CN107768700B - 一种全氟磺酸质子交换膜的制备方法 - Google Patents
一种全氟磺酸质子交换膜的制备方法 Download PDFInfo
- Publication number
- CN107768700B CN107768700B CN201710960419.5A CN201710960419A CN107768700B CN 107768700 B CN107768700 B CN 107768700B CN 201710960419 A CN201710960419 A CN 201710960419A CN 107768700 B CN107768700 B CN 107768700B
- Authority
- CN
- China
- Prior art keywords
- proton exchange
- exchange membrane
- perfluorosulfonic acid
- acid proton
- electrophoresis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 63
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical group OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000001962 electrophoresis Methods 0.000 claims abstract description 23
- 239000000084 colloidal system Substances 0.000 claims abstract description 22
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 26
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 16
- 229910052697 platinum Inorganic materials 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000012153 distilled water Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 12
- 125000000542 sulfonic acid group Chemical group 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 150000003460 sulfonic acids Chemical class 0.000 abstract 2
- 239000010408 film Substances 0.000 description 21
- 238000001125 extrusion Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007605 air drying Methods 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001599 direct drying Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2237—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明提供一种全氟磺酸质子交换膜,属于质子交换膜的技术领域。一种全氟磺酸质子交换膜的制备方法,包括以下步骤:S1:向溶剂中加入全氟磺酸树脂粉末,在30‑60℃水浴环境中搅拌至颗粒分散均匀,制得胶体,全氟磺酸树脂粉末与溶剂的比例为(1‑3)g:30ml。S2:将两片电极极片插入到胶体中,在30‑60℃水浴环境中电泳,得到全氟磺酸质子交换膜。其生产周期短、工艺简单、膜厚可控,制得的质子交换膜电导率高、薄膜性能好。
Description
技术领域
本发明属于质子交换膜的技术领域,具体地说,涉及一种全氟磺酸质子交换膜的制备方法。
背景技术
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)作为新一代发电技术,具有工作温度低、启动快、比功率高、结构简单、操作方便等优点,被公认为电动汽车、固定发电站等的首选能源。
质子交换膜(Proton Exchange Membrane,PEM)是质子交换膜燃料电池的核心部件,对电池性能起着关键作用。它不仅具有阻隔作用,还具有传导质子的作用。质子交换膜中,全氟磺酸质子交换膜被广泛地应用。
目前,全氟磺酸质子交换膜的成型工艺主要有:挤出成型、溶液成型和复合成型;挤出成型工艺可分为熔融挤出成型和凝胶挤出成型,熔融挤出成型又分为熔融挤出流延成型和熔融挤出压延成型。所有上述制膜工艺存在的最大问题是工艺周期长、工艺复杂、成膜的成本高。CN106159301A公开了一种全氟磺酸质子交换膜的制备方法,其生产周期短、工艺简单、膜厚可控,但是其电导率较低,薄膜性能较差。
发明内容
针对现有技术中上述的不足,本发明提供一种全氟磺酸质子交换膜的制备方法,其生产周期短、工艺简单、膜厚可控,制得的质子交换膜电导率高、薄膜性能好。
为了达到上述目的,本发明采用的解决方案是:
一种全氟磺酸质子交换膜的制备方法,包括以下步骤:
S1:向溶剂中加入全氟磺酸树脂粉末,在30-60℃水浴环境中搅拌至颗粒分散均匀,制得胶体,全氟磺酸树脂粉末与溶剂的比例为1-3g:30ml。
S2:将两片电极极片插入到胶体中,在30-60℃水浴环境中电泳,得到全氟磺酸质子交换膜。
本发明提供的全氟磺酸质子交换膜的制备方法有益效果是,采用全氟磺酸树脂和丙酮作为原料制得适于电泳操作的胶体,然后通过电泳的方法制得全氟磺酸质子交换膜,制备方法简单,原料可得,成本低,适于工业化生产和应用,制备得到的全氟磺酸质子交换膜,经阻抗测试,电导率为(11~22)×10-2S/cm,电导率高,该全氟磺酸质子交换膜在工作中转移电子能力强,其薄膜的性能好。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1提供的全氟磺酸质子交换膜的断面的SEM图;
图2为本发明实施例1提供的全氟磺酸质子交换膜的差热分析图;
图3为本发明实施例1提供的全氟磺酸质子交换膜的拉伸性能测试图;
图4为本发明实施例2提供的除杂前的全氟磺酸质子交换膜的示意图;
图5为本发明实施例2提供的除杂后的全氟磺酸质子交换膜的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例提供的全氟磺酸质子交换膜的制备方法进行具体说明。
本发明提供一种全氟磺酸质子交换膜的制备方法,包括以下步骤:
S1:向溶剂中加入全氟磺酸树脂粉末,在30-60℃水浴环境中搅拌至颗粒分散均匀,制得胶体,全氟磺酸树脂粉末与溶剂的比例为(1-3)g:30ml。
S2:将两片电极极片插入到胶体中,在30-60℃水浴环境中电泳,得到全氟磺酸质子交换膜。
其中,在30-60℃水浴环境中搅拌的目的是为了在稳定可控的条件下,使全氟磺酸树脂完全溶解于溶剂中,使制得的胶体的稳定性更好,更均匀,体系更加稳定,便于电泳时正极极片成膜。搅拌的最佳时间根据悬浮体系与搅拌量而定,搅拌至颗粒分散均匀,得到稳定的胶体。本发明中,搅拌时间的时间优选为0.5-168h,搅拌时间短时后面制得的膜的厚度较薄,搅拌时间较长时后面制得的膜的厚度较厚。通过控制搅拌时间可在一定程度上控制制得膜的厚度。本发明在胶体中电泳的目的是为了使制得的膜的性能更好。
两片电极片包括正极极片和负极极片,正极极片为铂片,负极极片为石墨片,正极极片采用铂片可使制得的膜更为平整光滑,优选的,在电泳步骤前,将铂片在乙醇中进行超声清洗3-5min,然后在去离子水中超声清洗1-2min,目的是为了电泳时铂片上更好的成膜。
在电泳时,施加电压的大小和施加方式主要影响膜的厚度、成膜速度以及膜的致密性,根据发明人研究,从成膜的效果角度考虑,本发明中施加电压优选为1-6V,正极极片与负极极片之间的间距即电极间距优选为3-10mm,电泳时间优选为3-2500s。在电泳操作完成后,将正极极片取下,先自然风干然后再烘干得到全氟磺酸质子交换膜,先自然风干的目的是为了避免直接烘干,使丙酮挥发过快而使膜起泡,影响膜的质量。进一步的,本发明中,设定的自然风干时间为15~30min,烘干温度为80℃,烘干时间为3~5min,从烘箱中取出正极极片放入去离子水中静置15~30min后取出,用镊子将薄膜从电极片上揭下来即可。
全氟磺酸树脂和溶剂的比例以及电泳条件的控制是本技术的一个核心所在,全氟磺酸质子交换膜的性能与全氟磺酸树脂和溶剂的比例和电泳条件密切相关,使制得的膜的性能较好。
优选的,S2步骤后还包括除杂的步骤,所述除杂的步骤按以下的方式进行:将全氟磺酸质子交换膜置于0.5mol/L的H2O2中在50℃的条件下浸泡1h,然后在50℃蒸馏水中浸泡30min,目的是为了去除有机杂质;然后置于0.5mol/L的H2SO4在50℃的条件下中处理1h,然后在50℃蒸馏水中处理30min,目的是为了去除金属杂质。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
S1:向30ml丙酮中加入1g全氟磺酸树脂,在50℃水浴环境中搅拌0.5h,制得稳定的胶体。
S3:以石墨片为负极极片,以铂片为正极极片,将铂片在乙醇中进行超声清洗3min,然后在去离子水中超声清洗1min,将两片电极极片插入到上述胶体中,施加4V直流电压,电极间距为3mm,在50℃水浴中电泳30s,然后取出正极极片在自然风干的风干15min,然后在80℃的条件下烘干3min,然后将正极极片放入去离子水中静置15min后取出,用镊子将薄膜从电极片上揭下来然后得到全氟磺酸质子交换膜。
对获得全氟磺酸质子交换膜的断面进行扫描电镜(SEM)的表征,如图1所示,全氟磺酸质子交换膜的断面呈现出取向一致的链状结构,这些链状结构形成了质子传导的通路;对获得的全氟磺酸质子交换膜进行差热分析及拉伸性能测试,结果如图2及图3所示,从图2中可以看出,全氟磺酸膜的热分解温度在350℃左右,远远高于质子交换膜燃料电池的实际工作温度,该全氟磺酸膜适用于质子交换膜燃料电池,从图3中可以看出,拉伸强度10.81MPa,断裂伸长率216.99%,适用于质子交换膜燃料电池的实际工作条件。
实施例2
S1:向30ml丙酮中加入3g全氟磺酸树脂,在60℃水浴环境中搅拌2h,制得稳定的胶体。
S2:以石墨片为负极极片,以铂片为正极极片,将两片电极极片插入到上述胶体中,施加6V直流电压,电极间距为10mm,在60℃水浴中电泳3s,然后取出正极极片在自然风干的风干30min,然后在80℃的条件下烘干5min,然后将正极极片放入去离子水中静置30min后取出,用镊子将薄膜从电极片上揭下来然后得到全氟磺酸质子交换膜,将全氟磺酸质子交换膜置于0.5mol/L的H2O2中在50℃的条件下浸泡1h,然后在50℃蒸馏水中浸泡30min;然后置于0.5mol/L的H2SO4在50℃的条件下中处理1h,然后在50℃蒸馏水中处理30min获得除杂后的全氟磺酸质子交换膜。图4为除杂前的全氟磺酸质子交换膜的,图5为除杂后的全氟磺酸质子交换膜的,对比之后可以看出膜含有很多有机杂质,呈现出黑褐色;除杂后的全氟磺酸质子交换膜变得透明。
实施例3
S1:向30ml丙酮中加入1g全氟磺酸树脂,在30℃水浴环境中搅拌168h,制得稳定的胶体。
S2:以石墨片为负极极片,以铂片为正极极片,将铂片在乙醇中进行超声清洗5min,然后在去离子水中超声清洗2min,将两片电极极片插入到上述胶体中,施加3V直流电压,电极间距为5mm,在30℃水浴中电泳2500s,然后取出正极极片在自然风干的风干20min,然后在80℃的条件下烘干4min,然后将正极极片放入去离子水中静置20min后取出,用镊子将薄膜从电极片上揭下来然后得到全氟磺酸质子交换膜。
实施例4
S1:向30ml丙酮中加入1g全氟磺酸树脂,在50℃水浴环境中搅拌24h,,制得稳定的胶体。
S2:以石墨片为负极极片,以铂片为正极极片,将两片电极极片插入到上述胶体中,施加1V直流电压,电极间距为3mm,在30℃水浴中电泳1200s,然后取出正极极片在自然风干的风干22min,然后在80℃的条件下烘干4min,然后将正极极片放入去离子水中静置22min后取出,用镊子将薄膜从电极片上揭下来然后得到全氟磺酸质子交换膜。
实施例5
S1:向30ml丙酮中加入2g全氟磺酸树脂,在40℃水浴环境中搅拌48h,制得稳定的胶体。
S2:以石墨片为负极极片,以铂片为正极极片,将两片电极极片插入到上述胶体中,施加5V直流电压,电极间距为5mm,在40℃水浴中电泳900s,然后取出正极极片在自然风干的风干15min,然后在80℃的条件下烘干3min,然后将正极极片放入去离子水中静置15min后取出,用镊子将薄膜从电极片上揭下来然后得到全氟磺酸质子交换膜。
对实施例1-5制备的全氟磺酸质子交换膜进行阻抗测试(温度80℃,相对湿度80%),并计算出电导率,结果如表1所示:
表1:全氟磺酸质子交换膜阻抗测试
由表1可看出,本发明制备的全氟磺酸质子交换膜,电导率为(11-22)×10-2S/cm,均高于商用Nafion N-117在相同条件下的测试结果,满足质子交换膜燃料电池的使用要求。而且可以改变具体实施条件来控制膜的厚度,其可控范围为大于29μm
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种全氟磺酸质子交换膜的制备方法,其特征在于,包括以下步骤:
S1:向溶剂中加入全氟磺酸树脂粉末,在30-60℃水浴环境中搅拌至颗粒分散均匀,制得胶体,所述全氟磺酸树脂粉末与所述溶剂的比例为1-3g:30ml;
S2:将两片电极极片插入到所述胶体中,在30-60℃水浴环境中电泳,得到全氟磺酸质子交换膜;
所述两片电极极片包括正极极片和负极极片,所述正极极片为铂片,所述负极极片为石墨片;
在所述电泳步骤前,将所述铂片在乙醇中进行超声清洗3-5min,然后在去离子水中超声清洗1-2min;
所述电泳时施加电压为1-6V;所述正极极片与所述负极极片之间的间距为3-10mm;所述电泳时间为3-2500s;
所述溶剂为丙酮。
2.根据权利要求1所述的全氟磺酸质子交换膜的制备方法,其特征在于:所述S2步骤后还包括除杂的步骤,所述除杂的步骤按以下的方式进行:将制得的全氟磺酸质子交换膜置于0.5mol/L的H2O2中在50℃的条件下浸泡1h,然后在50℃的蒸馏水中浸泡30min;然后置于0.5mol/L的H2SO4中在50℃的条件下中处理1h,然后在50℃的蒸馏水中浸泡30min。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710960419.5A CN107768700B (zh) | 2017-10-16 | 2017-10-16 | 一种全氟磺酸质子交换膜的制备方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710960419.5A CN107768700B (zh) | 2017-10-16 | 2017-10-16 | 一种全氟磺酸质子交换膜的制备方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107768700A CN107768700A (zh) | 2018-03-06 |
| CN107768700B true CN107768700B (zh) | 2020-09-01 |
Family
ID=61268757
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710960419.5A Active CN107768700B (zh) | 2017-10-16 | 2017-10-16 | 一种全氟磺酸质子交换膜的制备方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107768700B (zh) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108579818B (zh) * | 2018-04-02 | 2021-03-16 | 武汉理工大学 | 固体聚合物电解质水电解膜电极催化剂浆料的制备方法 |
| CN112421085B (zh) * | 2020-10-21 | 2022-03-15 | 浙江巨化技术中心有限公司 | 一种全氟磺酸树脂氢燃料电池质子膜及其制备方法 |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101626083B (zh) * | 2009-07-31 | 2011-01-05 | 重庆大学 | 一种高催化剂利用率质子交换膜燃料电池电极的制备方法 |
| CN106159301B (zh) * | 2016-08-19 | 2019-07-02 | 电子科技大学 | 一种全氟磺酸质子交换膜的制备方法 |
-
2017
- 2017-10-16 CN CN201710960419.5A patent/CN107768700B/zh active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN107768700A (zh) | 2018-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111261913B (zh) | 一种碱性锌基液流电池用复合膜及其制备和应用 | |
| CN114006018B (zh) | 一种燃料电池用复合质子交换膜的制备方法 | |
| CN105970485A (zh) | 一种聚酰亚胺/二氧化锆复合纳米纤维膜及其制备方法 | |
| CN106684360B (zh) | 人造石墨负极材料的碳包覆方法、负极材料和锂离子电池 | |
| CN107768700B (zh) | 一种全氟磺酸质子交换膜的制备方法 | |
| CN106876727A (zh) | 一种氧化石墨烯修饰锌溴液流电池碳毡电极及其应用 | |
| CN104409727A (zh) | 一种基于3d打印技术制备锂离子电池多孔电极的方法 | |
| WO2024193079A1 (zh) | 用于碱性电解水制氢的膜电极及其制备方法和电解槽 | |
| CN100434478C (zh) | 一种基于亲水性碳纳米管的中温质子导电材料及其制备方法 | |
| CN106206051B (zh) | 一种石墨烯改性活性炭及其应用 | |
| CN106159301B (zh) | 一种全氟磺酸质子交换膜的制备方法 | |
| CN106549170A (zh) | 一种用于质子交换膜燃料电池的多孔碳纤维及其制备方法 | |
| JP6819688B2 (ja) | 膜−電極接合体の製造方法、これから製造された膜−電極接合体およびこれを含む燃料電池 | |
| CN110197918A (zh) | 一种全钒液流电池用全氟磺酸复合膜及其制备方法和用途 | |
| CN105256330B (zh) | 一种用于固态聚合物水电解器中膜电极的制备方法及实施该方法的装置 | |
| CN110416604B (zh) | 一种高锂离子迁移数的固态电解质膜的制备方法 | |
| CN113417069A (zh) | 一种基于静电纺丝技术制备硅负极材料的方法及其应用 | |
| CN116706113A (zh) | 一种低成本全钒液流电池隔膜的制备方法 | |
| WO2021128770A1 (zh) | 一种精氨酸改性的质子交换膜及其制备方法 | |
| CN104878433A (zh) | 一种离子导电聚合物膜的制备方法 | |
| CN115896833A (zh) | 一种膜电极及其构成的质子交换膜水电解槽 | |
| CN114072473B (zh) | 制备涂覆有催化剂的膜的方法 | |
| CN105702991B (zh) | 一种燃料电池用双极膜及其制备方法 | |
| CN104600322B (zh) | 钒电池用一体化柔性电极及其制备方法 | |
| CN107253716A (zh) | 一种石墨烯纸的制备方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |