CN107766940A - Method and apparatus for generation model - Google Patents
Method and apparatus for generation model Download PDFInfo
- Publication number
- CN107766940A CN107766940A CN201711157646.0A CN201711157646A CN107766940A CN 107766940 A CN107766940 A CN 107766940A CN 201711157646 A CN201711157646 A CN 201711157646A CN 107766940 A CN107766940 A CN 107766940A
- Authority
- CN
- China
- Prior art keywords
- model
- sample data
- user
- terminal
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Image Analysis (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本申请公开了用于生成模型的方法和装置。该方法的一具体实施方式包括:响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系;响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络;响应于接收到终端发送的样本数据集合,利用机器学习方法,基于样本数据集合和神经网络训练得到模型。该实施方式能够生成用户自定义的神经网络模型。
The present application discloses methods and apparatus for generating models. A specific implementation of the method includes: in response to receiving a model generation request including a user ID sent by a user terminal, searching for a model information set corresponding to the user ID from a preset model table, and sending the model information set to the terminal , wherein the model information in the model information set includes model categories and model parameters, and the model table is used to represent the correspondence between user identification and model information; in response to receiving the model category and model parameters selected by the user from the model information set sent by the terminal , determining a neural network matching the model category and model parameters selected by the user; in response to receiving the sample data set sent by the terminal, using a machine learning method to obtain a model based on the sample data set and neural network training. This embodiment can generate a user-defined neural network model.
Description
技术领域technical field
本申请实施例涉及计算机技术领域,具体涉及互联网技术领域,尤其涉及用于生成模型的方法和装置。The embodiments of the present application relate to the field of computer technology, specifically to the field of Internet technology, and in particular to a method and device for generating a model.
背景技术Background technique
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。Artificial Intelligence (Artificial Intelligence), the English abbreviation is AI. It is a new technical science that studies and develops theories, methods, technologies and application systems for simulating, extending and expanding human intelligence. Artificial intelligence is a branch of computer science that attempts to understand the essence of intelligence and produce a new intelligent machine that can respond in a manner similar to human intelligence. Research in this field includes robotics, language recognition, image recognition, natural language processing and expert systems, etc.
随着深度学习的发展,现有的AI技术在通用领域往往能取得较好的效果,比如:通用文字识别、有限集合的图像分类、通用分词、通用语音识别。然而,现实应用中需要AI能力的场景往往都是定制化的,比如:特定单据的文字识别、医学术语的分词、特殊场景的语音识别。With the development of deep learning, the existing AI technology can often achieve better results in general fields, such as: general text recognition, limited set image classification, general word segmentation, and general speech recognition. However, scenarios that require AI capabilities in practical applications are often customized, such as text recognition for specific documents, word segmentation for medical terms, and speech recognition for special scenarios.
发明内容Contents of the invention
本申请实施例提出了用于生成模型的方法和装置。The embodiments of the present application propose a method and an apparatus for generating a model.
第一方面,本申请实施例提供了一种用于生成模型的方法,包括:响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系;响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络;响应于接收到终端发送的样本数据集合,利用机器学习方法,基于样本数据集合和神经网络训练得到模型。In the first aspect, the embodiment of the present application provides a method for generating a model, including: in response to receiving a model generation request including a user ID sent by a user terminal, searching for a model corresponding to the user ID from a preset model table. model information set, and send the model information set to the terminal, wherein the model information in the model information set includes model categories and model parameters, and the model table is used to represent the corresponding relationship between user identification and model information; in response to receiving the The model category and model parameters selected by the user from the model information set determine the neural network that matches the model category and model parameters selected by the user; in response to receiving the sample data set sent by the terminal, using machine learning methods, based on the sample data set and neural network The network is trained to obtain a model.
在一些实施例中,样本数据集合中的样本数据包括输入样本数据和输出样本数据;以及该方法还包括:从样本数据集合中获取预定数目的输入样本数据和与预定数目的输入样本数据对应的预定数目的输出样本数据;对于所获取的每条输入样本数据,将该输入样本数据输入到模型,得到与该输入样本数据对应的输出结果,若该输出结果与该输入样本数据对应的输出样本数据的相似度大于预定相似度阈值,则累加验证正确的次数;将验证正确的次数与预定数目的比值确定为准确率。In some embodiments, the sample data in the sample data set includes input sample data and output sample data; and the method further includes: obtaining a predetermined number of input sample data and corresponding to the predetermined number of input sample data from the sample data set A predetermined number of output sample data; for each piece of input sample data obtained, input the input sample data into the model to obtain an output result corresponding to the input sample data, if the output result corresponds to the output sample data corresponding to the input sample data If the similarity of the data is greater than the predetermined similarity threshold, the number of correct verification times is accumulated; the ratio of the correct number of verification times to the predetermined number is determined as the accuracy rate.
在一些实施例中,该方法还包括:若准确率大于预定准确率阈值,则将模型转换成应用,并将应用发布到目标服务器以供至少一个终端下载使用。In some embodiments, the method further includes: if the accuracy rate is greater than a predetermined accuracy rate threshold, converting the model into an application, and publishing the application to a target server for at least one terminal to download and use.
在一些实施例中,该方法还包括:接收下载使用应用的终端发送的反馈数据并将反馈数据添加到样本数据集合,其中,反馈数据包括下载使用应用的终端输入到应用中的实际输入数据、实际输入数据对应的实际输出结果、下载使用应用的终端的用户输入的期望输出结果,并且实际输出结果与期望输出结果的相似度小于预定相似度阈值;基于实际输入数据、实际输出结果、期望输出结果重新训练模型,并将更新后的模型重新发布到目标服务器。In some embodiments, the method further includes: receiving feedback data sent by the terminal downloading and using the application and adding the feedback data to the sample data set, wherein the feedback data includes actual input data input into the application by the terminal downloading and using the application, The actual output result corresponding to the actual input data, the expected output result input by the user who downloads and uses the terminal of the application, and the similarity between the actual output result and the expected output result is less than a predetermined similarity threshold; based on the actual input data, the actual output result, and the expected output As a result, the model is retrained and the updated model is republished to the target server.
在一些实施例中,该方法还包括:若准确率小于或等于预定准确率阈值,则根据准确率和用户选择的模型类别、模型参数从模型信息集合确定出推荐模型信息,并向终端发送推荐模型信息,以供用户重新选择模型类别和模型参数。In some embodiments, the method further includes: if the accuracy rate is less than or equal to the predetermined accuracy rate threshold, then determine the recommended model information from the model information set according to the accuracy rate and the model category and model parameters selected by the user, and send the recommended model information to the terminal Model information for users to reselect model category and model parameters.
在一些实施例中,基于样本数据集合和神经网络训练得到模型,包括:从样本数据集合中选取样本数据执行如下训练步骤:利用样本数据训练神经网络;基于训练结果,调整神经网络的网络参数;确定训练完成条件是否已经满足;响应于确定不满足并且没有接收到用户的终端发送的停止训练消息,从样本数据集合中选取其他样本数据继续执行训练步骤;其中,训练完成条件包括以下至少一项:神经网络的训练次数达到预设的训练次数阈值;相邻两次训练中,神经网络的输出之间的损失值小于预设阈值。In some embodiments, the model is obtained based on the sample data set and neural network training, including: selecting sample data from the sample data set to perform the following training steps: using the sample data to train the neural network; based on the training results, adjusting the network parameters of the neural network; Determine whether the training completion condition has been satisfied; in response to determining that it is not satisfied and the stop training message sent by the user's terminal is not received, select other sample data from the sample data set to continue the training step; wherein the training completion condition includes at least one of the following : The number of training times of the neural network reaches the preset threshold of training times; in two adjacent training sessions, the loss value between the outputs of the neural network is less than the preset threshold.
第二方面,本申请实施例提供了一种用于生成模型的装置,包括:接收单元,配置用于响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系;确定单元,配置用于响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络;训练单元,配置用于响应于接收到终端发送的样本数据集合,利用机器学习装置,基于样本数据集合和神经网络训练得到模型。In a second aspect, the embodiment of the present application provides an apparatus for generating a model, including: a receiving unit configured to, in response to receiving a model generation request including a user identification sent by a user terminal, select a model from a preset model table Find the model information set corresponding to the user ID, and send the model information set to the terminal, wherein the model information in the model information set includes model categories and model parameters, and the model table is used to represent the corresponding relationship between the user ID and the model information; determine The unit is configured to determine a neural network that matches the model category and model parameters selected by the user in response to receiving the model category and model parameters selected by the user from the model information set sent by the terminal; the training unit is configured to respond to the received The sample data set sent by the terminal uses a machine learning device to obtain a model based on the sample data set and neural network training.
在一些实施例中,样本数据集合中的样本数据包括输入样本数据和输出样本数据;以及该装置还包括验证单元,配置用于:从样本数据集合中获取预定数目的输入样本数据和与预定数目的输入样本数据对应的预定数目的输出样本数据;对于所获取的每条输入样本数据,将该输入样本数据输入到模型,得到与该输入样本数据对应的输出结果,若该输出结果与该输入样本数据对应的输出样本数据的相似度大于预定相似度阈值,则累加验证正确的次数;将验证正确的次数与预定数目的比值确定为准确率。In some embodiments, the sample data in the sample data set includes input sample data and output sample data; and the device further includes a verification unit configured to: acquire a predetermined number of input sample data and a predetermined number of input sample data from the sample data set A predetermined number of output sample data corresponding to the input sample data; for each piece of input sample data obtained, input the input sample data into the model to obtain the output result corresponding to the input sample data, if the output result is consistent with the input If the similarity of the output sample data corresponding to the sample data is greater than the predetermined similarity threshold, the number of correct verification times is accumulated; the ratio of the correct number of verification times to the predetermined number is determined as the accuracy rate.
在一些实施例中,该装置还包括发布单元,配置用于:若准确率大于预定准确率阈值,则将模型转换成应用,并将应用发布到目标服务器以供至少一个终端下载使用。In some embodiments, the device further includes a publishing unit configured to: if the accuracy rate is greater than a predetermined accuracy rate threshold, convert the model into an application, and publish the application to a target server for at least one terminal to download and use.
在一些实施例中,该装置还包括反馈单元,配置用于:接收下载使用应用的终端发送的反馈数据并将反馈数据添加到样本数据集合,其中,反馈数据包括下载使用应用的终端输入到应用中的实际输入数据、实际输入数据对应的实际输出结果、下载使用应用的终端的用户输入的期望输出结果,并且实际输出结果与期望输出结果的相似度小于预定相似度阈值;基于实际输入数据、实际输出结果、期望输出结果重新训练模型,并将更新后的模型重新发布到目标服务器。In some embodiments, the device further includes a feedback unit configured to: receive feedback data sent by the terminal that downloads and uses the application and add the feedback data to the sample data set, wherein the feedback data includes input to the application by the terminal that downloads and uses the application The actual input data, the actual output result corresponding to the actual input data, the expected output result input by the user who downloads and uses the terminal of the application, and the similarity between the actual output result and the expected output result is less than a predetermined similarity threshold; based on the actual input data, Actual output results, expected output results retrain the model, and republish the updated model to the target server.
在一些实施例中,该装置还包括推荐单元,配置用于:若准确率小于或等于预定准确率阈值,则根据准确率和用户选择的模型类别、模型参数从模型信息集合确定出推荐模型信息,并向终端发送推荐模型信息,以供用户重新选择模型类别和模型参数。In some embodiments, the device further includes a recommendation unit configured to: if the accuracy rate is less than or equal to a predetermined accuracy rate threshold, determine the recommended model information from the model information set according to the accuracy rate, the model category and model parameters selected by the user , and send the recommended model information to the terminal for the user to reselect the model category and model parameters.
在一些实施例中,训练单元进一步用于:从样本数据集合中选取样本数据执行如下训练步骤:利用样本数据训练神经网络;基于训练结果,调整神经网络的网络参数;确定训练完成条件是否已经满足;响应于确定不满足并且没有接收到用户的终端发送的停止训练消息,从样本数据集合中选取其他样本数据继续执行训练步骤;其中,训练完成条件包括以下至少一项:神经网络的训练次数达到预设的训练次数阈值;相邻两次训练中,神经网络的输出之间的损失值小于预设阈值。In some embodiments, the training unit is further used to: select sample data from the sample data set to perform the following training steps: use the sample data to train the neural network; adjust the network parameters of the neural network based on the training results; determine whether the training completion condition has been met ; In response to determining that it is not satisfied and does not receive the stop training message sent by the user's terminal, select other sample data from the sample data set to continue the training step; wherein, the training completion condition includes at least one of the following: the number of training times of the neural network reaches The preset threshold of training times; in two adjacent training sessions, the loss value between the outputs of the neural network is less than the preset threshold.
第三方面,本申请实施例提供了一种服务器,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面中任一的方法。In a third aspect, the embodiment of the present application provides a server, including: one or more processors; a storage device for storing one or more programs, when one or more programs are executed by one or more processors, One or more processors are caused to implement the method according to any one of the first aspect.
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,程序被处理器执行时实现如第一方面中任一的方法。In a fourth aspect, the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, wherein, when the program is executed by a processor, the method according to any one of the first aspect is implemented.
本申请实施例提供的用于生成模型的方法和装置,通过基于用户自行选择神经网络的模型类别和模型参数和用户上传的训练样本数据,训练出用户定制的模型。从而有效地利用了定制化数据,生成定制化的模型。The method and device for generating a model provided in the embodiments of the present application trains a user-customized model based on the model category and model parameters of the neural network selected by the user and the training sample data uploaded by the user. In this way, the customized data is effectively utilized to generate a customized model.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1是本申请可以应用于其中的示例性系统架构图;FIG. 1 is an exemplary system architecture diagram to which the present application can be applied;
图2是根据本申请的用于生成模型的方法的一个实施例的流程图;FIG. 2 is a flowchart of one embodiment of a method for generating a model according to the present application;
图3是根据本申请的用于生成模型的方法的一个应用场景的示意图;FIG. 3 is a schematic diagram of an application scenario of a method for generating a model according to the present application;
图4是根据本申请的用于生成模型的方法的又一个实施例的流程图;Fig. 4 is a flowchart of another embodiment of the method for generating a model according to the present application;
图5是根据本申请的用于生成模型的装置的一个实施例的结构示意图;Fig. 5 is a schematic structural diagram of an embodiment of a device for generating a model according to the present application;
图6是适于用来实现本申请实施例的终端设备或服务器的计算机系统的结构示意图。Fig. 6 is a schematic structural diagram of a computer system suitable for implementing a terminal device or a server according to an embodiment of the present application.
具体实施方式Detailed ways
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。The application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain related inventions, rather than to limit the invention. It should also be noted that, for the convenience of description, only the parts related to the related invention are shown in the drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.
图1示出了可以应用本申请的用于生成模型的方法或用于生成模型的装置的实施例的示例性系统架构100。FIG. 1 shows an exemplary system architecture 100 to which an embodiment of the method for generating a model or the apparatus for generating a model of the present application can be applied.
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 1 , a system architecture 100 may include terminal devices 101 , 102 , 103 , a network 104 and a server 105 . The network 104 is used as a medium for providing communication links between the terminal devices 101 , 102 , 103 and the server 105 . Network 104 may include various connection types, such as wires, wireless communication links, or fiber optic cables, among others.
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如模型生成类应用、网页浏览器应用、购物类应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。Users can use terminal devices 101 , 102 , 103 to interact with server 105 via network 104 to receive or send messages and the like. Various communication client applications can be installed on the terminal devices 101, 102, 103, such as model generation applications, web browser applications, shopping applications, search applications, instant messaging tools, email clients, social platform software, etc.
终端设备101、102、103可以是具有显示屏并且支持选择模型训练参数并且支持上传模型训练所使用的样本数据的各种电子设备,包括但不限于智能手机、平板电脑、电子书阅读器、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、膝上型便携计算机和台式计算机等等。The terminal devices 101, 102, and 103 can be various electronic devices that have display screens and support the selection of model training parameters and the uploading of sample data used in model training, including but not limited to smartphones, tablet computers, e-book readers, MP3 Players (Moving Picture Experts Group Audio Layer III, moving picture experts compressed standard audio layer 3), MP4 (Moving Picture Experts Group Audio Layer IV, moving picture experts compressed standard audio layer 4) players, laptops and desktops computer and so on.
服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上显示的模型信息提供支持的后台模型生成服务器。后台模型生成服务器可以对接收到的模型生成请求和样本数据进行分析等处理,生成模型。The server 105 may be a server that provides various services, for example, a background model generation server that provides support for model information displayed on the terminal devices 101 , 102 , 103 . The background model generation server can analyze and process the received model generation request and sample data to generate a model.
需要说明的是,本申请实施例所提供的用于生成模型的方法一般由服务器105执行,相应地,用于生成模型的装置一般设置于服务器105中。It should be noted that the method for generating a model provided in the embodiment of the present application is generally executed by the server 105 , and correspondingly, the device for generating a model is generally disposed in the server 105 .
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。一种可选的实施方式中,用于生成模型的方法可在服务器或者由多台服务器组成的服务器集群上进行,训练好的神经网络模型可运行在服务器、PC机、移动终端、车载终端等各种类型的电子设备上。It should be understood that the numbers of terminal devices, networks and servers in Fig. 1 are only illustrative. According to the implementation needs, there can be any number of terminal devices, networks and servers. In an optional implementation, the method for generating the model can be performed on a server or a server cluster composed of multiple servers, and the trained neural network model can be run on a server, PC, mobile terminal, vehicle-mounted terminal, etc. on various types of electronic equipment.
继续参考图2,示出了根据本申请的用于生成模型的方法的一个实施例的流程200。该用于生成模型的方法,包括以下步骤:Continuing to refer to FIG. 2 , a flow 200 of an embodiment of the method for generating a model according to the present application is shown. The method for generating a model includes the following steps:
步骤201,响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合。Step 201, in response to receiving a model generation request including a user ID from a user terminal, look up a model information set corresponding to the user ID from a preset model table, and send the model information set to the terminal.
在本实施例中,用于生成模型的方法运行于其上的电子设备(例如图1所示的服务器)可以通过有线连接方式或者无线连接方式从用户的终端接收模型生成请求,然后从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合以供用户选择模型类别和模型参数,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系。模型类别可以是例如,卷积神经网络、循环神经网络等。模型参数可以包括但不限于网络层数、核函数类型、误差精度、学习速率等。上述电子设备可以为每个用户设置模型信息,还可将用户划分为不同权限,再将模型表与用户权限相关联。服务器可以为不同权限的用户提供不同的模型类别和模型参数供用户选择。可预先根据用户标识为用户设置不同级别的权限,例如,分为两级权限,具有高级权限的用户可以选择10层以上的神经网络,而具有低级权限的用户只可以选择10层以下的神经网络。In this embodiment, the electronic device on which the method for generating a model runs (such as the server shown in FIG. 1 ) can receive a model generation request from a user terminal through a wired connection or a wireless connection, and then from a preset Look up the model information set corresponding to the user ID in the model table, and send the model information set to the terminal for the user to select the model category and model parameters, wherein, the model information in the model information set includes the model category and model parameters, and the model table uses It is used to represent the corresponding relationship between user identification and model information. A model class can be, for example, a convolutional neural network, a recurrent neural network, etc. Model parameters may include, but are not limited to, the number of network layers, kernel function type, error precision, learning rate, etc. The above-mentioned electronic device can set model information for each user, and can also divide users into different rights, and then associate the model table with user rights. The server can provide users with different permissions with different model categories and model parameters for users to choose. Different levels of permissions can be set for users in advance according to the user ID. For example, there are two levels of permissions. Users with high-level permissions can choose neural networks with layers above 10, while users with low-level permissions can only choose neural networks with layers below 10. .
步骤202,响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络。Step 202, in response to receiving the model category and model parameters selected by the user from the model information set sent by the terminal, determine the neural network matching the model category and model parameters selected by the user.
在本实施例中,终端接收到模型信息集合后,显示该模型信息集合以供用户选择模型类别和模型参数。用户可以从模型信息列表中选择模型参数,也可以手动输入模型参数。用户还可通过终端输入待生成的模型的名称,该名称是用户自定义的,服务器可对该名称进行校验,以避免和其它用户的模型名称重复。此外,如果用户采用手动输入的方式输入模型参数,则服务器还需要对用户输入的参数进行校验。模型信息集合中模型类别和模型参数相关联,用户选择了模型类别后,可选的模型参数与已经选择的模型类别有关。例如,如果用户选择了卷积神经网络,则网络层数可以选3-10层。而如果选择了前馈神经网络,则网络层数可以选3-5层。服务器从候选的神经网络集合中确定与终端发送的用户选择的模型类别和模型参数匹配的神经网络。候选的神经网络集合中的神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。In this embodiment, after receiving the model information set, the terminal displays the model information set for the user to select a model category and model parameters. Users can select model parameters from the model information list, or manually input model parameters. The user can also input the name of the model to be generated through the terminal, which is user-defined, and the server can verify the name to avoid duplication with other user's model names. In addition, if the user inputs model parameters manually, the server also needs to verify the parameters input by the user. The model category in the model information set is associated with the model parameters. After the user selects the model category, the optional model parameters are related to the selected model category. For example, if the user selects a convolutional neural network, the number of network layers can be selected from 3-10 layers. And if the feedforward neural network is selected, the number of network layers can be selected from 3-5 layers. The server determines from the candidate neural network set the neural network that matches the model category and model parameters selected by the user sent by the terminal. The neural network in the candidate neural network set is a mathematical model that uses a structure similar to that of the brain's synaptic connections for information processing. In engineering and academia, it is often referred to directly as "neural network" or neural network.
可选的,用户还可通过终端输入待生成的模型的名称,该名称是用户自定义的,服务器可对该名称进行校验,以避免和其它用户的模型名称重复。Optionally, the user can also input the name of the model to be generated through the terminal, which is user-defined, and the server can verify the name to avoid duplication with other user's model names.
步骤203,响应于接收到终端发送的样本数据集合,利用机器学习方法,基于样本数据集合和神经网络训练得到模型。Step 203, in response to receiving the sample data set sent by the terminal, use a machine learning method to obtain a model based on the sample data set and neural network training.
在本实施例中,终端可以在发送模型类别和模型参数的同时发送样本数据集合。也可等到服务器验证模型类别和模型参数,确定出神经网络之后再发消息给终端提示用户发送样本数据集合。从而避免在无法为用户生成指定模型类别和模型参数的情况下仍上传样本数据集合,导致浪费网络流量。以用于识别遥感图像中的道路的神经网络和遥感图像样本数据集合为例,说明模型的训练过程。遥感图像样本数据集合包括原始遥感图像和原始遥感图像中的道路信息。电子设备可以将原始遥感图像输入神经网络,得到输出结果,如果输出结果与原始遥感图像中的道路信息之间的相似度小于预定相似度阈值,则调整网络参数,重新将原始遥感图像输入神经网络并将输出结果与原始遥感图像中的道路信息进行比对。不断调整网络参数直到输出结果与原始遥感图像中的道路信息之间的相似度大于预定相似度阈值。再选择其它原始遥感图像进行训练,直到预定数量的原始遥感图像的输出结果与原始遥感图像中的道路信息之间的相似度大于预定相似度阈值,训练得到模型。电子设备训练的可以是初始神经网络,初始神经网络可以是未经训练的神经网络或未训练完成的神经网络,初始神经网络的各层可以设置有初始参数,参数在神经网络的训练过程中可以被不断地调整。初始神经网络可以是各种类型的未经训练或未训练完成的人工神经网络或者对多种未经训练或未训练完成的人工神经网络进行组合所得到的模型。这样,电子设备可以将原始遥感图像从初始神经网络的输入侧输入,依次经过初始神经网络中的各层的参数的处理,并从初始神经网络的输出侧输出,输出侧输出的信息即为原始遥感图像中的道路信息。In this embodiment, the terminal may send the sample data set while sending the model category and model parameters. It is also possible to wait until the server verifies the model category and model parameters, and then sends a message to the terminal to prompt the user to send the sample data set after the neural network is determined. In this way, it is avoided to still upload the sample data set when the specified model category and model parameters cannot be generated for the user, resulting in a waste of network traffic. Taking the neural network used to identify roads in remote sensing images and the sample data set of remote sensing images as an example, the training process of the model is illustrated. The remote sensing image sample data set includes the original remote sensing image and the road information in the original remote sensing image. The electronic device can input the original remote sensing image into the neural network to obtain the output result. If the similarity between the output result and the road information in the original remote sensing image is less than the predetermined similarity threshold, adjust the network parameters and re-input the original remote sensing image into the neural network. And compare the output result with the road information in the original remote sensing image. Constantly adjust the network parameters until the similarity between the output result and the road information in the original remote sensing image is greater than the predetermined similarity threshold. Then select other original remote sensing images for training until the similarity between the output results of a predetermined number of original remote sensing images and the road information in the original remote sensing images is greater than a predetermined similarity threshold, and the model is trained. The electronic device training can be an initial neural network, and the initial neural network can be an untrained neural network or an untrained neural network. Each layer of the initial neural network can be set with initial parameters, and the parameters can be set during the training process of the neural network. are constantly adjusted. The initial neural network may be various types of untrained or untrained artificial neural networks or a model obtained by combining multiple untrained or untrained artificial neural networks. In this way, the electronic device can input the original remote sensing image from the input side of the initial neural network, process the parameters of each layer in the initial neural network in turn, and output it from the output side of the initial neural network, and the information output from the output side is the original Road information in remote sensing images.
在本实施例的一些可选的实现方式中,基于样本数据集合和神经网络训练得到模型,包括:对于样本数据集合中每个样本数据执行如下训练步骤:利用该样本数据训练神经网络,基于训练结果,调整神经网络的网络参数;确定训练完成条件是否已经满足;响应于确定不满足并且没有接收到用户的终端发送的停止训练消息,从样本数据集合中选取其他样本数据继续执行训练步骤。设置训练完成条件可避免出现无限循环地训练该神经网络的情况。训练完成条件可包括但不限于以下至少一项:训练神经网络的训练次数达到预设的训练次数阈值;相邻两次训练中,神经网络的输出之间的损失值小于预设阈值。训练结果指的是将样本数据输入神经网络后的输出结果。以用于识别遥感图像中的道路的神经网络和遥感图像样本数据集合为例,说明模型的一种可选的训练过程。其中,遥感图像样本数据集合包括原始遥感图像和原始遥感图像中的道路信息,该道路特征可包括道路的颜色、纹理、高度、温度、阴影、方向变化等特征。从遥感图像样本数据集合选取部分原始遥感图像输入神经网络;经神经网络提取输入的遥感图像的道路特征;至少根据提取的道路特征和原始遥感图像中的道路信息的差异,确定道路特征提取的损失值;根据损失值调整神经网络的网络参数。在开始训练前,神经网络核参数用一些不同的小随机数进行初始的。“小随机数”用来保证网络不会因核参数值过大而进入饱和状态,从而导致训练失败;“不同”用来保证网络可以正常地学习。实际上,如果用相同的数去初始的核参数,则网络无能力学习。通过把网络训练出来的结果和真实类标进行比对,修正误差。通过调整核参数使误差最小化来不断优化核参数。In some optional implementations of this embodiment, the training of the model based on the sample data set and the neural network includes: performing the following training steps for each sample data in the sample data set: using the sample data to train the neural network, based on the training As a result, the network parameters of the neural network are adjusted; it is determined whether the training completion condition has been satisfied; in response to the determination that it is not satisfied and the stop training message sent by the user's terminal is not received, other sample data is selected from the sample data set to continue the training step. Setting a training completion condition avoids training the neural network in an infinite loop. The training completion condition may include but not limited to at least one of the following: the number of training times for training the neural network reaches a preset threshold for training times; in two adjacent training sessions, the loss value between the outputs of the neural network is less than the preset threshold. The training result refers to the output result after inputting the sample data into the neural network. Taking the neural network used to identify roads in remote sensing images and the sample data set of remote sensing images as an example, an optional training process of the model is illustrated. Among them, the remote sensing image sample data set includes the original remote sensing image and road information in the original remote sensing image, and the road features may include road color, texture, height, temperature, shadow, direction change and other characteristics. Select part of the original remote sensing image from the remote sensing image sample data set and input it into the neural network; extract the road features of the input remote sensing image through the neural network; determine the loss of road feature extraction at least according to the difference between the extracted road features and the road information in the original remote sensing image value; adjust the network parameters of the neural network according to the loss value. Before starting training, the neural network kernel parameters are initialized with some different small random numbers. "Small random number" is used to ensure that the network will not enter a saturated state due to excessive kernel parameter values, resulting in training failure; "different" is used to ensure that the network can learn normally. In fact, if the same number is used to initialize the kernel parameters, the network will not be able to learn. By comparing the results of network training with the real class mark, the error is corrected. The kernel parameters are continuously optimized by adjusting the kernel parameters to minimize the error.
可选的,训练过程中向用户的终端输出进度信息,供用户参考进度信息以自行决定是否要提前结束训练过程。如果用户想要停止训练,则通过终端发送停止训练消息。Optionally, during the training process, progress information is output to the user's terminal, for the user to refer to the progress information to decide whether to end the training process in advance. If the user wants to stop the training, a stop training message is sent through the terminal.
继续参见图3,图3是根据本实施例的用于生成模型的方法的应用场景的一个示意图。在图3的应用场景中,用户通过终端300向服务器发送包括用户标识的模型生成请求,服务器查找到模型表中与该用户标识匹配的模型信息集合并发送给终端300。终端300展示模型信息集合以供用户输入自定义的模型名称301并选择模型类别302和网络层数303。终端将用户输入自定义的模型名称301、选择的模型类别302和网络层数303发送给服务器。服务器根据模型类别302和网络层数303确定神经网络。再基于终端上传的样本数据集合和神经网络训练得到模型。Continue to refer to FIG. 3 , which is a schematic diagram of an application scenario of the method for generating a model according to this embodiment. In the application scenario of FIG. 3 , the user sends a model generation request including the user ID to the server through the terminal 300 , and the server finds a model information set matching the user ID in the model table and sends it to the terminal 300 . The terminal 300 displays a set of model information for the user to input a user-defined model name 301 and select a model category 302 and network layer number 303 . The terminal sends the user-defined model name 301, selected model category 302 and network layer number 303 to the server. The server determines the neural network according to the model type 302 and the number of network layers 303 . The model is then obtained based on the sample data set uploaded by the terminal and neural network training.
本申请的上述实施例提供的方法通过用户上传定制化样本数据集合,不需要编写代码就可生成定制化的模型。The method provided by the above-mentioned embodiments of the present application can generate a customized model without writing codes by uploading a customized sample data set by the user.
进一步参考图4,其示出了用于生成模型的方法的又一个实施例的流程400。该用于生成模型的方法的流程400,包括以下步骤:Further referring to FIG. 4 , it shows a flow 400 of still another embodiment of a method for generating a model. The flow 400 of the method for generating a model includes the following steps:
步骤401,响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合。Step 401, in response to receiving a model generation request including a user ID sent by a user terminal, look up a model information set corresponding to the user ID from a preset model table, and send the model information set to the terminal.
步骤402,响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络。Step 402, in response to receiving the model category and model parameters selected by the user from the model information set sent by the terminal, determine the neural network matching the model category and model parameters selected by the user.
步骤403,响应于接收到终端发送的样本数据集合,利用机器学习方法,基于样本数据集合和神经网络训练得到模型。Step 403, in response to receiving the sample data set sent by the terminal, use a machine learning method to obtain a model based on the sample data set and neural network training.
步骤401-403与步骤201-203基本相同,因此不再赘述。Steps 401-403 are basically the same as steps 201-203, so they are not repeated here.
步骤404,从样本数据集合中获取预定数目的输入样本数据和与预定数目的输入样本数据对应的预定数目的输出样本数据。Step 404, acquiring a predetermined number of input sample data and a predetermined number of output sample data corresponding to the predetermined number of input sample data from the sample data set.
在本实施例中,模型训练完成之后可以继续使用样本数据集合对模型进行评估。例如,对于监督学习,样本数据集合中的样本数据包括输入样本数据和输出样本数据。训练模型时使用1万对输入样本数据和输出样本数据,评估模型时可从这1万对输入样本数据和输出样本数据中选取100对。In this embodiment, after the model training is completed, the model may continue to be evaluated using the sample data set. For example, for supervised learning, the sample data in the sample data set includes input sample data and output sample data. When training the model, 10,000 pairs of input sample data and output sample data are used, and 100 pairs of input sample data and output sample data can be selected from the 10,000 pairs of input sample data and output sample data when evaluating the model.
步骤405,对于所获取的每条输入样本数据,将该输入样本数据输入到模型,得到与该输入样本数据对应的输出结果,若该输出结果与该输入样本数据对应的输出样本数据的相似度大于预定相似度阈值,则累加验证正确的次数。Step 405, for each piece of input sample data obtained, input the input sample data into the model to obtain an output result corresponding to the input sample data, if the similarity between the output result and the output sample data corresponding to the input sample data is greater than the predetermined similarity threshold, the number of correct verifications is accumulated.
在本实施例中,为了评估生成的模型的效果,可从样本数据集合选取部分样本数据输入步骤203生成的模型得到输出结果。将该输出结果与输出样本做比对,确定它们之间的相似度。相似度的计算方法可采用通用的余弦相似度、欧氏距离等方法。如果该输出结果与该输入样本数据对应的输出样本数据的相似度大于预定相似度阈值,则认为此次验证通过。使用预定数目的输入样本数据进行预定数目次验证,每次验证后如果通过,则累加验证正确的次数。In this embodiment, in order to evaluate the effect of the generated model, some sample data may be selected from the sample data set and input to the model generated in step 203 to obtain an output result. Compare the output result with the output sample to determine the similarity between them. The calculation method of the similarity can adopt methods such as general cosine similarity and Euclidean distance. If the similarity between the output result and the output sample data corresponding to the input sample data is greater than a predetermined similarity threshold, it is considered that the verification is passed. A predetermined number of verifications are performed using a predetermined number of input sample data, and if the verification is passed after each verification, the number of correct verification times is accumulated.
步骤406,将验证正确的次数与预定数目的比值确定为准确率。Step 406, determine the ratio of the number of correct verification times to the predetermined number as the accuracy rate.
在本实施例中,重复执行预定数目次步骤405,累加验证正确的次数。将验证正确的次数与预定数目的比值作为准确率。例如,进行了100次验证,如果验证正确的次数为90次,则准确率为90%。In this embodiment, step 405 is repeatedly executed a predetermined number of times, and the number of correct verification times is accumulated. The ratio of the correct number of verifications to the predetermined number is taken as the accuracy rate. For example, 100 validations are performed, and if the validation is correct 90 times, the accuracy is 90%.
步骤407,若准确率大于预定准确率阈值,则将模型转换成应用,并将应用发布到目标服务器以供至少一个终端下载使用。Step 407, if the accuracy rate is greater than the predetermined accuracy rate threshold, convert the model into an application, and publish the application to the target server for at least one terminal to download and use.
在本实施例中,若准确率大于预定准确率阈值,则认为该模型评估通过,可供其他用户使用。可采用RESTful(REST(Representational State Transfer,表现层状态转化)指的是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就是RESTful)架构将模型转换成应用并通过容器服务发布到目标服务器。REST的名称"表现层状态转化"中,省略了主语。"表现层"其实指的是"资源"(Resources)的"表现层"。所谓"资源",就是网络上的一个实体,或者说是网络上的一个具体信息。资源是一个有趣的概念实体,它向客户端公开。资源的例子有:应用程序对象、数据库记录、算法等等。可以用一个URI(UniversalResource Identifier,统一资源定位符)指向它,每种资源对应一个特定的URI。要获取这个资源,访问它的URI就可以,因此URI就成了每一个资源的地址或独一无二的识别符。所有资源都共享统一的接口,以便在客户端和服务器之间传输状态。容器服务提供高性能可伸缩的容器应用管理服务,支持容器化应用的生命周期管理,提供多种应用发布方式和持续交付能力并支持微服务架构。容器服务简化了容器管理集群的搭建工作,整合了云虚拟化、存储、网络和安全能力,打造云端最佳容器运行环境。In this embodiment, if the accuracy rate is greater than the predetermined accuracy rate threshold, it is considered that the model has passed the evaluation and can be used by other users. RESTful (REST (Representational State Transfer) refers to a set of architectural constraints and principles. Applications or designs that meet these constraints and principles are RESTful) architectures that convert models into applications and serve them through containers Publish to the target server. In the REST name "Representation Layer State Transformation", the subject is omitted. The "presentation layer" actually refers to the "representation layer" of "Resources". The so-called "resource" is an entity on the network, or a specific piece of information on the network. A resource is an interesting conceptual entity that is exposed to clients. Examples of resources are: application objects, database records, algorithms, and so on. It can be pointed to by a URI (UniversalResource Identifier, Uniform Resource Locator), and each resource corresponds to a specific URI. To obtain this resource, just visit its URI, so the URI becomes the address or unique identifier of each resource. All resources share a uniform interface for transferring state between client and server. Container Service provides high-performance and scalable container application management services, supports life cycle management of containerized applications, provides multiple application publishing methods and continuous delivery capabilities, and supports microservice architecture. Container Service simplifies the construction of container management clusters, integrates cloud virtualization, storage, network and security capabilities, and creates the best container operating environment in the cloud.
可选的,对于非监督学习得到的模型,可以不进行评估而直接发布。Optionally, for models obtained through unsupervised learning, they can be released directly without evaluation.
在本实施例的一些可选的实现方式中,接收下载使用应用的终端发送的反馈数据并将反馈数据添加到样本数据集合,其中,反馈数据包括下载使用应用的终端输入到应用中的实际输入数据、实际输入数据对应的实际输出结果、下载使用应用的终端的用户输入的期望输出结果,并且实际输出结果与期望输出结果的相似度小于预定相似度阈值;基于实际输入数据、实际输出结果、期望输出结果重新训练模型,并将更新后的模型重新发布到目标服务器。其中,期望输出结果是由使用该模型的用户输入的针对实际输入数据的正确输出结果。用户通过人工或者机器判断出实际输入数据对应的实际输出结果不符合期望输出结果时,将期望输出结果和实际输入数据、实际输入数据对应的实际输出结果一起反馈给服务器。服务器接收反馈数据并添加到样本数据集合,通过数据集版本管理,重新训练模型,并支持模型和服务的持续集成。In some optional implementations of this embodiment, the feedback data sent by the terminal downloading and using the application is received and added to the sample data set, wherein the feedback data includes the actual input entered into the application by the terminal downloading and using the application data, the actual output results corresponding to the actual input data, the expected output results input by the user who downloads and uses the terminal of the application, and the similarity between the actual output results and the expected output results is less than a predetermined similarity threshold; based on the actual input data, the actual output results, Expect output to retrain the model and republish the updated model to the target server. Wherein, the expected output result is the correct output result for the actual input data input by the user using the model. When the user judges manually or by machine that the actual output result corresponding to the actual input data does not meet the expected output result, the user feeds back the expected output result together with the actual input data and the actual output result corresponding to the actual input data to the server. The server receives feedback data and adds it to the sample data set, manages the version of the data set, retrains the model, and supports continuous integration of models and services.
步骤408,若准确率小于或等于预定准确率阈值,则根据准确率和用户选择的模型类别、模型参数从模型信息集合确定出推荐模型信息,并向终端发送推荐模型信息,以供用户重新选择模型类别和模型参数。Step 408, if the accuracy rate is less than or equal to the predetermined accuracy rate threshold, determine the recommended model information from the model information set according to the accuracy rate, the model category and model parameters selected by the user, and send the recommended model information to the terminal for the user to reselect Model classes and model parameters.
在本实施例中,若准确率小于或等于预定准确率阈值,说明模型评估未通过,因此推荐用户重新训练模型。根据准确率与预定准确率阈值的差距可以确定调整后的模型信息作为推荐模型信息,例如是否需要调整模型参数或模型类型。并根据不同模型类型的特点可确定调整量。例如,如果预定准确率阈值为90%,当前网络层数为3时实际测试的准确率为89%,则可推荐将网络层数调整为5。如果当前网络层数为3时实际测试的准确率为20%,则仅通过改变网络层数提高准确率的效果可能不好,因此可推荐将模型的类型调整为其它的网络,例如将前馈神经网络调整为卷积神经网络。In this embodiment, if the accuracy rate is less than or equal to the predetermined accuracy rate threshold, it means that the model evaluation fails, and therefore the user is recommended to retrain the model. According to the difference between the accuracy rate and the predetermined accuracy rate threshold, the adjusted model information can be determined as the recommended model information, for example, whether model parameters or model types need to be adjusted. And the adjustment amount can be determined according to the characteristics of different model types. For example, if the preset accuracy rate threshold is 90%, and the actual test accuracy rate is 89% when the current number of network layers is 3, it may be recommended to adjust the number of network layers to 5. If the actual test accuracy rate is 20% when the current number of network layers is 3, the effect of improving the accuracy rate by only changing the number of network layers may not be good, so it is recommended to adjust the type of the model to other networks, such as feedforward The neural network is tuned to a convolutional neural network.
从图4中可以看出,与图2对应的实施例相比,本实施例中的用于生成模型的方法的流程400突出了对样本数据进行扩充的步骤。由此,本实施例描述的方案可以引入更多样本数据,从而提高模型生成的速度和准确率。It can be seen from FIG. 4 that, compared with the embodiment corresponding to FIG. 2 , the process 400 of the method for generating a model in this embodiment highlights the step of expanding sample data. Therefore, the solution described in this embodiment can introduce more sample data, thereby improving the speed and accuracy of model generation.
进一步参考图5,作为对上述各图所示方法的实现,本申请提供了一种用于生成模型的装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。Further referring to FIG. 5 , as an implementation of the methods shown in the above figures, the present application provides an embodiment of a device for generating a model, which corresponds to the method embodiment shown in FIG. 2 , the The device can be specifically applied to various electronic devices.
如图5所示,本实施例的用于生成模型的装置500包括:接收单元501、确定单元502和训练单元503。其中,接收单元501,配置用于响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系;确定单元502配置用于响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络;训练单元503配置用于响应于接收到终端发送的样本数据集合,利用机器学习装置,基于样本数据集合和神经网络训练得到模型。As shown in FIG. 5 , the apparatus 500 for generating a model in this embodiment includes: a receiving unit 501 , a determining unit 502 and a training unit 503 . Wherein, the receiving unit 501 is configured to, in response to receiving a model generation request including a user ID sent by the user's terminal, search for a model information set corresponding to the user ID from a preset model table, and send the model information set to the terminal , wherein the model information in the model information set includes model categories and model parameters, and the model table is used to characterize the correspondence between user identifiers and model information; the determining unit 502 is configured to respond to receiving the user's selection from the model information set sent by the terminal The model category and model parameters, determine the neural network that matches the model category and model parameters selected by the user; the training unit 503 is configured to respond to receiving the sample data set sent by the terminal, using a machine learning device, based on the sample data set and the neural network The network is trained to obtain a model.
在本实施例中,用于生成模型的装置500的接收单元501、确定单元502和训练单元503的具体处理可以参考图2对应实施例中的步骤201、步骤202、步骤203。In this embodiment, for the specific processing of the receiving unit 501 , the determining unit 502 and the training unit 503 of the apparatus 500 for generating a model, reference may be made to steps 201 , 202 , and 203 in the corresponding embodiment in FIG. 2 .
在本实施例的一些可选的实现方式中,样本数据集合中的样本数据包括输入样本数据和输出样本数据;以及该装置500还包括验证单元,配置用于:从样本数据集合中获取预定数目的输入样本数据和与预定数目的输入样本数据对应的预定数目的输出样本数据;对于所获取的每条输入样本数据,将该输入样本数据输入到模型,得到与该输入样本数据对应的输出结果,若该输出结果与该输入样本数据对应的输出样本数据的相似度大于预定相似度阈值,则累加验证正确的次数;将验证正确的次数与预定数目的比值确定为准确率。In some optional implementations of this embodiment, the sample data in the sample data set includes input sample data and output sample data; and the device 500 further includes a verification unit configured to: acquire a predetermined number of The input sample data and the predetermined number of output sample data corresponding to the predetermined number of input sample data; for each piece of input sample data obtained, the input sample data is input to the model, and the output result corresponding to the input sample data is obtained , if the similarity between the output result and the output sample data corresponding to the input sample data is greater than a predetermined similarity threshold, then accumulating the number of correct verification times; determining the ratio of the correct number of verification times to the predetermined number as the accuracy rate.
在本实施例的一些可选的实现方式中,装置500还包括发布单元,配置用于:若准确率大于预定准确率阈值,则将模型转换成应用,并将应用发布到目标服务器以供至少一个终端下载使用。In some optional implementations of this embodiment, the device 500 further includes a publishing unit configured to: if the accuracy rate is greater than a predetermined accuracy rate threshold, convert the model into an application, and publish the application to the target server for at least A terminal download is used.
在本实施例的一些可选的实现方式中,装置500还包括反馈单元,配置用于:接收下载使用应用的终端发送的反馈数据并将反馈数据添加到样本数据集合,其中,反馈数据包括下载使用应用的终端输入到应用中的实际输入数据、实际输入数据对应的实际输出结果、下载使用应用的终端的用户输入的期望输出结果,并且实际输出结果与期望输出结果的相似度小于预定相似度阈值;基于实际输入数据、实际输出结果、期望输出结果重新训练模型,并将更新后的模型重新发布到目标服务器。In some optional implementations of this embodiment, the device 500 further includes a feedback unit configured to: receive feedback data sent by a terminal that downloads and uses an application and add the feedback data to the sample data set, wherein the feedback data includes The actual input data input into the application by the terminal using the application, the actual output result corresponding to the actual input data, the expected output result input by the user who downloads the terminal using the application, and the similarity between the actual output result and the expected output result is less than the predetermined similarity Threshold; retrain the model based on actual input data, actual output, and expected output, and republish the updated model to the target server.
在本实施例的一些可选的实现方式中,装置500还包括推荐单元,配置用于:若准确率小于或等于预定准确率阈值,则根据准确率和用户选择的模型类别、模型参数从模型信息集合确定出推荐模型信息,并向终端发送推荐模型信息,以供用户重新选择模型类别和模型参数。In some optional implementations of this embodiment, the device 500 further includes a recommending unit configured to: if the accuracy rate is less than or equal to a predetermined accuracy rate threshold, select the model from the model according to the accuracy rate and the model category and model parameters selected by the user. The information collection determines the recommended model information, and sends the recommended model information to the terminal for the user to reselect the model category and model parameters.
在本实施例的一些可选的实现方式中,训练单元503进一步用于:从样本数据集合中选取样本数据执行如下训练步骤:利用样本数据训练神经网络;基于训练结果,调整神经网络的网络参数;确定训练完成条件是否已经满足;响应于确定不满足并且没有接收到用户的终端发送的停止训练消息,从样本数据集合中选取其他样本数据继续执行训练步骤;其中,训练完成条件包括以下至少一项:神经网络的训练次数达到预设的训练次数阈值;相邻两次训练中,神经网络的输出之间的损失值小于预设阈值。In some optional implementations of this embodiment, the training unit 503 is further configured to: select sample data from the sample data set to perform the following training steps: use the sample data to train the neural network; based on the training results, adjust the network parameters of the neural network ; determine whether the training completion condition has been satisfied; in response to determining that it is not satisfied and the stop training message sent by the user's terminal is not received, select other sample data from the sample data set to continue the training step; wherein, the training completion condition includes at least one of the following Item: The number of training times of the neural network reaches the preset training number threshold; in two adjacent training sessions, the loss value between the outputs of the neural network is less than the preset threshold.
下面参考图6,其示出了适于用来实现本申请实施例的服务器的计算机系统600的结构示意图。图6示出的服务器仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。Referring now to FIG. 6 , it shows a schematic structural diagram of a computer system 600 suitable for implementing the server of the embodiment of the present application. The server shown in FIG. 6 is only an example, and should not limit the functions and scope of use of this embodiment of the present application.
如图6所示,计算机系统600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有系统600操作所需的各种程序和数据。CPU 601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。As shown in FIG. 6 , a computer system 600 includes a central processing unit (CPU) 601 that can be programmed according to a program stored in a read-only memory (ROM) 602 or a program loaded from a storage section 608 into a random-access memory (RAM) 603 Instead, various appropriate actions and processes are performed. In the RAM 603, various programs and data necessary for the operation of the system 600 are also stored. The CPU 601 , ROM 602 , and RAM 603 are connected to each other via a bus 604 . An input/output (I/O) interface 605 is also connected to the bus 604 .
以下部件连接至I/O接口605:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装入存储部分608。The following components are connected to the I/O interface 605: an input section 606 including a keyboard, a mouse, etc.; an output section 607 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker; a storage section 608 including a hard disk, etc. and a communication section 609 including a network interface card such as a LAN card, a modem, or the like. The communication section 609 performs communication processing via a network such as the Internet. A drive 610 is also connected to the I/O interface 605 as needed. A removable medium 611 such as a magnetic disk, optical disk, magneto-optical disk, semiconductor memory, etc. is mounted on the drive 610 as necessary so that a computer program read therefrom is installed into the storage section 608 as necessary.
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。在该计算机程序被中央处理单元(CPU)601执行时,执行本申请的方法中限定的上述功能。需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。In particular, according to an embodiment of the present disclosure, the processes described above with reference to the flowcharts can be implemented as computer software programs. For example, embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, where the computer program includes program codes for executing the methods shown in the flowcharts. In such an embodiment, the computer program may be downloaded and installed from a network via communication portion 609 and/or installed from removable media 611 . When the computer program is executed by the central processing unit (CPU) 601, the above-mentioned functions defined in the method of the present application are performed. It should be noted that the computer-readable medium described in this application may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two. A computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In the present application, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In this application, however, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, in which computer-readable program codes are carried. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. . Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out the operations of this application may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional A procedural programming language—such as "C" or a similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In cases involving a remote computer, the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present application. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括接收单元、确定单元、训练单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,接收单元还可以被描述为“响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与所述用户标识对应的模型信息集合,并向所述终端发送所述模型信息集合的单元”。The units involved in the embodiments described in the present application may be implemented by means of software or by means of hardware. The described units may also be set in a processor, for example, it may be described as: a processor includes a receiving unit, a determining unit, and a training unit. Wherein, the names of these units do not constitute a limitation on the unit itself under certain circumstances. For example, the receiving unit can also be described as "responsive to receiving the model generation request including the user identification sent by the user's terminal, from the preset A unit for searching the model information set corresponding to the user identifier in the set model table, and sending the model information set to the terminal”.
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的装置中所包含的;也可以是单独存在,而未装配入该装置中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该装置:响应于接收到用户的终端发送的包括用户标识的模型生成请求,从预设的模型表中查找与用户标识对应的模型信息集合,并向终端发送模型信息集合,其中,模型信息集合中的模型信息包括模型类别和模型参数,模型表用于表征用户标识和模型信息的对应关系;响应于接收到终端发送的用户从模型信息集合选择的模型类别和模型参数,确定与用户选择的模型类别和模型参数匹配的神经网络;响应于接收到终端发送的样本数据集合,利用机器学习方法,基于样本数据集合和神经网络训练得到模型。As another aspect, the present application also provides a computer-readable medium. The computer-readable medium may be included in the device described in the above embodiments, or it may exist independently without being assembled into the device. The above-mentioned computer-readable medium carries one or more programs, and when the one or more programs are executed by the device, the device: in response to receiving a model generation request sent by the user's terminal and including the user identification, from the preset Look up the model information set corresponding to the user ID in the model table, and send the model information set to the terminal, where the model information in the model information set includes model categories and model parameters, and the model table is used to represent the correspondence between the user ID and model information relationship; in response to receiving the model category and model parameters selected by the user from the model information set sent by the terminal, determine the neural network that matches the model category and model parameters selected by the user; in response to receiving the sample data set sent by the terminal, use the machine The learning method is based on the sample data set and neural network training to obtain the model.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principle. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, but should also cover the technical solution formed by the above-mentioned technical features without departing from the inventive concept. Other technical solutions formed by any combination of or equivalent features thereof. For example, a technical solution formed by replacing the above-mentioned features with technical features with similar functions disclosed in (but not limited to) this application.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711157646.0A CN107766940B (en) | 2017-11-20 | 2017-11-20 | Method and apparatus for generating models |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711157646.0A CN107766940B (en) | 2017-11-20 | 2017-11-20 | Method and apparatus for generating models |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107766940A true CN107766940A (en) | 2018-03-06 |
| CN107766940B CN107766940B (en) | 2021-07-23 |
Family
ID=61280122
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711157646.0A Active CN107766940B (en) | 2017-11-20 | 2017-11-20 | Method and apparatus for generating models |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107766940B (en) |
Cited By (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108664610A (en) * | 2018-05-11 | 2018-10-16 | 北京京东金融科技控股有限公司 | Method and apparatus for handling data |
| CN108764487A (en) * | 2018-05-29 | 2018-11-06 | 北京百度网讯科技有限公司 | For generating the method and apparatus of model, the method and apparatus of information for identification |
| CN108764369A (en) * | 2018-06-07 | 2018-11-06 | 深圳市公安局公交分局 | Character recognition method, device based on data fusion and computer storage media |
| CN108805091A (en) * | 2018-06-15 | 2018-11-13 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN108829518A (en) * | 2018-05-31 | 2018-11-16 | 北京百度网讯科技有限公司 | Method and apparatus for pushed information |
| CN108847066A (en) * | 2018-05-31 | 2018-11-20 | 上海与德科技有限公司 | A kind of content of courses reminding method, device, server and storage medium |
| CN108960316A (en) * | 2018-06-27 | 2018-12-07 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN108984683A (en) * | 2018-06-29 | 2018-12-11 | 北京百度网讯科技有限公司 | Extracting method, system, equipment and the storage medium of structural data |
| CN108985386A (en) * | 2018-08-07 | 2018-12-11 | 北京旷视科技有限公司 | Obtain method, image processing method and the corresponding intrument of image processing model |
| CN109086789A (en) * | 2018-06-08 | 2018-12-25 | 四川斐讯信息技术有限公司 | A kind of image-recognizing method and system |
| CN109242025A (en) * | 2018-09-14 | 2019-01-18 | 北京旷视科技有限公司 | Model iterative correction methods, apparatus and system |
| CN109272116A (en) * | 2018-09-05 | 2019-01-25 | 郑州云海信息技术有限公司 | A kind of method and device of deep learning |
| CN109344885A (en) * | 2018-09-14 | 2019-02-15 | 深圳增强现实技术有限公司 | Deep learning identifying system, method and electronic equipment |
| CN109376267A (en) * | 2018-10-30 | 2019-02-22 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN109492771A (en) * | 2018-11-12 | 2019-03-19 | 北京百度网讯科技有限公司 | Exchange method, device and system |
| CN109492698A (en) * | 2018-11-20 | 2019-03-19 | 腾讯科技(深圳)有限公司 | A kind of method of model training, the method for object detection and relevant apparatus |
| CN109508485A (en) * | 2018-10-30 | 2019-03-22 | 平安医疗健康管理股份有限公司 | A kind of data processing model dissemination method, device, server and storage medium |
| CN109635833A (en) * | 2018-10-30 | 2019-04-16 | 银河水滴科技(北京)有限公司 | A kind of image-recognizing method and system based on cloud platform and model intelligent recommendation |
| CN109643229A (en) * | 2018-04-17 | 2019-04-16 | 深圳鲲云信息科技有限公司 | The application and development method and Related product of network model |
| CN109711436A (en) * | 2018-12-05 | 2019-05-03 | 量子云未来(北京)信息科技有限公司 | A kind of artificial intelligence training pattern construction method, device and storage medium |
| CN109710819A (en) * | 2018-12-29 | 2019-05-03 | 北京航天数据股份有限公司 | A kind of model display method, apparatus, equipment and medium |
| CN109816114A (en) * | 2018-12-29 | 2019-05-28 | 大唐软件技术股份有限公司 | A kind of generation method of machine learning model, device |
| CN110163380A (en) * | 2018-04-28 | 2019-08-23 | 腾讯科技(深圳)有限公司 | Data analysing method, model training method, device, equipment and storage medium |
| CN110288089A (en) * | 2019-06-28 | 2019-09-27 | 北京百度网讯科技有限公司 | Method and device for sending information |
| CN110532344A (en) * | 2019-08-06 | 2019-12-03 | 北京如优教育科技有限公司 | Automatic Selected Topic System based on deep neural network model |
| CN110543946A (en) * | 2018-05-29 | 2019-12-06 | 百度在线网络技术(北京)有限公司 | method and apparatus for training a model |
| CN110554047A (en) * | 2019-09-06 | 2019-12-10 | 腾讯科技(深圳)有限公司 | method, device, system and equipment for processing product defect detection data |
| CN110569313A (en) * | 2018-05-17 | 2019-12-13 | 北京京东尚科信息技术有限公司 | Method and device for judging grade of model table of data warehouse |
| WO2020029689A1 (en) * | 2018-08-07 | 2020-02-13 | 阿里巴巴集团控股有限公司 | Data processing model construction method and device, server and client |
| CN110837620A (en) * | 2019-11-14 | 2020-02-25 | 帝国理工创新有限公司 | Advanced online database system for publishing and running model and hosting data |
| CN110990870A (en) * | 2019-11-29 | 2020-04-10 | 上海能塔智能科技有限公司 | Operation and maintenance, processing method, device, equipment and medium using model library |
| CN111078984A (en) * | 2019-11-05 | 2020-04-28 | 深圳奇迹智慧网络有限公司 | Network model publishing method and device, computer equipment and storage medium |
| CN111199287A (en) * | 2019-12-16 | 2020-05-26 | 北京淇瑀信息科技有限公司 | Feature engineering real-time recommendation method and device and electronic equipment |
| CN111242317A (en) * | 2020-01-09 | 2020-06-05 | 深圳供电局有限公司 | Method, apparatus, computer equipment and storage medium for managing applications |
| CN111291882A (en) * | 2018-12-06 | 2020-06-16 | 北京百度网讯科技有限公司 | A method, apparatus, device and computer storage medium for model conversion |
| CN111428869A (en) * | 2020-03-19 | 2020-07-17 | 北京源清慧虹信息科技有限公司 | Model generation method and device, computer equipment and storage medium |
| WO2020155045A1 (en) * | 2019-01-31 | 2020-08-06 | 西门子股份公司 | Method and device for establishing communication model of network device |
| CN111797869A (en) * | 2019-04-09 | 2020-10-20 | Oppo广东移动通信有限公司 | Model training method and device, storage medium and electronic equipment |
| CN112068854A (en) * | 2019-06-10 | 2020-12-11 | 杭州海康威视数字技术股份有限公司 | Intelligent device algorithm updating system, intelligent device and platform server |
| CN112088386A (en) * | 2018-05-07 | 2020-12-15 | 希侬人工智能公司 | Generate custom machine learning models to perform tasks using artificial intelligence |
| CN112130723A (en) * | 2018-05-25 | 2020-12-25 | 第四范式(北京)技术有限公司 | Method and system for performing feature processing on data |
| CN112368723A (en) * | 2018-11-26 | 2021-02-12 | 华为技术有限公司 | Model selection method and terminal |
| CN112381000A (en) * | 2020-11-16 | 2021-02-19 | 深圳前海微众银行股份有限公司 | Face recognition method, device, equipment and storage medium based on federal learning |
| CN112650528A (en) * | 2020-12-31 | 2021-04-13 | 新奥数能科技有限公司 | Personalized algorithm generation method and device, electronic equipment and computer readable medium |
| CN112714486A (en) * | 2019-10-25 | 2021-04-27 | 北京三星通信技术研究有限公司 | PDCCH detection method, DRX configuration method, terminal and base station |
| CN113241056A (en) * | 2021-04-26 | 2021-08-10 | 标贝(北京)科技有限公司 | Method, device, system and medium for training speech synthesis model and speech synthesis |
| CN113408634A (en) * | 2021-06-29 | 2021-09-17 | 深圳市商汤科技有限公司 | Model recommendation method and device, equipment and computer storage medium |
| CN113469364A (en) * | 2020-03-31 | 2021-10-01 | 杭州海康威视数字技术股份有限公司 | Inference platform, method and device |
| CN113554401A (en) * | 2021-08-05 | 2021-10-26 | 杭州拼便宜网络科技有限公司 | Inventory data management method, apparatus, device and storage medium |
| WO2021244334A1 (en) * | 2020-05-30 | 2021-12-09 | 华为技术有限公司 | Information processing method and related device |
| CN113934709A (en) * | 2021-10-13 | 2022-01-14 | 成都新致云服信息技术有限公司 | Model construction method and device and readable storage medium |
| WO2022077946A1 (en) * | 2020-10-14 | 2022-04-21 | 新智数字科技有限公司 | Data measurement method and apparatus, and electronic device and computer-readable medium |
| WO2022082516A1 (en) * | 2020-10-21 | 2022-04-28 | 华为技术有限公司 | Data transmission method and communication apparatus |
| CN114902622A (en) * | 2020-01-03 | 2022-08-12 | 华为技术有限公司 | A network entity used to determine a model to analyze input data digitally |
| CN114981821A (en) * | 2019-04-29 | 2022-08-30 | 摩根大通国家银行 | System and method for data driven infrastructure control |
| CN115001559A (en) * | 2022-03-17 | 2022-09-02 | 中国科学院计算技术研究所 | A method for constructing user terminal distribution model suitable for satellite network |
| EP4208991A4 (en) * | 2021-02-17 | 2023-11-01 | Huawei Technologies Co., Ltd. | Entities and methods for trained data model selection in 5g mobile networks |
| WO2023212926A1 (en) * | 2022-05-06 | 2023-11-09 | Oppo广东移动通信有限公司 | Communication methods, and devices |
| WO2025107960A1 (en) * | 2023-11-21 | 2025-05-30 | 大唐移动通信设备有限公司 | Information transmission method and apparatus, and device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116233857A (en) * | 2021-12-02 | 2023-06-06 | 华为技术有限公司 | Communication method and communication device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101782976A (en) * | 2010-01-15 | 2010-07-21 | 南京邮电大学 | Automatic selection method for machine learning in cloud computing environment |
| CN105912500A (en) * | 2016-03-30 | 2016-08-31 | 百度在线网络技术(北京)有限公司 | Machine learning model generation method and machine learning model generation device |
| CN106230792A (en) * | 2016-07-21 | 2016-12-14 | 北京百度网讯科技有限公司 | Machine learning method based on mobile office, terminal unit and system |
| CN106250986A (en) * | 2015-06-04 | 2016-12-21 | 波音公司 | Advanced analysis base frame for machine learning |
| CN106779087A (en) * | 2016-11-30 | 2017-05-31 | 福建亿榕信息技术有限公司 | A kind of general-purpose machinery learning data analysis platform |
| CN108229686A (en) * | 2016-12-14 | 2018-06-29 | 阿里巴巴集团控股有限公司 | Model training, Forecasting Methodology, device, electronic equipment and machine learning platform |
| CN108604222A (en) * | 2015-12-28 | 2018-09-28 | 云脑科技有限公司 | System and method for deployment customized machine learning service |
| CN109656529A (en) * | 2018-10-31 | 2019-04-19 | 北京大学 | A kind of on-line customization method and system for client deep learning |
-
2017
- 2017-11-20 CN CN201711157646.0A patent/CN107766940B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101782976A (en) * | 2010-01-15 | 2010-07-21 | 南京邮电大学 | Automatic selection method for machine learning in cloud computing environment |
| CN106250986A (en) * | 2015-06-04 | 2016-12-21 | 波音公司 | Advanced analysis base frame for machine learning |
| CN108604222A (en) * | 2015-12-28 | 2018-09-28 | 云脑科技有限公司 | System and method for deployment customized machine learning service |
| CN105912500A (en) * | 2016-03-30 | 2016-08-31 | 百度在线网络技术(北京)有限公司 | Machine learning model generation method and machine learning model generation device |
| CN106230792A (en) * | 2016-07-21 | 2016-12-14 | 北京百度网讯科技有限公司 | Machine learning method based on mobile office, terminal unit and system |
| CN106779087A (en) * | 2016-11-30 | 2017-05-31 | 福建亿榕信息技术有限公司 | A kind of general-purpose machinery learning data analysis platform |
| CN108229686A (en) * | 2016-12-14 | 2018-06-29 | 阿里巴巴集团控股有限公司 | Model training, Forecasting Methodology, device, electronic equipment and machine learning platform |
| CN109656529A (en) * | 2018-10-31 | 2019-04-19 | 北京大学 | A kind of on-line customization method and system for client deep learning |
Cited By (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109643229A (en) * | 2018-04-17 | 2019-04-16 | 深圳鲲云信息科技有限公司 | The application and development method and Related product of network model |
| US11954576B2 (en) | 2018-04-17 | 2024-04-09 | Shenzhen Corerain Technologies Co., Ltd. | Method for implementing and developing network model and related product |
| WO2019200544A1 (en) * | 2018-04-17 | 2019-10-24 | 深圳鲲云信息科技有限公司 | Method for implementing and developing network model and related product |
| CN110163380B (en) * | 2018-04-28 | 2023-07-07 | 腾讯科技(深圳)有限公司 | Data analysis method, model training method, device, equipment and storage medium |
| CN110163380A (en) * | 2018-04-28 | 2019-08-23 | 腾讯科技(深圳)有限公司 | Data analysing method, model training method, device, equipment and storage medium |
| CN112088386A (en) * | 2018-05-07 | 2020-12-15 | 希侬人工智能公司 | Generate custom machine learning models to perform tasks using artificial intelligence |
| CN112088386B (en) * | 2018-05-07 | 2024-04-09 | 苹果公司 | Generating customized machine learning models to perform tasks using artificial intelligence |
| US12020179B2 (en) | 2018-05-07 | 2024-06-25 | Apple Inc. | Model selection interface |
| CN108664610A (en) * | 2018-05-11 | 2018-10-16 | 北京京东金融科技控股有限公司 | Method and apparatus for handling data |
| CN110569313B (en) * | 2018-05-17 | 2023-12-05 | 北京京东尚科信息技术有限公司 | Model table level judging method and device of data warehouse |
| CN110569313A (en) * | 2018-05-17 | 2019-12-13 | 北京京东尚科信息技术有限公司 | Method and device for judging grade of model table of data warehouse |
| CN112130723B (en) * | 2018-05-25 | 2023-04-18 | 第四范式(北京)技术有限公司 | Method and system for performing feature processing on data |
| CN112130723A (en) * | 2018-05-25 | 2020-12-25 | 第四范式(北京)技术有限公司 | Method and system for performing feature processing on data |
| CN108764487A (en) * | 2018-05-29 | 2018-11-06 | 北京百度网讯科技有限公司 | For generating the method and apparatus of model, the method and apparatus of information for identification |
| US11210608B2 (en) | 2018-05-29 | 2021-12-28 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for generating model, method and apparatus for recognizing information |
| CN110543946A (en) * | 2018-05-29 | 2019-12-06 | 百度在线网络技术(北京)有限公司 | method and apparatus for training a model |
| CN110543946B (en) * | 2018-05-29 | 2022-07-05 | 百度在线网络技术(北京)有限公司 | Method and apparatus for training a model |
| CN108847066A (en) * | 2018-05-31 | 2018-11-20 | 上海与德科技有限公司 | A kind of content of courses reminding method, device, server and storage medium |
| CN108829518B (en) * | 2018-05-31 | 2020-01-03 | 北京百度网讯科技有限公司 | Method and device for pushing information |
| CN108829518A (en) * | 2018-05-31 | 2018-11-16 | 北京百度网讯科技有限公司 | Method and apparatus for pushed information |
| CN108764369A (en) * | 2018-06-07 | 2018-11-06 | 深圳市公安局公交分局 | Character recognition method, device based on data fusion and computer storage media |
| CN108764369B (en) * | 2018-06-07 | 2021-10-22 | 深圳市公安局公交分局 | Figure identification method and device based on data fusion and computer storage medium |
| CN109086789A (en) * | 2018-06-08 | 2018-12-25 | 四川斐讯信息技术有限公司 | A kind of image-recognizing method and system |
| WO2019237657A1 (en) * | 2018-06-15 | 2019-12-19 | 北京字节跳动网络技术有限公司 | Method and device for generating model |
| CN108805091A (en) * | 2018-06-15 | 2018-11-13 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN108960316A (en) * | 2018-06-27 | 2018-12-07 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN108960316B (en) * | 2018-06-27 | 2020-10-30 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating a model |
| CN108984683A (en) * | 2018-06-29 | 2018-12-11 | 北京百度网讯科技有限公司 | Extracting method, system, equipment and the storage medium of structural data |
| CN108984683B (en) * | 2018-06-29 | 2021-06-25 | 北京百度网讯科技有限公司 | Structured data extraction method, system, device and storage medium |
| US11210569B2 (en) | 2018-08-07 | 2021-12-28 | Advanced New Technologies Co., Ltd. | Method, apparatus, server, and user terminal for constructing data processing model |
| TWI703458B (en) * | 2018-08-07 | 2020-09-01 | 香港商阿里巴巴集團服務有限公司 | Data processing model construction method, device, server and client |
| WO2020029689A1 (en) * | 2018-08-07 | 2020-02-13 | 阿里巴巴集团控股有限公司 | Data processing model construction method and device, server and client |
| CN108985386A (en) * | 2018-08-07 | 2018-12-11 | 北京旷视科技有限公司 | Obtain method, image processing method and the corresponding intrument of image processing model |
| CN109272116A (en) * | 2018-09-05 | 2019-01-25 | 郑州云海信息技术有限公司 | A kind of method and device of deep learning |
| CN109242025A (en) * | 2018-09-14 | 2019-01-18 | 北京旷视科技有限公司 | Model iterative correction methods, apparatus and system |
| CN109344885A (en) * | 2018-09-14 | 2019-02-15 | 深圳增强现实技术有限公司 | Deep learning identifying system, method and electronic equipment |
| CN109508485A (en) * | 2018-10-30 | 2019-03-22 | 平安医疗健康管理股份有限公司 | A kind of data processing model dissemination method, device, server and storage medium |
| CN109376267A (en) * | 2018-10-30 | 2019-02-22 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating model |
| CN109635833A (en) * | 2018-10-30 | 2019-04-16 | 银河水滴科技(北京)有限公司 | A kind of image-recognizing method and system based on cloud platform and model intelligent recommendation |
| CN109376267B (en) * | 2018-10-30 | 2020-11-13 | 北京字节跳动网络技术有限公司 | Method and apparatus for generating a model |
| CN109492771A (en) * | 2018-11-12 | 2019-03-19 | 北京百度网讯科技有限公司 | Exchange method, device and system |
| CN109492698A (en) * | 2018-11-20 | 2019-03-19 | 腾讯科技(深圳)有限公司 | A kind of method of model training, the method for object detection and relevant apparatus |
| US12299595B2 (en) | 2018-11-26 | 2025-05-13 | Huawei Technologies Co., Ltd. | Model selection method and terminal |
| CN112368723A (en) * | 2018-11-26 | 2021-02-12 | 华为技术有限公司 | Model selection method and terminal |
| CN109711436A (en) * | 2018-12-05 | 2019-05-03 | 量子云未来(北京)信息科技有限公司 | A kind of artificial intelligence training pattern construction method, device and storage medium |
| CN111291882A (en) * | 2018-12-06 | 2020-06-16 | 北京百度网讯科技有限公司 | A method, apparatus, device and computer storage medium for model conversion |
| CN109816114A (en) * | 2018-12-29 | 2019-05-28 | 大唐软件技术股份有限公司 | A kind of generation method of machine learning model, device |
| CN109710819A (en) * | 2018-12-29 | 2019-05-03 | 北京航天数据股份有限公司 | A kind of model display method, apparatus, equipment and medium |
| WO2020155045A1 (en) * | 2019-01-31 | 2020-08-06 | 西门子股份公司 | Method and device for establishing communication model of network device |
| CN111797869A (en) * | 2019-04-09 | 2020-10-20 | Oppo广东移动通信有限公司 | Model training method and device, storage medium and electronic equipment |
| CN114981821A (en) * | 2019-04-29 | 2022-08-30 | 摩根大通国家银行 | System and method for data driven infrastructure control |
| CN112068854B (en) * | 2019-06-10 | 2023-09-01 | 杭州海康威视数字技术股份有限公司 | Intelligent device algorithm updating system, intelligent device and platform server |
| CN112068854A (en) * | 2019-06-10 | 2020-12-11 | 杭州海康威视数字技术股份有限公司 | Intelligent device algorithm updating system, intelligent device and platform server |
| CN110288089A (en) * | 2019-06-28 | 2019-09-27 | 北京百度网讯科技有限公司 | Method and device for sending information |
| CN110288089B (en) * | 2019-06-28 | 2021-07-09 | 北京百度网讯科技有限公司 | Method and apparatus for sending information |
| CN110532344A (en) * | 2019-08-06 | 2019-12-03 | 北京如优教育科技有限公司 | Automatic Selected Topic System based on deep neural network model |
| CN110554047A (en) * | 2019-09-06 | 2019-12-10 | 腾讯科技(深圳)有限公司 | method, device, system and equipment for processing product defect detection data |
| CN110554047B (en) * | 2019-09-06 | 2021-07-02 | 腾讯科技(深圳)有限公司 | Product defect detection data processing method, device, system and equipment |
| CN112714486A (en) * | 2019-10-25 | 2021-04-27 | 北京三星通信技术研究有限公司 | PDCCH detection method, DRX configuration method, terminal and base station |
| CN111078984B (en) * | 2019-11-05 | 2024-02-06 | 深圳奇迹智慧网络有限公司 | Network model issuing method, device, computer equipment and storage medium |
| CN111078984A (en) * | 2019-11-05 | 2020-04-28 | 深圳奇迹智慧网络有限公司 | Network model publishing method and device, computer equipment and storage medium |
| CN110837620A (en) * | 2019-11-14 | 2020-02-25 | 帝国理工创新有限公司 | Advanced online database system for publishing and running model and hosting data |
| CN110990870A (en) * | 2019-11-29 | 2020-04-10 | 上海能塔智能科技有限公司 | Operation and maintenance, processing method, device, equipment and medium using model library |
| CN111199287A (en) * | 2019-12-16 | 2020-05-26 | 北京淇瑀信息科技有限公司 | Feature engineering real-time recommendation method and device and electronic equipment |
| CN114902622A (en) * | 2020-01-03 | 2022-08-12 | 华为技术有限公司 | A network entity used to determine a model to analyze input data digitally |
| US12081410B2 (en) | 2020-01-03 | 2024-09-03 | Huawei Technologies Co., Ltd. | Network entity for determining a model for digitally analyzing input data |
| CN114902622B (en) * | 2020-01-03 | 2024-03-26 | 华为技术有限公司 | Network entity for determining a model for digitally analysing input data |
| CN111242317B (en) * | 2020-01-09 | 2023-11-24 | 深圳供电局有限公司 | Methods, devices, computer equipment and storage media for management applications |
| CN111242317A (en) * | 2020-01-09 | 2020-06-05 | 深圳供电局有限公司 | Method, apparatus, computer equipment and storage medium for managing applications |
| CN111428869A (en) * | 2020-03-19 | 2020-07-17 | 北京源清慧虹信息科技有限公司 | Model generation method and device, computer equipment and storage medium |
| CN113469364B (en) * | 2020-03-31 | 2023-10-13 | 杭州海康威视数字技术股份有限公司 | Reasoning platform, method and device |
| CN113469364A (en) * | 2020-03-31 | 2021-10-01 | 杭州海康威视数字技术股份有限公司 | Inference platform, method and device |
| WO2021244334A1 (en) * | 2020-05-30 | 2021-12-09 | 华为技术有限公司 | Information processing method and related device |
| EP4131082A4 (en) * | 2020-10-14 | 2023-10-25 | Ennew Digital Technology Co., Ltd. | METHOD AND APPARATUS FOR MEASURING DATA AND ELECTRONIC DEVICE AND COMPUTER-READABLE MEDIUM |
| WO2022077946A1 (en) * | 2020-10-14 | 2022-04-21 | 新智数字科技有限公司 | Data measurement method and apparatus, and electronic device and computer-readable medium |
| WO2022082516A1 (en) * | 2020-10-21 | 2022-04-28 | 华为技术有限公司 | Data transmission method and communication apparatus |
| CN112381000A (en) * | 2020-11-16 | 2021-02-19 | 深圳前海微众银行股份有限公司 | Face recognition method, device, equipment and storage medium based on federal learning |
| CN112381000B (en) * | 2020-11-16 | 2024-08-27 | 深圳前海微众银行股份有限公司 | Face recognition method, device, equipment and storage medium based on federal learning |
| CN112650528B (en) * | 2020-12-31 | 2024-05-14 | 新奥数能科技有限公司 | Personalized algorithm generation method, device, electronic equipment and computer readable medium |
| CN112650528A (en) * | 2020-12-31 | 2021-04-13 | 新奥数能科技有限公司 | Personalized algorithm generation method and device, electronic equipment and computer readable medium |
| EP4208991A4 (en) * | 2021-02-17 | 2023-11-01 | Huawei Technologies Co., Ltd. | Entities and methods for trained data model selection in 5g mobile networks |
| CN113241056B (en) * | 2021-04-26 | 2024-03-15 | 标贝(青岛)科技有限公司 | Training and speech synthesis method, device, system and medium for speech synthesis model |
| CN113241056A (en) * | 2021-04-26 | 2021-08-10 | 标贝(北京)科技有限公司 | Method, device, system and medium for training speech synthesis model and speech synthesis |
| CN113408634A (en) * | 2021-06-29 | 2021-09-17 | 深圳市商汤科技有限公司 | Model recommendation method and device, equipment and computer storage medium |
| CN113554401A (en) * | 2021-08-05 | 2021-10-26 | 杭州拼便宜网络科技有限公司 | Inventory data management method, apparatus, device and storage medium |
| CN113934709A (en) * | 2021-10-13 | 2022-01-14 | 成都新致云服信息技术有限公司 | Model construction method and device and readable storage medium |
| CN115001559A (en) * | 2022-03-17 | 2022-09-02 | 中国科学院计算技术研究所 | A method for constructing user terminal distribution model suitable for satellite network |
| WO2023212926A1 (en) * | 2022-05-06 | 2023-11-09 | Oppo广东移动通信有限公司 | Communication methods, and devices |
| WO2025107960A1 (en) * | 2023-11-21 | 2025-05-30 | 大唐移动通信设备有限公司 | Information transmission method and apparatus, and device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107766940B (en) | 2021-07-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107766940B (en) | Method and apparatus for generating models | |
| CN111753198B (en) | Information recommendation methods and devices, as well as electronic devices and readable storage media | |
| CN109544396B (en) | Account recommendation method, device, server, terminal and storage medium | |
| CN107908789A (en) | Method and apparatus for generating information | |
| CN108520470B (en) | Method and apparatus for generating user attribute information | |
| CN111026858B (en) | Project information processing method and device based on project recommendation model | |
| US11763154B1 (en) | Machine learning services with pre-trained models | |
| CN111104599B (en) | Method and device for outputting information | |
| CN111523413A (en) | Method and device for generating face image | |
| CN112650841A (en) | Information processing method and device and electronic equipment | |
| CN112669000A (en) | Government affair item processing method and device, electronic equipment and storage medium | |
| CN113159315A (en) | Neural network training method, data processing method and related equipment | |
| US20240282027A1 (en) | Method, apparatus, device and storage medium for generating animal figures | |
| CN110457476A (en) | Method and apparatus for generating a classification model | |
| JP2024530998A (en) | Machine learning assisted automatic taxonomy for web data | |
| CN111539903A (en) | Method and apparatus for training face image synthesis model | |
| CN112861474B (en) | Information labeling method, device, equipment and computer readable storage medium | |
| CN112529027A (en) | Data processing method, client, device and computer readable storage medium | |
| CN113515941B (en) | Named entity recognition method, training method, device, equipment and medium | |
| CN113888216A (en) | Advertising information push method, device, electronic device and storage medium | |
| CN110263930B (en) | Method and apparatus for sending information | |
| CN115438221A (en) | Recommendation method, device and electronic equipment based on artificial intelligence | |
| CN113033209A (en) | Text relation extraction method and device, storage medium and computer equipment | |
| KR20220104984A (en) | Method and system for transfer learning of deep learning model based on document similarity learning | |
| CN114970494A (en) | A comment generating method, device, electronic device and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |