上设置耦合器、两个激励端口和两个辐射体,耦合器采用基板集成波导构成,基板集成波导的两排过孔之间设有一耦合窗口,耦合窗口与两排过孔之间分别设有耦合相位控制单元,通过耦合相位控制单元可以控制耦合相位,实现了功率的等分输出并且相位相差90度,使得电磁信号从两个激励端口馈入形成的天线辐射方向图形状大致相同,但是方向完全反向,说明具有波束可控的特性;此外,只需要采用一层介质板,大大降低了天线的加工难度,不使用巴特勒矩形,只需要使用一个耦合器用于控制相位,大大减小了天线的体积与复杂程度,同时成本低,成品率高,制作过程简单,可以满足毫米波天线对低造价的要求。In summary, the end-fired millimeter-wave antenna of the present invention is designed with a T-shaped dielectric substrate, on which a coupler, two excitation ports, and two radiators are arranged, and the coupler is composed of a substrate-integrated waveguide, and the substrate-integrated waveguide There is a coupling window between the two rows of via holes, and a coupling phase control unit is provided between the coupling window and the two rows of via holes. The coupling phase can be controlled by the coupling phase control unit, which realizes the equal output of power and a phase difference of 90 degree, so that the shape of the antenna radiation pattern formed by feeding the electromagnetic signal from the two excitation ports is roughly the same, but the direction is completely reversed, indicating that it has the characteristics of beam control; in addition, only one layer of dielectric board is needed, which greatly reduces the antenna The difficulty of processing, do not use the Butler rectangle, only need to use a coupler to control the phase, greatly reducing the size and complexity of the antenna, while low cost, high yield, simple manufacturing process, can meet the requirements of the millimeter-wave antenna pair low cost requirements.
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。The above is only a preferred embodiment of the patent of the present invention, but the scope of protection of the patent of the present invention is not limited thereto. Equivalent replacements or changes to the technical solutions and their inventive concepts all fall within the scope of protection of the invention patent.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711042862.0A CN107768819B (en) | 2017-10-30 | 2017-10-30 | An end-fire millimeter-wave antenna with controllable radiation direction |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711042862.0A CN107768819B (en) | 2017-10-30 | 2017-10-30 | An end-fire millimeter-wave antenna with controllable radiation direction |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107768819A CN107768819A (en) | 2018-03-06 |
| CN107768819B true CN107768819B (en) | 2023-06-20 |
Family
ID=61270425
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711042862.0A Expired - Fee Related CN107768819B (en) | 2017-10-30 | 2017-10-30 | An end-fire millimeter-wave antenna with controllable radiation direction |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107768819B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108511924B (en) * | 2018-03-26 | 2020-09-11 | 东南大学 | A broadband end-fire antenna array for millimeter-wave communication systems |
| CN108767451B (en) * | 2018-04-04 | 2020-07-14 | 上海交通大学 | Pattern Reconfigurable Wide-Angle Scanning Antenna Based on SSPP Structure |
| CN109616778A (en) * | 2018-12-05 | 2019-04-12 | 东南大学 | Millimeter wave passive multi-beam array device for mobile terminal and implementation method thereof |
| CN112164870B (en) * | 2020-09-27 | 2022-04-29 | 重庆大学 | Edge-emitting Huygens source binary antenna array |
| CN114050407B (en) * | 2021-10-28 | 2023-09-26 | 中国科学院空天信息创新研究院 | Waveguide mode excitation structures, methods and applications |
| CN114267940B (en) * | 2021-12-02 | 2024-09-24 | 重庆邮电大学 | Millimeter wave end-shot broadband circularly polarized double-loop array based on substrate integrated waveguide |
| CN114430110A (en) * | 2022-01-25 | 2022-05-03 | 蓬托森思股份有限公司 | an antenna |
| CN115458905B (en) * | 2022-10-20 | 2024-12-03 | Oppo广东移动通信有限公司 | Antenna device and electronic equipment |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106299618A (en) * | 2016-08-19 | 2017-01-04 | 四川中测微格科技有限公司 | A kind of substrate integration wave-guide plane end-fire circular polarized antenna |
| CN207517869U (en) * | 2017-10-30 | 2018-06-19 | 华南理工大学 | A kind of controllable end-fire millimeter wave antenna of radiation direction |
-
2017
- 2017-10-30 CN CN201711042862.0A patent/CN107768819B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106299618A (en) * | 2016-08-19 | 2017-01-04 | 四川中测微格科技有限公司 | A kind of substrate integration wave-guide plane end-fire circular polarized antenna |
| CN207517869U (en) * | 2017-10-30 | 2018-06-19 | 华南理工大学 | A kind of controllable end-fire millimeter wave antenna of radiation direction |
Non-Patent Citations (2)
| Title |
|---|
| Min Wei et al..Gain enhancement for wideband end‑fire antenna design with artificial material.《Springer Plus》.2016,第1-9页. * |
| Sara Salem Hesari and Jens Bornemann.Wideband Circularly Polarized Substrate Integrated Waveguide Endfire Antenna System With High Gain.《IEEE Antennas and Wireless Propagation Letters》.2017,第2262–2265页. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107768819A (en) | 2018-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107768819B (en) | An end-fire millimeter-wave antenna with controllable radiation direction | |
| CN107732445B (en) | A millimeter-wave circularly polarized array antenna and its radiator | |
| US9142889B2 (en) | Compact tapered slot antenna | |
| WO2021179627A1 (en) | Super-surface-based dual-linear polarization dual-beam base station antenna | |
| CN207517869U (en) | A kind of controllable end-fire millimeter wave antenna of radiation direction | |
| CN113193347B (en) | Dual-beam cavity-backed antenna based on artificial electromagnetic structure and cavity odd-mode excitation | |
| CN107978858B (en) | Pattern reconfigurable antenna working in 60GHz frequency band | |
| KR101630674B1 (en) | Double dipole quasi-yagi antenna using stepped slotline structure | |
| CN113193351B (en) | Artificial surface plasmon broadband millimeter wave end-fire antenna | |
| CN107785666A (en) | H faces electromagnetic horn based on SIW technologies | |
| CN111180877B (en) | A substrate-integrated waveguide horn antenna and its control method | |
| CN210074169U (en) | Rectangular microstrip series-fed antenna based on grounded coplanar waveguide | |
| CN106229631B (en) | A kind of broadband millimeter-wave antenna | |
| CN108376841B (en) | A broadband dual-polarized antenna with high front-to-back ratio with sidewall structure | |
| CN103594806B (en) | Thin substrate amplitude correction slot-line planar horn antenna | |
| CN115360521B (en) | A half-mode substrate integrated waveguide leaky-wave antenna with end radiation | |
| CN113964489B (en) | Wide-angle scanning phased array antenna based on bent-shaped slot | |
| CN103594804B (en) | Thin substrate slot-line planar horn antenna | |
| CN114865288B (en) | MSTL-based frequency scanning antenna and microstrip transmission line duplex conformal circuit | |
| CN114421164B (en) | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array | |
| CN213753051U (en) | Broadband high-gain printed antenna | |
| CN109786985B (en) | Rectangular microstrip series feed antenna based on grounded coplanar waveguide | |
| CN116349087A (en) | Dielectric loaded printed dipole antenna | |
| CN215579071U (en) | SIW horn antenna loaded by adopting near-zero metamaterial | |
| CN101645537B (en) | Seminorm substrate integrated waveguide feeding bandwidth log periodic dipole array antenna |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230620 |