+

CN107425520A - A kind of probabilistic active distribution network three-phase section method for estimating state of injecting power containing node - Google Patents

A kind of probabilistic active distribution network three-phase section method for estimating state of injecting power containing node Download PDF

Info

Publication number
CN107425520A
CN107425520A CN201710436621.8A CN201710436621A CN107425520A CN 107425520 A CN107425520 A CN 107425520A CN 201710436621 A CN201710436621 A CN 201710436621A CN 107425520 A CN107425520 A CN 107425520A
Authority
CN
China
Prior art keywords
mrow
mtd
msup
msub
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710436621.8A
Other languages
Chinese (zh)
Other versions
CN107425520B (en
Inventor
吴在军
徐俊俊
徐怡悦
窦晓波
顾伟
袁晓冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Southeast University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical Southeast University
Priority to CN201710436621.8A priority Critical patent/CN107425520B/en
Publication of CN107425520A publication Critical patent/CN107425520A/en
Application granted granted Critical
Publication of CN107425520B publication Critical patent/CN107425520B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种含节点注入功率不确定性的主动配电网三相区间状态估计方法,包括采用区间数对节点注入功率伪量测以及实时量测装置的量测误差的不确定性问题分别进行建模与分析;建立考虑不确定性的主动配电网三相区间状态估计数学模型;将所建立的主动配电网区间状态估计模型拆分为两个包含非线性区间约束条件的优化问题;采用一种基于迭代运算的线性规划方法结合稀疏矩阵技术对所建立的主动配电网三相区间状态估计数学模型进行有效求解。本发明弥补了当前配电网状态估计中忽略分布式电源出力间歇性以及电动汽车充电的不足,同时提高了测量的精度和算法的求解速度,为主动配电网下一步安全评估提供理论支撑。

The invention discloses a method for estimating the state of three-phase intervals of an active distribution network with uncertainty of node injection power, including the use of interval numbers to perform pseudo-measurement of node injection power and the uncertainty of measurement errors of real-time measurement devices Carry out modeling and analysis respectively; establish a three-phase interval state estimation mathematical model of active distribution network considering uncertainties; split the established active distribution network interval state estimation model into two optimized ones containing nonlinear interval constraints Problem: A linear programming method based on iterative operations combined with sparse matrix technology is used to effectively solve the established mathematical model of the three-phase interval state estimation of the active distribution network. The invention makes up for the shortcomings of ignoring the intermittent output of distributed power sources and the charging of electric vehicles in the state estimation of the current distribution network, improves the accuracy of measurement and the solution speed of the algorithm, and provides theoretical support for the next step of safety evaluation of the active distribution network.

Description

一种含节点注入功率不确定性的主动配电网三相区间状态估 计方法A Three-Phase Interval State Estimation for Active Distribution Networks with Node Injected Power Uncertainty calculation method

技术领域technical field

本发明涉及主动配电网三相状态估计方法,特别是涉及一种含节点注入功率不确定性的主动配电网三相区间状态估计方法。The invention relates to a method for estimating a three-phase state of an active distribution network, in particular to a method for estimating a three-phase interval state of an active distribution network with node injection power uncertainty.

背景技术Background technique

积极发展可再生能源发电并网技术、电动汽车入网技术等是我国调整能源结构、应对气候变化、转变经济发展方式和实现可持续发展的战略选择。未来高渗透率多类型分布式电源的发电并网、电动汽车等主动负荷以及大量智能终端设备的规模化接入与应用,使得传统的单向辐射状配电网逐步转变为含多能源供电系统、必要时辅助以弱环状拓扑结构运行的主动配电网。与此同时,配电网状态估计技术有望能够进一步快速、准确地感知系统的实时运行状态,为主动配电网其他高级管理软件如电压调节控制技术、分布式电源出力和主动负荷分配技术、主动配电网有功/无功协调优化技术以及智能配电系统自愈技术等提供可靠数据。Actively developing renewable energy power grid-connected technology and electric vehicle grid-connected technology is a strategic choice for my country to adjust energy structure, cope with climate change, transform economic development mode and achieve sustainable development. In the future, the grid-connected power generation of multi-type distributed power sources with high penetration rate, active loads such as electric vehicles, and the large-scale access and application of a large number of intelligent terminal equipment will gradually transform the traditional one-way radial distribution network into a multi-energy power supply system. , Auxiliary active distribution network operating in a weak ring topology when necessary. At the same time, the distribution network state estimation technology is expected to be able to further quickly and accurately perceive the real-time operating status of the system, and provide other advanced management software for the active distribution network, such as voltage regulation control technology, distributed power output and active load distribution technology, active Distribution network active/reactive power coordination optimization technology and intelligent power distribution system self-healing technology provide reliable data.

然而,未来大规模电动汽车的随机充电、高渗透率分布式电源的间歇性发电并网以及大量智能量测设备的量测误差等会使得主动配电网状态估计结果需要考虑更多的不确定性因素,传统方法面临严峻挑战,估计结果精度难以满足调度要求,如何考虑强不确定性对状态估计的影响是亟待解决的问题。However, in the future, the random charging of large-scale electric vehicles, the intermittent power generation of distributed power sources with high penetration rate and the measurement errors of a large number of intelligent measurement equipment will make the state estimation results of active distribution network need to consider more uncertainties. However, traditional methods face severe challenges, and the accuracy of estimation results cannot meet the scheduling requirements. How to consider the impact of strong uncertainty on state estimation is an urgent problem to be solved.

一般而言,对配电网中不确定性变量的建模方式主要有概率模型、模糊数模型和区间数模型。概率模型是将网络中不确定因素作为随机变量建立不同的概率模型,然后对概率分布函数进行采样并统计出变量的分布特征。模糊数模型需要根据大量历史统计数据获取可信性测度,并建立相应的隶属度函数。然而,基于概率分布和模糊理论的状态估计必须预先获取各不确定性变量详细的先验概率密度函数或隶属度函数,一方面易导致算法求解的时间复杂性增大,另外,实际电网中除了常规性电力负荷可以根据大量历史用电数据简单获知其概率分布以外,光伏、风电等分布式电源出力的完整概率密度函数却难以获取,绝大多数情况下只是知道其功率波动的上下界限。Generally speaking, the modeling methods of uncertain variables in distribution network mainly include probability model, fuzzy number model and interval number model. The probability model is to use the uncertain factors in the network as random variables to establish different probability models, and then sample the probability distribution function and count the distribution characteristics of the variables. The fuzzy number model needs to obtain the credibility measure based on a large amount of historical statistical data, and establish the corresponding membership function. However, the state estimation based on probability distribution and fuzzy theory must obtain the detailed prior probability density function or membership function of each uncertainty variable in advance. On the one hand, it is easy to increase the time complexity of the algorithm solution. In addition to the probability distribution of conventional power loads that can be easily known based on a large amount of historical power consumption data, it is difficult to obtain the complete probability density function of distributed power generation such as photovoltaics and wind power. In most cases, only the upper and lower limits of its power fluctuations are known.

发明内容Contents of the invention

发明目的:为解决现有技术的不足,提供一种能满足当前配电网态势感知系统在大规模电动汽车和分布式电源发电系统并网后能够快速准确地感知系统实时运行状态的要求的含节点注入功率不确定性的主动配电网三相区间状态估计方法。Purpose of the invention: In order to solve the deficiencies of the existing technology, provide a system that can meet the requirements of the current distribution network situation awareness system that can quickly and accurately perceive the real-time operating status of the system after large-scale electric vehicles and distributed power generation systems are connected to the grid. Three-phase interval state estimation method for active distribution network with node injected power uncertainty.

技术方案:一种含节点注入功率不确定性的主动配电网三相区间状态估计方法,包括以下步骤:Technical solution: A three-phase interval state estimation method for active distribution network with node injection power uncertainty, including the following steps:

(1)采用区间数对含光伏发电、风力发电以及电动汽车充电系统的节点注入功率伪量测以及实时量测装置的量测误差的不确定性问题分别进行建模与分析;(1) Using the interval number to model and analyze the uncertainties of pseudo-measurement of node injection power including photovoltaic power generation, wind power generation and electric vehicle charging system and measurement error of real-time measurement devices;

(2)选取节点的三相电压幅值和相角作为系统待求的状态变量,建立考虑不确定性的主动配电网三相区间状态估计数学模型;(2) Select the three-phase voltage amplitude and phase angle of the node as the state variables to be obtained in the system, and establish a three-phase interval state estimation mathematical model of the active distribution network considering uncertainty;

(3)基于误差未知但有界理论将所建立的考虑不确定性的主动配电网三相区间状态估计数学模型拆分为两个包含非线性区间约束条件的优化问题,便于进行分析与求解;(3) Based on the unknown but bounded error theory, the established mathematical model of active distribution network three-phase interval state estimation considering uncertainty is split into two optimization problems containing nonlinear interval constraints, which is convenient for analysis and solution ;

(4)采用一种基于迭代运算的线性规划方法结合稀疏矩阵技术对所建立的考虑不确定性的主动配电网三相区间状态估计数学模型进行求解。(4) A linear programming method based on iterative operation combined with sparse matrix technology is used to solve the established mathematical model of active distribution network three-phase interval state estimation considering uncertainty.

进一步的,步骤(1)包括:Further, step (1) includes:

(11)在用区间数表征光伏发电系统出力不确定性时,采用上下限估计方法通过建立双输出神经网络模型对光伏发电系统出力进行区间建模;(11) When using the interval number to characterize the output uncertainty of the photovoltaic power generation system, the upper and lower limit estimation method is used to model the output of the photovoltaic power generation system by establishing a dual-output neural network model;

(12)在用区间数表征风力发电系统出力不确定性时,采用基于在线序贯-极限学习机结构的双层神经网络风力预测模型,先通过ELM模型对风速进行修正,再利用第二层ELM预测风力发电功率;(12) When interval numbers are used to represent the uncertainty of wind power system output, a two-layer neural network wind prediction model based on the online sequential-extreme learning machine structure is used. First, the wind speed is corrected by the ELM model, and then the second layer is used to ELM predicts wind power generation;

(13)在对电动汽车的随机充电进行区间建模分析时,采用基于统计数据规律的蒙特卡洛抽样法与区间数相结合的方式对电动汽车充电负荷需求进行区间预测。(13) When performing interval modeling analysis on the stochastic charging of electric vehicles, the Monte Carlo sampling method based on the law of statistical data combined with interval numbers is used to forecast the charging load demand of electric vehicles in intervals.

更进一步的,步骤(11)包括:Further, step (11) includes:

(a)数据预处理,划分神经网络训练和测试数据(a) Data preprocessing, divide neural network training and test data

按照预定的采样间隔收集历史光伏出力数据与对应时刻的气象数据,将处理过的数据作为神经网络的输入;Collect historical photovoltaic output data and meteorological data at the corresponding time according to the predetermined sampling interval, and use the processed data as the input of the neural network;

(b)区间预测优化算法以及粒子群算法设置(b) Interval prediction optimization algorithm and particle swarm optimization algorithm settings

区间覆盖率PICP和区间宽度PINAW是衡量区间预测性能的重要因素,计算公式分别如下式所示:Interval coverage rate PICP and interval width PINAW are important factors to measure the performance of interval forecasting, and the calculation formulas are as follows:

式中,λ为进行确定性预测的次数,cκ′为第κ′次预测值的评价指标;假设存在某一预测值yκ′,当时,cκ′=1;否则,cκ′=0;PPV 分别为区间预测的上界限和下界限;Λ为目标预测值的最小值与最大值的差;In the formula, λ is the number of deterministic predictions, and c κ' is the evaluation index of the κ'th predicted value; assuming that there is a certain predicted value y κ' , when , c κ' = 1; otherwise, c κ' = 0; and PPV are the upper limit and lower limit of the interval prediction respectively; Λ is the difference between the minimum value and the maximum value of the target prediction value;

选取的区间预测综合评估指标函数如下所示:The comprehensive evaluation index function of the selected interval forecast is as follows:

f=PINAW(1+γ(PICP)e-η(PICP-Ψ))f=PINAW(1+γ(PICP)e -η (PICP-Ψ) )

式中,Ψ为置信度值,也是f的调节参数;η为f的调节参数,且实际工程中η∈[50,100];In the formula, Ψ is the confidence value, which is also the adjustment parameter of f; η is the adjustment parameter of f, and in actual engineering, η∈[50,100];

初始化粒子群的规模以及惯性常数,生成初始粒子种群,也即光伏出力预测的初始区间值;Initialize the size and inertia constant of the particle swarm to generate the initial particle swarm, which is the initial interval value for photovoltaic output prediction;

(c)结合粒子群寻优算法,输出光伏处理预测最优区间值,包括:(c) Combined with the particle swarm optimization algorithm, output the optimal interval value for photovoltaic processing prediction, including:

①设定迭代次数L=0,并创建评估函数值f(L)① set the number of iterations L=0, and create an evaluation function value f (L) ;

②更新粒子群算法参数②Update particle swarm algorithm parameters

在搜索空间内随机初始化每个粒子的位置和速度,将每个粒子的个体最优位置设置为当前粒子位置,得到群体最优位置,并对粒子的位置和速度进行不断更新;Randomly initialize the position and velocity of each particle in the search space, set the individual optimal position of each particle as the current particle position, obtain the optimal position of the group, and continuously update the position and velocity of the particles;

③创建新的预测区间并计算评估函数值f(L+1) ③Create a new prediction interval and calculate the evaluation function value f (L+1)

计算每个粒子的适应值,更新每个粒子的个体最优位置与整个群体的最优位置;Calculate the fitness value of each particle, and update the individual optimal position of each particle and the optimal position of the entire group;

④判断是否满足f(L+1)<fL ④Judge whether f (L+1) <f L is satisfied

若不满足,令L=L+1,返回步骤②继续搜索;若满足,则用评估函数值f(L+1)替换上一次迭代的评估函数值f(L)If not satisfied, make L=L+1, return to step 2. continue searching; If satisfy, then replace the evaluation function value f (L) of last iteration with evaluation function value f (L+1 ) ;

⑤判断是否满足算法终止条件⑤ Determine whether the algorithm termination condition is satisfied

给定粒子群迭代收敛的条件,作为算法终止的条件,若不满足,则返回步骤②继续搜索;若满足,则停止搜索,并输出光伏出力预测最优区间值。Given the condition of particle swarm iterative convergence, as the condition for the termination of the algorithm, if not satisfied, return to step ② to continue the search; if satisfied, stop the search, and output the optimal interval value of photovoltaic output prediction.

更进一步的,步骤(12)包括:Further, step (12) includes:

(a)数据预处理,该数据包含风力发电系统历史发电功率数据以及相对应的气象预报数据,向量Θ作为ELM的网络输入,公式如下:(a) Data preprocessing, the data includes the historical power generation data of the wind power generation system and the corresponding weather forecast data, the vector Θ is used as the network input of the ELM, the formula is as follows:

Θ=[v vsin vcos ρ]T Θ=[vv sin v cos ρ] T

式中,v为风速;vsin、vcos分别为风向的正弦值、余弦值;ρ为空气密度,由温度、气压以及空气相对湿度计算得到;ELM网络中所有输入数据均归一化到[0,1]区间;In the formula, v is the wind speed; v sin and v cos are the sine and cosine values of the wind direction respectively; ρ is the air density, which is calculated from the temperature, air pressure and air relative humidity; all input data in the ELM network are normalized to [ 0,1] interval;

(b)风速修正环节,采用第一层ELM网络来模拟修正预报风速与实测风速之间的非线性关系;(b) In the wind speed correction link, the first-layer ELM network is used to simulate and correct the nonlinear relationship between the forecast wind speed and the measured wind speed;

(c)风力发电系统出力区间预测环节,采用第二层ELM网络来进行风力发电系统出力的区间预测,选取当前时刻的修正风速值、风向正、余弦值以及空气密度值作为第二层ELM网络输入值,以当前时刻风力发电系统出力的上下区间值为网络输出。(c) In the link of wind power generation system output interval prediction, the second-layer ELM network is used to predict the interval of wind power generation system output, and the corrected wind speed value, wind direction positive, cosine value and air density value at the current moment are selected as the second-layer ELM network The input value is the upper and lower interval values of the output of the wind power generation system at the current moment output for the network.

更进一步的,步骤(13)包括:Further, step (13) includes:

(a)设置电动汽车数量M*=0(a) Set the number of electric vehicles M * = 0

(b)令M*=M*+1(b) Let M * =M * +1

(c)根据t和f(t)确定初始充电时刻TS (c) Determine the initial charging time T S according to t and f(t)

用户行为主要由电动汽车的日行驶里程d以及进行充电过程的起始时刻t决定,根据全美家庭出行调查项目调查数据,结合最大似然估计法获取d和t的概率统计规律分别如下式所示:User behavior is mainly determined by the daily mileage d of the electric vehicle and the starting time t of the charging process. According to the survey data of the national household travel survey project, combined with the maximum likelihood estimation method, the probability and statistical laws of d and t are respectively shown in the following formula :

式中,μd=3.2,σd=0.88,μt=17.6,σt=3.4;f(t)为充电过程起始时刻概率密度函数;并根据f(t)获取初始充电时刻TSIn the formula, μ d = 3.2, σ d = 0.88, μ t = 17.6, σ t = 3.4; f(t) is the probability density function of the initial charging process; and the initial charging time T S is obtained according to f(t);

(d)根据d抽样起始电池的荷电状态,计算所需充电时长TC,并确定充电结束时刻TE,其中TE=TS+TC(d) Sampling the initial state of charge of the battery according to d, calculating the required charging time T C , and determining the charging end time T E , where T E =T S +T C ;

电动汽车的电池SOC与其日行驶里程d也近似满足线性关系,则电动汽车充电时长TC估计为:The battery SOC of an electric vehicle and its daily mileage d also approximately satisfy a linear relationship, then the charging time T C of an electric vehicle is estimated as:

式中,W100为电动汽车的百公里平均耗电量,PC为EV的充电功率;In the formula, W 100 is the average power consumption per 100 kilometers of electric vehicles, and P C is the charging power of EVs;

(e)计算抽样t0时刻的充电功率P(t0)(e) Calculate the charging power P(t 0 ) at sampling time t 0

在优化后的峰谷电价时间段内,电动汽车一般采取有序充模式,则单辆电动汽车在t0时刻的充电功率需求表述为:During the optimized peak and valley electricity price period, electric vehicles generally adopt an ordered charging mode, and the charging power demand of a single electric vehicle at time t 0 is expressed as:

式中:P(t0)为t0时间断面上单辆电动汽车的功率需求;PC(t0)为t0时间断面上单辆EV的充电功率;ζC(t0)为t0时间断面上单辆电动汽车充电功率的概率,Ψ(·)则为电动汽车起始充电时刻的概率密度函数;In the formula: P(t 0 ) is the power demand of a single electric vehicle on the t 0 time section; P C (t 0 ) is the charging power of a single EV on the t 0 time section; ζ C (t 0 ) is t 0 The probability of the charging power of a single electric vehicle on the time section, Ψ( ) is the probability density function of the initial charging time of the electric vehicle;

(f)累加[TS,TE]时段EV充电负荷(f) Accumulate EV charging load during [T S , T E ] period

假设某一地区拥有M辆电动汽车,其一天内总的充电负荷可由单辆电动汽车逐一累加获得,则第t0时间断面该区域总的电动汽车充电负荷为:Assuming that there are M electric vehicles in a certain area, the total charging load in one day can be obtained by accumulating single electric vehicles one by one, then the total charging load of electric vehicles in this area at time t0 is:

其中,Pγ′(t0)表示t0时间断面上第γ′辆电动汽车的充电负荷;Among them, P γ′ (t 0 ) represents the charging load of the γ′th electric vehicle on the t 0 time section;

(g)判断电动车数量是否超出预定值(g) Judging whether the number of electric vehicles exceeds a predetermined value

若M*<M成立,返回步骤(b),继续进行计算;If M * < M is established, return to step (b) and continue the calculation;

若M*<M不成立,则获取所有电动汽车充电负荷需求的标准差,并输出充电预测最优区间值。If M * < M is not established, then obtain the standard deviation of charging load demand of all electric vehicles, and output the optimal interval value of charging prediction.

另外,由于步骤(e)中公式很难推导出其解析解,因此需要基于大量历史统计数据,利用蒙特卡洛方法分别抽样出某一天内每个时间断面上电动汽车总的充电需求,且近似服从正态分布,其期望值和标准差分别为μEV和σEV,由此可用区间数对电动汽车充电需求进行表述:In addition, since the formula in step (e) is difficult to derive its analytical solution, it is necessary to use the Monte Carlo method to sample the total charging demand of electric vehicles on each time section in a day based on a large amount of historical statistical data, and approximate It obeys a normal distribution, and its expected value and standard deviation are μ EV and σ EV , respectively, so the available interval numbers can express the charging demand of electric vehicles:

式中,υ为区间数的半径调节参数,可根据实际情况进行设定。In the formula, υ is the radius adjustment parameter of the interval number, which can be set according to the actual situation.

进一步的,步骤(2)包括:Further, step (2) includes:

(21)考虑节点注入功率伪量测不确定因素后节点i的相,注入有功功率/无功功率可分别表示为:(21) Considering the uncertainty factor of node injection power pseudo-measurement, node i’s Mutually, The injected active power/reactive power can be expressed as:

式中,分别表示用区间数表述的常规负荷需求、分布式电源出力以及电动汽车充电的有功信息;则分别表示用区间数刻画的常规负荷需求、分布式电源出力的无功信息;类似于节点注入功率,支路有功/无功功率量测以及支路电流幅值量测区间数也可分别表示为式中,i,k表示节点i,k=1,2,…,n,则区间状态估计模型中的量测矢量[z]可表述为:In the formula, Respectively represent the conventional load demand expressed by the interval number, the distributed power output and the active information of electric vehicle charging; It represents the conventional load demand described by the interval number and the reactive power information of the distributed power output; similar to the node injection power, the branch active/reactive power measurement and the branch current amplitude measurement interval number can also be represented separately for In the formula, i,k represent nodes i,k=1,2,...,n, then the measurement vector [z] in the interval state estimation model can be expressed as:

取节点i的三相电压幅值和相角作为系统待求的状态变量xi,则有主动配电网三相区间状态估计即为根据量测矢量的上下界信息和非线性映射关系式来确定系统的状态变量信息,用数学关系式描述为:Take the three-phase voltage amplitude of node i and phase angle As the state variable x i to be demanded by the system, there is The three-phase interval state estimation of the active distribution network is to determine the state variable information of the system according to the upper and lower bound information of the measurement vector and the nonlinear mapping relational expression, which is described by the mathematical relational expression as:

式中,X′(·)表示系统状态变量的不确定性集合,x表示待求的状态变量,h(x)表示量测矢量与状态变量之间的非线性映射关系,z表示区间量测矢量的下限,而表示区间量测矢量的上限,M为系统量测集合,Z′(·)则表示系统量测矢量的不确定性集合,具体为:In the formula, X′(·) represents the uncertainty set of system state variables, x represents the state variable to be obtained, h(x) represents the nonlinear mapping relationship between the measurement vector and the state variable, z represents the interval measurement The lower bound of the vector, while Indicates the upper limit of the interval measurement vector, M is the system measurement set, Z′(·) represents the uncertainty set of the system measurement vector, specifically:

式中,为某一实际量测矢量,zj表示第j个量测量,zj 表示第j个量测量的下限值,表示第j个量测量的上限值,m′为系统量测集合M的基数;In the formula, is an actual measurement vector, z j represents the jth quantity measurement, z j represents the lower limit value of the jth quantity measurement, Indicates the upper limit value of the jth quantity measurement, m' is the cardinality of the system measurement set M;

若不考虑分布式电源和负荷之间的相关性,则含多类型分布式电和负荷不确定性的主动配电网三相区间状态估计具体模型表述如下式所示:If the correlation between distributed power and load is not considered, the specific model expression of the three-phase interval state estimation of active distribution network with multi-type distributed power and load uncertainty is as follows:

式中,γ分别为a、b、c三相中的任意一相;为待求的节点i的相电压幅值,为节点i的相电压幅值的上限信息,为节点i的相电压幅值的下限信息,为待求的节点i的相电压幅值,为节点i的相电压相角的上限信息,为节点i的相电压相角的下限信息,为支路ik上相有功功率的下限值,为支路ik上相有功功率的上限值,为支路ik上相无功功率的下限值,为支路ik上相无功功率的上限值,为支路ik上相电流幅值的下限值,为支路ik上相电流幅值的上限值,为节点i注入相有功功率的下限信息,为节点i注入相有功功率的上限信息,为节点i注入相无功功率的下限信息,为节点i注入相无功功率的上限信息,为节点i的γ相电压相角,为节点i上相与γ相之间相角差,为节点i和节点k(或d)之间在相与γ相的相角差,为三相节点导纳矩阵中对应的元素,为节点k的γ相电压相角,为节点i的γ相电压幅值,为节点k的γ相电压幅值。In the formula, γ is any one of the three phases a, b and c respectively; for the node i to be sought phase voltage amplitude, for node i The upper limit information of the phase voltage amplitude, for node i The lower limit information of the phase voltage amplitude, for the node i to be sought phase voltage amplitude, for node i upper limit information of the phase voltage phase angle, for node i The lower limit information of the phase voltage phase angle, on branch road ik The lower limit of phase active power, on branch road ik Upper limit of phase active power, on branch road ik The lower limit of phase reactive power, on branch road ik upper limit of phase reactive power, on branch road ik The lower limit value of the phase current amplitude, on branch road ik The upper limit value of the phase current amplitude, Inject for node i The lower limit information of phase active power, Inject for node i Upper limit information of phase active power, Inject for node i Lower limit information of phase reactive power, Inject for node i upper limit information of phase reactive power, is the γ-phase voltage phase angle of node i, for node i Phase angle difference between phase and γ phase, between node i and node k (or d) in The phase angle difference between phase and γ phase, with is the corresponding element in the three-phase node admittance matrix, is the γ-phase voltage phase angle of node k, is the γ-phase voltage amplitude of node i, is the amplitude of the γ-phase voltage at node k.

进一步的,步骤(3)中,将原问题拆分为两个包含非线性区间约束条件的优化问题,对待求变量的上下界分别进行求取,则所建立的考虑不确定性的主动配电网三相区间状态估计模型用公式简述为:Furthermore, in step (3), the original problem is split into two optimization problems containing nonlinear interval constraints, and the upper and lower bounds of the variables to be sought are obtained respectively, then the established active power distribution considering uncertainty The grid three-phase interval state estimation model is briefly described as:

式中表示节点i状态变量xi的不确定区间值,而xi ,则表示节点i状态变量xi波动的置信下界限和上界限。In the formula represents the uncertain interval value of node i state variable x i , and x i , Then represent the confidence lower bound and upper bound of node i state variable x i fluctuation.

进一步的,步骤(4)包括:Further, step (4) includes:

(a)获取网络原始参数,网络原始参数包括支路阻抗、负荷和分布式电源的节点注入功率伪量测区间值以及支路功率和电流幅值实时量测区间值;(a) Obtain the original parameters of the network. The original parameters of the network include the pseudo-measurement interval value of the node injection power of the branch impedance, the load and the distributed power supply, and the real-time measurement interval value of the branch power and current amplitude;

(b)生成节点三相导纳矩阵YB以及区间状态估计模型中的量测矢量[z],其中,(b) Generate the node three-phase admittance matrix Y B and the measurement vector [z] in the interval state estimation model, where,

式中,为三相导纳矩阵中相应元素,i,k=1,…,n, 分别为节点注入有功和无功功率的区间值,分别为支路有功、无功以及电流幅值实时量测的区间数;In the formula, are the corresponding elements in the three-phase admittance matrix, i,k=1,...,n, Inject active and reactive power interval values for nodes respectively, Respectively, the number of intervals for real-time measurement of branch active power, reactive power and current amplitude;

(c)设置待求系统状态变量初始值 (c) Set the initial value of the system state variable to be requested

选取系统待求状态变量,设置状态变量初始区间近似解的中间值为待求系统状态变量初始值选取网络节点的三相电压幅值和相角作为系统待求的状态变量,则有 Select the system state variable to be sought, and set the intermediate value of the initial interval approximate solution of the state variable as the initial value of the system state variable to be sought Select the three-phase voltage amplitude and phase angle of the network nodes as the state variables to be obtained in the system, then we have

(d)设置迭代次数S=0;(d) Set the number of iterations S=0;

(e)获取修正方程组中相应的元素,包括△z n,z m-n, (e) Obtain the corresponding elements in the correction equations, including △ z n , z mn ,

代入修正方程组中的△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12],并求取相应的元素△z n,z m-n,其中,△z n代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的前n行矩阵数据,代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的前n行矩阵数据;而△z m-n代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的剩余的m-n行矩阵数据,则代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的剩余的m-n行矩阵数据;修正方程组用矩阵的形式可表示为:Will Substituting △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and △[I 12 ] in the revised equations, and calculating the corresponding elements △ z n , z mn , Among them, △ z n represents the first n rows of matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the lower limit of △[I 12 ], Represents the first n rows of matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the upper limit of △[I 12 ]; while △ z mn represents △[P 1 ], △ [Q 1 ], △[P 12 ], △[Q 12 ] and the remaining mn row matrix data of the lower limit of △[I 12 ], Then represent the remaining mn row matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the upper limit of △[I 12 ]; the correction equations can be expressed in matrix form as :

式中,△[P1]、△[Q1]分别表示节点区间注入有功和无功的不平衡量,△[P12]、△[Q12]分别表示支路区间注入有功和无功的不平衡量,△[I12]表示支路区间电流幅值的不平衡量,H*、N*、K*、L*、F*以及S*都为修正方程组中产生的辅助矩阵,△U、△θ分别表示节点电压幅值和相角的不平衡量;In the formula, △[P 1 ], △[Q 1 ] represent the unbalanced amount of active and reactive power injected into the node interval, respectively, and △[P 12 ], △[Q 12 ] represent the unbalanced amount of active and reactive power injected into the branch interval, respectively. △[I 12 ] represents the imbalance of the current amplitude in the branch section, H * , N * , K * , L * , F * and S * are auxiliary matrices generated in the correction equations, △U, △ θ respectively represent the unbalance of node voltage amplitude and phase angle;

(f)计算并分解量测雅可比矩阵Jm,获取相应元素Jn以及Jm-n (f) Calculate and decompose the measurement Jacobian matrix J m to obtain the corresponding elements J n and J mn

计算量测雅可比中各个元素,将量测函数h(x)在处进行一阶泰勒展开,忽略高次项后得到量测雅可比矩阵Jm,并获取相应的Jn以及Jm-n;其中,use Calculate each element in the measurement Jacobian, the measurement function h(x) in The first-order Taylor expansion is carried out at , and the measurement Jacobian matrix J m is obtained after ignoring the high-order terms, and the corresponding J n and J mn are obtained; among them,

(g)对Jn求逆,并计算元素(Jn)-1以及Jm-n(Jn)-1(g) Invert J n and calculate elements (J n ) -1 and J mn (J n ) -1 ;

(h)获取(Jn)-1矩阵中的每一行元素ai,并执行线性规划运算;(h) Obtain each row element a i in the (J n ) -1 matrix, and perform a linear programming operation;

(i)获取修正量的区间值并计算新的迭代状态量初始区间值结合△z n,z m-n,以及Jm-n(Jn)-1中相应元素分别代入下面的公式:(i) Obtain the interval value of the correction amount And calculate the initial interval value of the new iterative state quantity Combining △ z n , z mn , And the corresponding elements in J mn (J n ) -1 are respectively substituted into the following formulas:

xi =min ai·△zn x i = min a i · △ z n

式中,xi 分别表示节点i上待求状态变量的不平衡量的上下限值,△zn表示量测矢量矩阵中前n行元素的不平衡量;In the formula, x i represent the upper and lower limits of the unbalance of the state variable to be sought on node i respectively, and △ z n represents the unbalance of the first n rows of elements in the measurement vector matrix;

通过执行线性规划运算程序,求得系统电压修正量的区间值进而求得系统节点电压状态量新的初始区间值 Obtain the interval value of the system voltage correction amount by executing the linear programming operation program Then obtain the new initial interval value of the system node voltage state quantity

(j)检验迭代是否收敛(j) Check whether the iteration converges

利用预定的收敛标准判断迭代是否已经收敛,算法收敛的判据为:Use the predetermined convergence criteria to judge whether the iteration has converged, and the criterion for algorithm convergence is:

式中,S为迭代次数,ε为给定任意小数;In the formula, S is the number of iterations, ε is a given arbitrary decimal;

(k)如不收敛,更新迭代状态量,将代替作为新的方程初始近似解,且令S=S+1,返回至第(e)步开始进入下一次迭代,直至达到收敛判据,输出主动配电网三相区间状态估计的最优估计值;(k) If it does not converge, update the iterative state quantity, and set replace As the initial approximate solution of the new equation, let S=S+1, return to step (e) and enter the next iteration until the convergence criterion is reached, and output the optimal estimated value of the three-phase interval state estimation of the active distribution network ;

如果收敛,直接输出系统状态量的最佳估计区间值。If it converges, directly output the best estimated interval value of the system state quantity.

有益效果:与现有技术相比,本发明的方法具有以下优点:Beneficial effect: compared with the prior art, the method of the present invention has the following advantages:

(1)本发明可以弥补当前配电网态势感知系统中忽略电动汽车充电随机性及分布式电源出力间歇性的不足,为有源配电网下一步安全评估提供理论支撑。(1) The present invention can make up for the shortcomings of ignoring the randomness of electric vehicle charging and the intermittent output of distributed power sources in the current distribution network situation awareness system, and provide theoretical support for the next step of safety assessment of active distribution networks.

(2)本发明提出的主动配电网三相区间状态估计相比于现有的基于最佳估计准则的配电网状态估计而言更具备工程应用价值,在含节点注入功率不确定性情况下可为调度人员提供有效的系统状态量“界”的信息。(2) Compared with the existing distribution network state estimation based on the best estimation criterion, the three-phase interval state estimation of the active distribution network proposed by the present invention has more engineering application value. In the case of node injection power uncertainty The following can provide dispatchers with effective system state quantity "boundary" information.

(3)本发明中采用的基于迭代运算的线性规划方法可实现对主动配电网三相区间状态估计数学模型进行有效求解,相比于传统区间优化求解方法而言效率更高,因此可进一步提高主动配电网三相区间状态估计的实时性。(3) The linear programming method based on iterative operation used in the present invention can effectively solve the mathematical model of the three-phase interval state estimation of the active distribution network, which is more efficient than the traditional interval optimization solution method, so it can be further improved Improve the real-time performance of three-phase interval state estimation in active distribution network.

附图说明Description of drawings

图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;

图2为光伏发电系统区间预测算法流程图;Figure 2 is a flow chart of the interval prediction algorithm for the photovoltaic power generation system;

图3为风力发电系统区间预测算法流程图;Fig. 3 is a flow chart of the interval prediction algorithm of the wind power generation system;

图4为电动汽车充电负荷区间预测算法流程图;Figure 4 is a flowchart of the electric vehicle charging load interval prediction algorithm;

图5为某一简单主动配电网结构及其量测系统示意图;Figure 5 is a schematic diagram of a simple active distribution network structure and its measurement system;

图6为主动配电网三相区间状态估计模型进行求解的流程图。Fig. 6 is a flow chart for solving the three-phase interval state estimation model of the active distribution network.

具体实施方式detailed description

下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。The technical solutions of the present invention will be described in detail below, but the protection scope of the present invention is not limited to the embodiments.

如图1所示,本发明的含节点注入功率不确定性的主动配电网三相区间状态估计方法,包括以下步骤:As shown in Figure 1, the method for estimating the three-phase interval state of the active distribution network with node injection power uncertainty of the present invention includes the following steps:

步骤1:利用区间数对含光伏发电、风力发电和电动汽车充电的网络节点注入功率伪量测和支路实时量测等系统量测的不确定性进行定量描述。Step 1: Quantitatively describe the uncertainty of system measurements such as pseudo-measurement of injected power of network nodes and real-time measurement of branches including photovoltaic power generation, wind power generation and electric vehicle charging by using interval numbers.

目前大多数光伏发电系统短期功率预测模型采用确定性的点预测,即给出未来某一时刻光伏出力确定的功率值,显然这种点值功率预测方法忽略了光伏出力的不确定性,同时预测误差大。为了改进预测结果,如图2所示,本发明采用上下限估计方法通过建立双输出神经网络模型对光伏发电系统出力进行区间预测,算法主要实施步骤如下所述:At present, most short-term power prediction models of photovoltaic power generation systems use deterministic point prediction, that is, to give a certain power value of photovoltaic output at a certain time in the future. Obviously, this point-value power prediction method ignores the uncertainty of photovoltaic output. The error is large. In order to improve the prediction results, as shown in Figure 2, the present invention uses the upper and lower limit estimation method to perform interval prediction on the output of the photovoltaic power generation system by establishing a dual-output neural network model. The main implementation steps of the algorithm are as follows:

(1)数据预处理,划分神经网络训练和测试数据(1) Data preprocessing, divide neural network training and test data

光伏出力与多种因素相关,如光照辐射强度、光伏阵列面积以及环境温度等。按照一定的采样间隔收集历史光伏出力数据与对应时刻的气象数据,将处理过的数据作为神经网络的输入。Photovoltaic output is related to many factors, such as the intensity of light radiation, the area of the photovoltaic array, and the ambient temperature. According to a certain sampling interval, the historical photovoltaic output data and the meteorological data at the corresponding time are collected, and the processed data is used as the input of the neural network.

(2)区间预测优化算法以及粒子群算法设置(2) Interval prediction optimization algorithm and particle swarm optimization algorithm settings

衡量区间预测性能的重要因素是区间覆盖率(prediction intervals coverageprobability,PICP)和区间宽度(prediction intervals normalized averaged width,PINAW),计算公式分别如下式所示:The important factors to measure interval prediction performance are interval coverage (prediction intervals coverage probability, PICP) and interval width (prediction intervals normalized averaged width, PINAW), and the calculation formulas are as follows:

式中,λ为进行确定性预测的次数,cκ′为第κ′次预测值的评价指标;假设存在某一预测值yκ′,当时,cκ′=1;否则,cκ′=0;PPV 分别为区间预测的上界限和下界限;Λ为目标预测值的最小值与最大值的差。In the formula, λ is the number of deterministic predictions, and c κ' is the evaluation index of the κ'th predicted value; assuming that there is a certain predicted value y κ' , when , c κ' = 1; otherwise, c κ' = 0; and PPV are the upper limit and lower limit of the interval prediction respectively; Λ is the difference between the minimum value and the maximum value of the target prediction value.

选取的区间预测综合评估指标函数如下所示:The comprehensive evaluation index function of the selected interval forecast is as follows:

式中,Ψ为置信度值,也是f的调节参数;η也为f的调节参数,且实际工程中η∈[50,100]。In the formula, Ψ is the confidence value, which is also the adjustment parameter of f; η is also the adjustment parameter of f, and in actual engineering, η∈[50,100].

初始化粒子群的规模以及惯性常数等参数,生成初始粒子种群,也即光伏出力预测的初始区间值。Initialize the parameters such as the size of the particle swarm and the inertia constant to generate the initial particle population, which is the initial interval value of the photovoltaic output prediction.

(3)结合粒子群寻优算法,输出光伏处理预测最优区间值,具体寻优步骤为:(3) Combined with the particle swarm optimization algorithm, output the optimal interval value for photovoltaic processing prediction. The specific optimization steps are:

①设定迭代次数L=0,并创建评估函数值f(L)① set the number of iterations L=0, and create an evaluation function value f (L) ;

②更新粒子群算法参数②Update particle swarm algorithm parameters

在搜索空间内随机初始化每个粒子的位置和速度,将每个粒子的个体最优位置设置为当前粒子位置,并得到群体最优位置;并对粒子的位置和速度进行不断更新。The position and velocity of each particle are randomly initialized in the search space, the individual optimal position of each particle is set as the current particle position, and the group optimal position is obtained; and the position and velocity of the particles are continuously updated.

③创建新的预测区间并计算评估函数值f(L+1) ③Create a new prediction interval and calculate the evaluation function value f (L+1)

计算每个粒子的适应值,更新每个粒子的个体最优位置与整个群体的最优位置。Calculate the fitness value of each particle, and update the individual optimal position of each particle and the optimal position of the entire population.

④判断是否满足f(L+1)<fL ④Judge whether f (L+1) <f L is satisfied

若不满足,令L=L+1,返回步骤②继续搜索;若满足,则用评估函数值f(L+1)替换上一次迭代的评估函数值f(L)If not satisfied, set L=L+1, return to step ② to continue searching; if satisfied, replace the evaluation function value f (L) of the previous iteration with the evaluation function value f (L+1 ) .

⑤判断是否满足算法终止条件⑤ Determine whether the algorithm termination condition is satisfied

给定粒子群迭代收敛的条件(可设置最大迭代次数最为收敛条件)作为算法终止的条件,若不满足,则返回步骤②继续搜索;若满足,则停止搜索,并输出光伏出力预测最优区间值。Given the condition for particle swarm iterative convergence (the maximum number of iterations can be set as the convergence condition) as the condition for algorithm termination, if not satisfied, return to step ② to continue searching; if satisfied, stop searching and output the optimal interval for photovoltaic output prediction value.

风力发电系统的不确定性主要受风速和风向的影响。目前,风电功率超短期/短期预测的方法大致分为物理分析法、统计分析法以及物理-统计混合方法。物理分析法是一种综合考虑风电场地理信息及风电机组特性等信息进行详细分析、数学建模和预测的方法,该方法无需历史数据,但对模型精度要求较高。如图3所示,本发明在现有研究基础之上采用基于在线序贯-极限学习机(online sequential-extreme learning machine,OS-ELM)结构的双层神经网络风力预测模型,先通过ELM模型对风速进行修正,再利用第二层ELM预测风力发电功率,主要实施步骤如下所述:The uncertainty of wind power generation system is mainly affected by wind speed and wind direction. At present, the methods of wind power ultra-short-term/short-term forecasting can be roughly divided into physical analysis methods, statistical analysis methods, and physical-statistical hybrid methods. The physical analysis method is a method that comprehensively considers the geographical information of wind farms and the characteristics of wind turbines for detailed analysis, mathematical modeling and prediction. This method does not require historical data, but requires high model accuracy. As shown in Figure 3, on the basis of existing research, the present invention adopts a double-layer neural network wind force forecasting model based on an online sequential-extreme learning machine (online sequential-extreme learning machine, OS-ELM) structure, first through the ELM model The wind speed is corrected, and then the second-layer ELM is used to predict the wind power generation power. The main implementation steps are as follows:

(1)数据预处理。包含风电系统历史发电功率数据以及相对应的气象预报数据,如风速、风向以及温度等,考虑式(3)中向量Θ作为ELM的网络输入:(1) Data preprocessing. Including the historical power generation data of the wind power system and the corresponding weather forecast data, such as wind speed, wind direction and temperature, etc., consider the vector Θ in formula (3) as the network input of ELM:

Θ=[v vsin vcos ρ]T (3)Θ=[vv sin v cos ρ] T (3)

式中,v为风速;vsin、vcos分别为风向的正、余弦值;ρ为空气密度,可由温度、气压以及空气相对湿度计算得到。ELM网络中所有输入数据均需归一化到[0,1]区间。In the formula, v is the wind speed; v sin and v cos are the positive and cosine values of the wind direction respectively; ρ is the air density, which can be calculated from the temperature, air pressure and air relative humidity. All input data in the ELM network needs to be normalized to the [0,1] interval.

(2)风速修正环节。根据常见风电机组功率输出特性曲线易知在切入风速至额定风速过程中,较小的风速变化会引起明显的风电机组输出功率变化,因此需要对风速预报数据进行一定程度的修正。可以采用第一层ELM网络来模拟修正预报风速与实测风速之间的非线性关系。(2) Wind speed correction link. According to the power output characteristic curve of common wind turbines, it is easy to know that in the process of cut-in wind speed to rated wind speed, small changes in wind speed will cause obvious changes in the output power of wind turbines, so the wind speed forecast data needs to be corrected to a certain extent. The first layer of ELM network can be used to simulate the nonlinear relationship between the corrected forecast wind speed and the measured wind speed.

(3)风电机组出力区间预测环节。采用第二层ELM网络来进行风电机组出力的区间预测,选取当前时刻的修正风速值、风向正、余弦值以及空气密度值作为第二层ELM网络输入值,以当前时刻风电机组出力的上下区间值为网络输出。(3) The output interval prediction link of wind turbines. The second-layer ELM network is used to predict the interval of wind turbine output, and the corrected wind speed value, positive and cosine value of wind direction, and air density value at the current moment are selected as the input value of the second-layer ELM network, and the upper and lower intervals of wind turbine output at the current moment are used. value output for the network.

由于电动汽车的充电是一个强不确定性过程,影响其充电负荷的因素包括车主的行驶特性、充电的选择方式、充电的时长、电池特性以及当前时刻的电网电价等,导致很难从机理方向对电动汽车充电负荷需求的预测进行建模分析。为了提高对电动汽车充电负荷区间预测模型的合理性与准确性,在现有相关研究基础上,如图4所示,本发明采用基于统计数据规律的蒙特卡洛抽样法与区间数相结合的方式对电动汽车充电负荷需求进行预测。步骤如下:Since the charging of electric vehicles is a highly uncertain process, the factors that affect the charging load include the driving characteristics of the car owner, the choice of charging, the duration of charging, the characteristics of the battery, and the current grid electricity price, etc. Modeling and analysis of the prediction of electric vehicle charging load demand. In order to improve the rationality and accuracy of the electric vehicle charging load interval prediction model, on the basis of the existing relevant research, as shown in Figure 4, the present invention adopts the Monte Carlo sampling method based on the law of statistical data combined with the interval number The method is used to predict the charging load demand of electric vehicles. Proceed as follows:

(1)设置电动汽车数量M*=0(1) Set the number of electric vehicles M * = 0

(2)令M*=M*+1(2) Let M * =M * +1

(3)根据t确定初始充电时刻TS,其中TS可根据下文中介绍的充电过程起始时刻概率密度函数公式f(t)获取。(3) Determine the initial charging time T S according to t, where T S can be obtained according to the probability density function formula f(t) at the beginning of the charging process described below.

用户行为主要由电动汽车的日行驶里程d以及进行充电过程的起始时刻t(假设用户最后一次出行结束后即刻开始充电)决定,根据全美家庭出行调查项目(NationwideHousehold Travel Survey,NHTS2009)调查数据,结合最大似然估计法可以大致获取d和t的概率统计规律分别如式(4)、式(5)所示:User behavior is mainly determined by the daily mileage d of the electric vehicle and the starting time t of the charging process (assuming that the user starts charging immediately after the last trip), according to the survey data of the Nationwide Household Travel Survey (NHTS2009), Combined with the maximum likelihood estimation method, the probability and statistical laws of d and t can be roughly obtained, as shown in formula (4) and formula (5):

式中,μd=3.2,σd=0.88,μt=17.6,σt=3.4。In the formula, μ d =3.2, σ d =0.88, μ t =17.6, σ t =3.4.

(4)根据d抽样起始电池的荷电状态(State of Charge,SOC),计算所需充电时长TC,并确定充电结束时刻TE,其中TE=TS+TC(4) Sampling the initial state of charge (State of Charge, SOC) of the battery according to d, calculating the required charging time T C , and determining the charging end time T E , where T E =T S +T C .

电动汽车的电池SOC与其日行驶里程d也近似满足线性关系,则电动汽车充电时长TC可估计为:The battery SOC of an electric vehicle and its daily mileage d also approximately satisfy a linear relationship, then the charging time T C of an electric vehicle can be estimated as:

式中,W100为电动汽车的百公里平均耗电量(单位:kW·h/100km);PC为EV的充电功率(单位:kW)。In the formula, W 100 is the average power consumption per 100 kilometers of electric vehicles (unit: kW h/100km); P C is the charging power of EVs (unit: kW).

(5)计算抽样t0时刻的充电功率P(t0)(5) Calculate the charging power P(t 0 ) at sampling time t 0

在优化后的峰谷电价时间段内,电动汽车一般采取有序充模式,则单辆电动汽车在t0时刻的充电功率需求可表述为:During the optimized peak-valley electricity price period, electric vehicles generally adopt an orderly charging mode, so the charging power demand of a single electric vehicle at time t 0 can be expressed as:

式中:P(t0)为t0时间断面上单辆电动汽车的功率需求;PC(t0)为t0时间断面上单辆EV的充电功率;ζC(t0)为t0时间断面上单辆电动汽车充电功率的概率,Ψ(·)则为电动汽车起始充电时刻的概率密度函数,也即式(5)。In the formula: P(t 0 ) is the power demand of a single electric vehicle on the t 0 time section; P C (t 0 ) is the charging power of a single EV on the t 0 time section; ζ C (t 0 ) is t 0 The probability of the charging power of a single electric vehicle on the time section, Ψ(·) is the probability density function of the initial charging time of the electric vehicle, that is, formula (5).

(6)累加[TS,TE]时段EV充电负荷(6) Accumulate EV charging load during [T S , T E ] period

假设某一地区拥有M辆电动汽车,其一天内总的充电负荷可由单辆电动汽车逐一累加获得,则第t0时间断面该区域总的电动汽车充电负荷为:Assuming that there are M electric vehicles in a certain area, the total charging load in one day can be obtained by accumulating single electric vehicles one by one, then the total charging load of electric vehicles in this area at time t0 is:

(7)判断电动车数量是否超出预定值(7) Judging whether the number of electric vehicles exceeds the predetermined value

若M*<M成立,返回步骤(2),继续进行计算。If M * < M holds true, return to step (2) and continue the calculation.

若M*<M不成立,则获取所有电动汽车充电负荷需求的标准差,并输出充电预测最优区间值。If M * < M is not established, then obtain the standard deviation of charging load demand of all electric vehicles, and output the optimal interval value of charging prediction.

需要提及的是,由于式(7)很难推导出其解析解,因此需要基于大量历史统计数据,利用蒙特卡洛方法分别抽样出某一天内每个时间断面上电动汽车总的充电需求,且近似服从正态分布,其期望值和标准差分别为μEV和σEV,由此可用区间数对电动汽车充电需求进行表述:It should be mentioned that since it is difficult to derive its analytical solution for formula (7), it is necessary to use the Monte Carlo method to sample the total charging demand of electric vehicles on each time section in a certain day based on a large amount of historical statistical data. And approximately obey the normal distribution, its expected value and standard deviation are μ EV and σ EV respectively, so the interval number can be used to express the charging demand of electric vehicles:

式中,υ为区间数的半径调节参数,可根据实际情况进行设定。In the formula, υ is the radius adjustment parameter of the interval number, which can be set according to the actual situation.

步骤2:选取节点的三相电压幅值和相角作为系统待求的状态变量,建立考虑不确定性的主动配电网三相区间状态估计数学模型。Step 2: Select the three-phase voltage amplitude and phase angle of the node as the state variables to be obtained in the system, and establish a three-phase interval state estimation mathematical model of the active distribution network considering uncertainty.

如图5所示,一个简单主动配电网及其量测系统。在建立主动配电网三相区间状态估计模型之前,定义区间数[a]为一个非空实数集,满足其中 a分别代表区间数[a]的上下边界信息,特别地,当时,区间数退化为实数。假设如图5所示的网络中含有n个节点,则考虑不确定因素后节点i的注入有功/无功可分别表示为:As shown in Figure 5, a simple active distribution network and its measurement system. Before establishing the three-phase interval state estimation model of the active distribution network, the interval number [a] is defined as a non-empty real number set that satisfies in a represent the upper and lower boundary information of the interval number [a], especially, when When , interval numbers degenerate into real numbers. Assuming that there are n nodes in the network as shown in Figure 5, after considering the uncertain factors, the node i's Mutually Injected active/reactive work can be expressed as:

式中,分别表示用区间数刻画的常规负荷需求、分布式电源出力以及电动汽车充电的有功信息;则分别表示用区间数刻画的常规负荷需求、分布式出力的无功信息。需要提及的是,目前在对主动配电网进行稳态分析过程中常规负荷及分布式电源大多采用恒功率因数控制方式,本发明借鉴此类处理方式,即根据给定的功率因数即可相应计算出常规负荷、光伏出力以及风机出力的无功功率;而对于电动汽车则采用单位功率因素控制,则其充电的无功需求为零。In the formula, Respectively represent the conventional load demand described by the interval number, the distributed power output and the active information of electric vehicle charging; Respectively represent the conventional load demand described by the interval number and the reactive information of the distributed output. What needs to be mentioned is that most conventional loads and distributed power sources use constant power factor control in the process of steady-state analysis of the active distribution network. Correspondingly calculate the reactive power of conventional loads, photovoltaic output and fan output; and for electric vehicles, the unit power factor control is adopted, and the reactive power demand for charging is zero.

此外,实际配电网中只在馈线根部或者开关处安装功率量测和电流幅值量测装置,且量测装置在测量过程中产生的量测误差无可避免,因此通过数据采集与监视控制(supervisory control and data acquisition,SCADA)系统上传至调度中心的支路功率以及支路电流幅值量测真值也需考虑为区间数(也即量测误差有界),类似于节点注入功率,支路有功/无功功率量测以及支路电流幅值量测区间数也可分别表示为式中,i,k为节点,i,k=1,2,…,n,则区间状态估计模型中的量测矢量[z]可表述为:In addition, in the actual distribution network, power measurement and current amplitude measurement devices are only installed at the root of the feeder or at the switch, and the measurement error generated by the measurement device during the measurement process is unavoidable. Therefore, through data acquisition and monitoring control (Supervisory control and data acquisition, SCADA) system uploaded to the dispatching center branch power and the true value of the branch current amplitude measurement also need to be considered as an interval number (that is, the measurement error is bounded), similar to the node injection power, The number of intervals for branch active/reactive power measurement and branch current amplitude measurement can also be expressed as In the formula, i, k are nodes, i, k=1, 2,..., n, then the measurement vector [z] in the interval state estimation model can be expressed as:

取节点i的三相电压幅值和相角作为系统待求的状态变量xi,则有主动配电网三相区间状态估计即为根据量测矢量的上下界信息和非线性映射关系式来确定系统的状态变量信息,用数学关系式描述为:Take the three-phase voltage amplitude of node i and phase angle As the state variable x i to be demanded by the system, there is The three-phase interval state estimation of the active distribution network is to determine the state variable information of the system according to the upper and lower bound information of the measurement vector and the nonlinear mapping relational expression, which is described by the mathematical relational expression as:

式中,X′(·)表示系统状态变量的不确定性集合,x表示待求的状态变量,h(x)表示量测矢量与状态变量之间的非线性映射关系,z表示区间量测矢量的下限,而表示区间量测矢量的上限,M为系统量测集合,Z′(·)则表示系统量测矢量的不确定性集合。具体为:In the formula, X′(·) represents the uncertainty set of system state variables, x represents the state variable to be obtained, h(x) represents the nonlinear mapping relationship between the measurement vector and the state variable, z represents the interval measurement The lower bound of the vector, while Indicates the upper limit of the interval measurement vector, M is the system measurement set, and Z′(·) represents the uncertainty set of the system measurement vector. Specifically:

式中,为某一实际量测矢量,zj表示第j个量测量,zj 表示第j个量测量的下限值,表示第j个量测量的上限值,m′为系统量测集合M的基数。In the formula, is an actual measurement vector, z j represents the jth quantity measurement, z j represents the lower limit value of the jth quantity measurement, Indicates the upper limit of the jth quantity measurement, and m' is the base of the system measurement set M.

进一步地,若不考虑分布式电源和负荷之间的相关性,则含多类型分布式电和负荷不确定性的主动配电网三相区间状态估计具体模型可表述为公式(14)所示:Furthermore, if the correlation between distributed power sources and loads is not considered, the specific model for three-phase interval state estimation of active distribution networks with multi-type distributed power and load uncertainties can be expressed as shown in formula (14) :

式中,γ分别为a、b、c三相中的任意一相;表示待求的节点i电压幅值(相),代表节点i电压幅值的上限信息(相),代表节点i电压幅值的下限信息(相),待求的节点i电压幅值(相),代表节点i电压相角的上限信息(相),代表节点i电压相角的下限信息(相),表示支路ik上有功功率的下限值(相),表示支路ik上有功功率的上限值(相),表示支路ik上无功功率的下限值(相),表示支路ik上无功功率的上限值(相),表示支路ik上电流幅值的下限值(相),表示支路ik上电流幅值的上限值(相),代表节点i注入有功功率的下限信息(相),代表节点i注入有功功率的上限信息(相),代表节点i注入无功功率的下限信息(相),代表节点i注入无功功率的上限信息(相),代表节点i的电压相角(γ相),为节点i上相与γ相之间相角差,为节点i和k(d)之间在相与γ相的相角差,为三相节点导纳矩阵中对应的元素,代表节点k的电压相角(γ相),代表节点i的电压幅值(γ相),代表节点k的电压幅值(γ相)。In the formula, γ is any one of the three phases a, b and c respectively; Indicates the voltage amplitude of node i to be sought ( Mutually), Represents the upper limit information of node i voltage amplitude ( Mutually), Represents the lower limit information of node i voltage amplitude ( Mutually), The voltage amplitude of node i to be sought ( Mutually), Represents the upper limit information of node i voltage phase angle ( Mutually), Represents the lower limit information of node i voltage phase angle ( Mutually), Indicates the lower limit of active power on branch ik ( Mutually), Indicates the upper limit of active power on branch ik ( Mutually), Indicates the lower limit of reactive power on branch ik ( Mutually), Indicates the upper limit of reactive power on branch ik ( Mutually), Indicates the lower limit of the current amplitude on branch ik ( Mutually), Indicates the upper limit of the current amplitude on the branch ik ( Mutually), Represents the lower limit information of active power injected by node i ( Mutually), Represents the upper limit information of active power injected by node i ( Mutually), Represents the lower limit information of reactive power injected by node i ( Mutually), Represents the upper limit information of reactive power injected by node i ( Mutually), Represents the voltage phase angle (γ phase) of node i, for node i Phase angle difference between phase and γ phase, between nodes i and k(d) in The phase angle difference between phase and γ phase, with is the corresponding element in the three-phase node admittance matrix, Represents the voltage phase angle (γ phase) of node k, Represents the voltage amplitude (γ phase) of node i, Represents the voltage amplitude of node k (γ phase).

步骤3:基于误差(噪声)未知但有界(unknown-but-bounded error,UBBE)理论将所建立的主动配电网区间状态估计模型拆分为两个包含非线性区间约束条件的优化问题,便于采用合适的求解方法进行分析与求解。Step 3: Based on the unknown-but-bounded error (UBBE) theory, the established active distribution network interval state estimation model is split into two optimization problems containing nonlinear interval constraints, It is convenient to adopt the appropriate solution method for analysis and solution.

由于量测矢量的维数大于系统状态变量的维数,从数学角度来分析这类问题隶属于区间超定方程组的建模与求解,加之又存在非线性映射关系h(x),导致状态集合X′(·)和量测量集合Z′(·)的几何形状十分复杂,目前难以建立统一的解析表达式以及标准分析方法,应用数学家A.Bargiela基于误差(噪声)未知但有界理论给出了此类问题一种行之有效的分析方法,即将原问题拆分为两个包含非线性区间约束条件的优化问题,对待求变量的上下界分别进行求取。借鉴此类思想,则本发明所建立的区间状态估计模型用公式可简述为:Since the dimension of the measurement vector is larger than the dimension of the system state variables, analyzing this kind of problem from a mathematical point of view belongs to the modeling and solution of interval overdetermined equations, and there is a nonlinear mapping relationship h(x), resulting in the state The geometry of the set X′(·) and the measurement set Z′(·) is very complex, and it is difficult to establish a unified analytical expression and standard analysis method at present. Applied mathematician A.Bargiela based on the theory that the error (noise) is unknown but bounded An effective analysis method for this kind of problem is given, that is, the original problem is divided into two optimization problems containing nonlinear interval constraints, and the upper and lower bounds of the variables to be sought are obtained respectively. Drawing lessons from this kind of thought, then the interval state estimation model established by the present invention can be briefly described as:

式中可表示节点i状态变量的不确定区间值,而xi ,则可表示节点i状态变量波动的置信界限(confidence limits)。In the formula can represent the uncertain interval value of the state variable of node i, and x i , Then can represent the confidence limits (confidence limits) of the fluctuation of the state variable of node i.

步骤4:采用一种基于迭代运算的线性规划方法结合稀疏矩阵技术对所建立的主动配电网三相区间状态估计数学模型进行有效求解。Step 4: Use a linear programming method based on iterative operations combined with sparse matrix technology to effectively solve the established mathematical model of the three-phase interval state estimation of the active distribution network.

本发明所提出的基于线性规划算法的主动配电网三相区间状态估计求解算法流程如图6所示,主要实施步骤如下:The process flow of the algorithm for solving the three-phase interval state estimation of the active distribution network based on the linear programming algorithm proposed by the present invention is shown in Figure 6, and the main implementation steps are as follows:

(1)获取网络原始参数,网络原始参数包括支路阻抗、负荷和分布式电源等节点注入功率伪量测区间值以及支路功率和电流幅值实时量测区间值。(1) Obtain the original parameters of the network. The original parameters of the network include pseudo-measurement interval values of node injection power such as branch impedance, load and distributed power supply, and real-time measurement interval values of branch power and current amplitude.

(2)生成节点三相导纳矩阵YB以及区间状态估计模型中的量测矢量[z]。其中,(2) Generate the node three-phase admittance matrix Y B and the measurement vector [z] in the interval state estimation model. in,

式中,为三相导纳矩阵中相应元素,i,k=1,…,n, 分别为节点注入有功和无功功率的区间值,光伏、风电以及电动汽车的注入功率区间值可按照上篇介绍的建模方法相应获取,常规负荷注入功率的区间值可在日前预测基础上添加一定的波动区间数。分别为支路有功、无功以及电流幅值实时量测的区间数,只需在量测真值的基础上添加较小的波动区间数即可。In the formula, are the corresponding elements in the three-phase admittance matrix, i,k=1,...,n, The interval values of active and reactive power are injected into the nodes respectively. The interval values of injected power of photovoltaic, wind power and electric vehicles can be obtained according to the modeling method introduced in the previous chapter. The interval values of conventional load injected power can be added on the basis of day-ahead prediction A certain number of fluctuation intervals. They are respectively the number of intervals for real-time measurement of branch active power, reactive power, and current amplitude. It is only necessary to add a smaller number of fluctuation intervals on the basis of the measured true value.

(3)设置待求系统状态变量初始值 (3) Set the initial value of the system state variable to be requested

选取系统待求状态变量,设置状态变量初始区间近似解的中间值为待求系统状态变量初始值本发明选取网络节点的三相电压幅值和相角作为系统待求的状态变量,则有 Select the system state variable to be sought, and set the intermediate value of the initial interval approximate solution of the state variable as the initial value of the system state variable to be sought The present invention selects the three-phase voltage amplitude and phase angle of the network node as the state variable to be sought by the system, then there are

(4)设置迭代次数S=0。(4) Set the number of iterations S=0.

(5)获取修正方程组中相应的元素,包括△z n,z m-n, (5) Obtain the corresponding elements in the correction equations, including △ z n , z mn ,

代入修正方程组中的△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12],并求取相应的元素△z n,z m-n,其中,△z n代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的前n行矩阵数据,代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的前n行矩阵数据;而△z m-n代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的剩余的m-n行矩阵数据,则代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的剩余的m-n行矩阵数据;修正方程组用矩阵的形式可表示为:Will Substituting △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and △[I 12 ] in the revised equations, and calculating the corresponding elements △ z n , z mn , Among them, △ z n represents the first n rows of matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the lower limit of △[I 12 ], Represents the first n rows of matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the upper limit of △[I 12 ]; while △ z mn represents △[P 1 ], △ [Q 1 ], △[P 12 ], △[Q 12 ] and the remaining mn row matrix data of the lower limit of △[I 12 ], Then represent the remaining mn row matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and △[I 12 ] upper limit; the correction equations can be expressed in matrix form as :

式中,△[P1]、△[Q1]分别表示节点区间注入有功和无功的不平衡量,△[P12]、△[Q12]分别表示支路区间注入有功和无功的不平衡量,△[I12]表示支路区间电流幅值的不平衡量,H*、N*、K*、L*、F*以及S*都为修正方程组中产生的辅助矩阵,△U、△θ分别表示节点电压幅值和相角的不平衡量。In the formula, △[P 1 ], △[Q 1 ] represent the unbalanced amount of active and reactive power injected into the node interval, respectively, and △[P 12 ], △[Q 12 ] represent the unbalanced amount of active and reactive power injected into the branch interval, respectively. △[I 12 ] represents the imbalance of the current amplitude in the branch section, H * , N * , K * , L * , F * and S * are auxiliary matrices generated in the correction equations, △U, △ θ respectively represent the unbalanced amount of node voltage amplitude and phase angle.

(6)计算并分解量测雅可比矩阵Jm,获取相应元素Jn以及Jm-n (6) Calculate and decompose the measurement Jacobian matrix J m to obtain the corresponding elements J n and J mn

计算量测雅可比中各个元素,将量测函数h(x)在处进行一阶泰勒展开,忽略高次项后得到量测雅可比矩阵Jm,并获取相应的Jn以及Jm-n。其中,use Calculate each element in the measurement Jacobian, the measurement function h(x) in The first-order Taylor expansion is carried out at , and the measurement Jacobian matrix J m is obtained after ignoring the high-order items, and the corresponding J n and J mn are obtained. in,

(7)对Jn求逆,并计算元素(Jn)-1以及Jm-n(Jn)-1(7) Calculate the inverse of J n and calculate elements (J n ) -1 and J mn (J n ) -1 .

(8)获取(Jn)-1矩阵中的每一行元素ai,并执行线性规划运算。(8) Obtain the element a i of each row in the (J n ) -1 matrix, and perform a linear programming operation.

(9)获取修正量的区间值并计算新的迭代状态量初始区间值结合△z n,z m-n,以及Jm-n(Jn)-1中相应元素分别代入下面的公式:(9) Obtain the interval value of the correction amount And calculate the initial interval value of the new iterative state quantity Combining △ z n , z mn , And the corresponding elements in J mn (J n ) -1 are respectively substituted into the following formulas:

式中,xi 分别表示节点i上待求状态变量的不平衡量的上下限值,△zn表示量测矢量矩阵中前n行元素的不平衡量。In the formula, x i represent the upper and lower limits of the unbalance of the state variable to be obtained on node i respectively, and △ z n represents the unbalance of the first n rows of elements in the measurement vector matrix.

通过执行线性规划运算程序,求得系统电压修正量的区间值进而求得系统节点电压状态量新的初始区间值 Obtain the interval value of the system voltage correction amount by executing the linear programming operation program Then obtain the new initial interval value of the system node voltage state quantity

(10)检验迭代是否收敛(10) Check whether the iteration converges

利用预定的收敛标准判断迭代是否已经收敛,算法收敛的判据为:Use the predetermined convergence criteria to judge whether the iteration has converged, and the criterion for algorithm convergence is:

式中,S为迭代次数,ε为给定任意小数。In the formula, S is the number of iterations, and ε is a given arbitrary decimal.

(11)如不收敛,更新迭代状态量,将代替作为新的方程初始近似解,且令S=S+1,返回至第(5)步开始进入下一次迭代,直至达到收敛判据,输出主动配电网三相区间状态估计的最优估计值。(11) If it does not converge, update the iterative state quantity, and replace As the initial approximate solution of the new equation, let S=S+1, return to step (5) and enter the next iteration until the convergence criterion is reached, and output the optimal estimated value of the three-phase interval state estimation of the active distribution network .

如果收敛,直接输出系统状态量的最佳估计区间值。If it converges, directly output the best estimated interval value of the system state quantity.

Claims (8)

1.一种含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,包括以下步骤:1. A method for estimating an active distribution network three-phase interval state containing node injection power uncertainty, is characterized in that, comprises the following steps: (1)采用区间数对含光伏发电、风力发电以及电动汽车充电系统的节点注入功率伪量测以及实时量测装置的量测误差的不确定性问题分别进行建模与分析;(1) Using the interval number to model and analyze the uncertainties of pseudo-measurement of node injection power including photovoltaic power generation, wind power generation and electric vehicle charging system and measurement error of real-time measurement devices; (2)选取节点的三相电压幅值和相角作为系统待求的状态变量,建立考虑不确定性的主动配电网三相区间状态估计数学模型;(2) Select the three-phase voltage amplitude and phase angle of the node as the state variables to be obtained in the system, and establish a three-phase interval state estimation mathematical model of the active distribution network considering uncertainty; (3)基于误差未知但有界理论将所建立的考虑不确定性的主动配电网三相区间状态估计数学模型拆分为两个包含非线性区间约束条件的优化问题,便于进行分析与求解;(3) Based on the unknown but bounded error theory, the established mathematical model of active distribution network three-phase interval state estimation considering uncertainty is split into two optimization problems containing nonlinear interval constraints, which is convenient for analysis and solution ; (4)采用一种基于迭代运算的线性规划方法结合稀疏矩阵技术对所建立的考虑不确定性的主动配电网三相区间状态估计数学模型进行求解。(4) A linear programming method based on iterative operation combined with sparse matrix technology is used to solve the established mathematical model of active distribution network three-phase interval state estimation considering uncertainty. 2.根据权利要求1所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(1)包括:2. the active distribution network three-phase interval state estimation method containing node injection power uncertainty according to claim 1, is characterized in that, step (1) comprises: (11)在用区间数表征光伏发电系统出力不确定性时,采用上下限估计方法通过建立双输出神经网络模型对光伏发电系统出力进行区间建模;(11) When using the interval number to characterize the output uncertainty of the photovoltaic power generation system, the upper and lower limit estimation method is used to model the output of the photovoltaic power generation system by establishing a dual-output neural network model; (12)在用区间数表征风力发电系统出力不确定性时,采用基于在线序贯-极限学习机结构的双层神经网络风力预测模型,先通过ELM模型对风速进行修正,再利用第二层ELM预测风力发电功率;(12) When interval numbers are used to represent the uncertainty of wind power system output, a two-layer neural network wind prediction model based on the online sequential-extreme learning machine structure is used. First, the wind speed is corrected by the ELM model, and then the second layer is used to ELM predicts wind power generation; (13)在对电动汽车的随机充电进行区间建模分析时,采用基于统计数据规律的蒙特卡洛抽样法与区间数相结合的方式对电动汽车充电负荷需求进行区间预测。(13) When performing interval modeling analysis on the stochastic charging of electric vehicles, the Monte Carlo sampling method based on the law of statistical data combined with interval numbers is used to forecast the charging load demand of electric vehicles in intervals. 3.根据权利要求2所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(11)包括:3. the active distribution network three-phase interval state estimation method that contains node injection power uncertainty according to claim 2, is characterized in that, step (11) comprises: (a)数据预处理,划分神经网络训练和测试数据(a) Data preprocessing, divide neural network training and test data 按照预定的采样间隔收集历史光伏出力数据与对应时刻的气象数据,将处理过的数据作为神经网络的输入;Collect historical photovoltaic output data and meteorological data at the corresponding time according to the predetermined sampling interval, and use the processed data as the input of the neural network; (b)区间预测优化算法以及粒子群算法设置(b) Interval prediction optimization algorithm and particle swarm optimization algorithm settings 区间覆盖率PICP和区间宽度PINAW是衡量区间预测性能的重要因素,计算公式分别如下式所示:Interval coverage rate PICP and interval width PINAW are important factors to measure the performance of interval forecasting, and the calculation formulas are as follows: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mi>I</mi> <mi>C</mi> <mi>P</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>&amp;lambda;</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msup> <mi>&amp;kappa;</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;lambda;</mi> </munderover> <msub> <mi>c</mi> <msup> <mi>&amp;kappa;</mi> <mo>&amp;prime;</mo> </msup> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>P</mi> <mi>I</mi> <mi>N</mi> <mi>A</mi> <mi>W</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Lambda;</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msup> <mi>&amp;kappa;</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;lambda;</mi> </munderover> <mrow> <mo>(</mo> <mover> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>-</mo> <munder> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;OverBar;</mo> </munder> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>P</mi><mi>I</mi><mi>C</mi><mi>P</mi><mo>=</mo><mfrac><mn>1</mn><mi>&amp;lambda;</mi></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><msup><mi>&amp;kappa;</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mn>1</mn></mrow><mi>&amp;lambda;</mi></munderover><msub><mi>c</mi><msup><mi>&amp;kappa;</mi><mo>&amp;prime;</mo></msup></msub></mrow></mtd></mtr><mtr><mtd><mrow><mi>P</mi><mi>I</mi><mi>N</mi><mi>A</mi><mi>W</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi>&amp;lambda;</mi><mi>&amp;Lambda;</mi></mrow></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><msup><mi>&amp;kappa;</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mn>1</mn></mrow><mi>&amp;lambda;</mi></munderover><mrow><mo>(</mo><mover><msub><mi>P</mi><mrow><mi>P</mi><mi>V</mi></mrow></msub><mo>&amp;OverBar;</mo></mover><mo>-</mo><munder><msub><mi>P</mi><mrow><mi>P</mi><mi>V</mi></mrow></msub><mo>&amp;OverBar;</mo></munder><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced> 式中,λ为进行确定性预测的次数,cκ′为第κ′次预测值的评价指标;假设存在某一预测值yκ′,当时,cκ′=1;否则,cκ′=0;PPV 分别为区间预测的上界限和下界限;Λ为目标预测值的最小值与最大值的差;In the formula, λ is the number of deterministic predictions, and c κ' is the evaluation index of the κ'th predicted value; assuming that there is a certain predicted value y κ' , when , c κ' = 1; otherwise, c κ' = 0; and PPV are the upper limit and lower limit of the interval prediction respectively; Λ is the difference between the minimum value and the maximum value of the target prediction value; 选取的区间预测综合评估指标函数如下所示:The comprehensive evaluation index function of the selected interval forecast is as follows: f=PINAW(1+γ(PICP)e-η(PICP-Ψ))f=PINAW(1+γ(PICP)e -η (PICP-Ψ) ) <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>P</mi> <mi>I</mi> <mi>C</mi> <mi>P</mi> <mo>&amp;GreaterEqual;</mo> <mi>&amp;Psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>P</mi> <mi>I</mi> <mi>C</mi> <mi>P</mi> <mo>&lt;</mo> <mi>&amp;Psi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> 1 <mrow><mi>&amp;gamma;</mi><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>P</mi><mi>I</mi><mi>C</mi><mi>P</mi><mo>&amp;GreaterEqual;</mo><mi>&amp;Psi;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mn>1</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>P</mi><mi>I</mi><mi>C</mi><mi>P</mi><mo>&lt;</mo><mi>&amp;Psi;</mi></mrow></mtd></mtr></mtable></mfenced></mrow> 1 式中,Ψ为置信度值,也是f的调节参数;η为f的调节参数,且实际工程中η∈[50,100];In the formula, Ψ is the confidence value, which is also the adjustment parameter of f; η is the adjustment parameter of f, and in actual engineering, η∈[50,100]; 初始化粒子群的规模以及惯性常数,生成初始粒子种群,也即光伏出力预测的初始区间值;Initialize the size and inertia constant of the particle swarm to generate the initial particle swarm, which is the initial interval value for photovoltaic output prediction; (c)结合粒子群寻优算法,输出光伏处理预测最优区间值,包括:(c) Combined with the particle swarm optimization algorithm, output the optimal interval value for photovoltaic processing prediction, including: ①设定迭代次数L=0,并创建评估函数值f(L)① set the number of iterations L=0, and create an evaluation function value f (L) ; ②更新粒子群算法参数②Update particle swarm algorithm parameters 在搜索空间内随机初始化每个粒子的位置和速度,将每个粒子的个体最优位置设置为当前粒子位置,得到群体最优位置,并对粒子的位置和速度进行不断更新;Randomly initialize the position and velocity of each particle in the search space, set the individual optimal position of each particle as the current particle position, obtain the optimal position of the group, and continuously update the position and velocity of the particles; ③创建新的预测区间并计算评估函数值f(L+1) ③Create a new prediction interval and calculate the evaluation function value f (L+1) 计算每个粒子的适应值,更新每个粒子的个体最优位置与整个群体的最优位置;Calculate the fitness value of each particle, and update the individual optimal position of each particle and the optimal position of the entire group; ④判断是否满足f(L+1)<fL ④Judge whether f (L+1) <f L is satisfied 若不满足,令L=L+1,返回步骤②继续搜索;若满足,则用评估函数值f(L+1)替换上一次迭代的评估函数值f(L)If not satisfied, make L=L+1, return to step 2. continue searching; If satisfy, then replace the evaluation function value f (L) of last iteration with evaluation function value f (L+1 ) ; ⑤判断是否满足算法终止条件⑤ Determine whether the algorithm termination condition is satisfied 给定粒子群迭代收敛的条件,作为算法终止的条件,若不满足,则返回步骤②继续搜索;若满足,则停止搜索,并输出光伏出力预测最优区间值。Given the condition of particle swarm iterative convergence, as the condition for the termination of the algorithm, if not satisfied, return to step ② to continue the search; if satisfied, stop the search, and output the optimal interval value of photovoltaic output prediction. 4.根据权利要求2所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(12)包括:4. the active distribution network three-phase interval state estimation method that contains node injection power uncertainty according to claim 2, is characterized in that, step (12) comprises: (a)数据预处理,该数据包含风力发电系统历史发电功率数据以及相对应的气象预报数据,向量Θ作为ELM的网络输入,公式如下:(a) Data preprocessing, the data includes the historical power generation data of the wind power generation system and the corresponding weather forecast data, the vector Θ is used as the network input of the ELM, the formula is as follows: Θ=[v vsin vcos ρ]T Θ=[vv sin v cos ρ] T 式中,v为风速;vsin、vcos分别为风向的正弦值、余弦值;ρ为空气密度,由温度、气压以及空气相对湿度计算得到;ELM网络中所有输入数据均归一化到[0,1]区间;In the formula, v is the wind speed; v sin and v cos are the sine and cosine values of the wind direction respectively; ρ is the air density, which is calculated from the temperature, air pressure and air relative humidity; all input data in the ELM network are normalized to [ 0,1] interval; (b)风速修正环节,采用第一层ELM网络来模拟修正预报风速与实测风速之间的非线性关系;(b) In the wind speed correction link, the first-layer ELM network is used to simulate and correct the nonlinear relationship between the forecast wind speed and the measured wind speed; (c)风力发电系统出力区间预测环节,采用第二层ELM网络来进行风力发电系统出力的区间预测,选取当前时刻的修正风速值、风向正、余弦值以及空气密度值作为第二层ELM网络输入值,以当前时刻风力发电系统出力的上下区间值为网络输出。(c) In the link of wind power generation system output interval prediction, the second-layer ELM network is used to predict the interval of wind power generation system output, and the corrected wind speed value, wind direction positive, cosine value and air density value at the current moment are selected as the second-layer ELM network The input value is the upper and lower interval values of the output of the wind power generation system at the current moment output for the network. 5.根据权利要求2所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(13)包括:5. the active distribution network three-phase interval state estimation method that contains node injection power uncertainty according to claim 2, is characterized in that, step (13) comprises: (a)设置电动汽车数量M*=0(a) Set the number of electric vehicles M * = 0 (b)令M*=M*+1(b) Let M * =M * +1 (c)根据t和f(t)确定初始充电时刻TS (c) Determine the initial charging time T S according to t and f(t) 用户行为主要由电动汽车的日行驶里程d以及进行充电过程的起始时刻t决定,根据全美家庭出行调查项目调查数据,结合最大似然估计法获取d和t的概率统计规律分别如下式所示:User behavior is mainly determined by the daily mileage d of the electric vehicle and the starting time t of the charging process. According to the survey data of the national household travel survey project, combined with the maximum likelihood estimation method, the probability and statistical laws of d and t are respectively shown in the following formula : <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> <msub> <mi>d&amp;sigma;</mi> <mi>d</mi> </msub> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>ln</mi> <mi> </mi> <mi>d</mi> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>d</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> 2 <mrow><mi>f</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><msqrt><mrow><mn>2</mn><mi>&amp;pi;</mi></mrow></msqrt><msub><mi>d&amp;sigma;</mi><mi>d</mi></msub></mrow></mfrac><mi>exp</mi><mo>&amp;lsqb;</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>ln</mi><mi></mi><mi>d</mi><mo>-</mo><msub><mi>&amp;mu;</mi><mi>d</mi></msub><mo>)</mo></mrow><mn>2</mi>mn></msup><mrow><mn>2</mn><msubsup><mi>&amp;sigma;</mi><mi>d</mi><mn>2</mn></msubsup></mrow></mfrac><mo>&amp;rsqb;</mo></mrow> 2 <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> <msub> <mi>&amp;sigma;</mi> <mi>t</mi> </msub> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>t</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>-</mo> <mn>12</mn> <mo>)</mo> <mo>&amp;le;</mo> <mi>t</mi> <mo>&lt;</mo> <mn>24</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> <msub> <mi>&amp;sigma;</mi> <mi>t</mi> </msub> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>24</mn> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>t</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> <mn>0</mn> <mo>&lt;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>-</mo> <mn>12</mn> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mfrac><mn>1</mn><mrow><msqrt><mrow><mn>2</mn><mi>&amp;pi;</mi></mrow></msqrt><msub><mi>&amp;sigma;</mi><mi>t</mi></msub></mrow></mfrac><mi>exp</mi><mo>&amp;lsqb;</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>t</mi><mo>-</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><msubsup><mi>&amp;sigma;</mi><mi>t</mi><mn>2</mn></msubsup></mrow></mfrac><mo>&amp;rsqb;</mo><mo>,</mo><mo>(</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>-</mo><mn>12</mn><mo>)</mo><mo>&amp;le;</mo><mi>t</mi><mo>&lt;</mo><mn>24</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mrow><msqrt><mrow><mn>2</mn><mi>&amp;pi;</mi></mrow></msqrt><msub><mi>&amp;sigma;</mi><mi>t</mi></msub></mrow></mfrac><mi>exp</mi><mo>&amp;lsqb;</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>24</mn><mo>-</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><msubsup><mi>&amp;sigma;</mi><mi>t</mi><mn>2</mn></msubsup></mrow></mfrac><mo>&amp;rsqb;</mo><mo>,</mo><mn>0</mn><mo>&lt;</mo><mi>t</mi><mo>&amp;le;</mo><mo>(</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>-</mo><mn>12</mn><mo>)</mo></mtd></mtr></mtable></mfenced></mrow> 式中,μd=3.2,σd=0.88,μt=17.6,σt=3.4;f(t)为充电过程起始时刻概率密度函数;并根据f(t)获取初始充电时刻TSIn the formula, μ d = 3.2, σ d = 0.88, μ t = 17.6, σ t = 3.4; f(t) is the probability density function of the initial charging process; and the initial charging time T S is obtained according to f(t); (d)根据d抽样起始电池的荷电状态,计算所需充电时长TC,并确定充电结束时刻TE,其中TE=TS+TC(d) Sampling the initial state of charge of the battery according to d, calculating the required charging time T C , and determining the charging end time T E , where T E =T S +T C ; 电动汽车的电池SOC与其日行驶里程d也近似满足线性关系,则电动汽车充电时长TC估计为:The battery SOC of an electric vehicle and its daily mileage d also approximately satisfy a linear relationship, then the charging time T C of an electric vehicle is estimated as: <mrow> <msub> <mi>T</mi> <mi>C</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>d</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>W</mi> <mn>100</mn> </msub> </mrow> <mrow> <mn>100</mn> <msub> <mi>P</mi> <mi>C</mi> </msub> </mrow> </mfrac> </mrow> <mrow><msub><mi>T</mi><mi>C</mi></msub><mo>=</mo><mfrac><mrow><mi>d</mi><mo>&amp;CenterDot;</mo><msub><mi>W</mi><mn>100</mn></msub></mrow><mrow><mn>100</mn><msub><mi>P</mi><mi>C</mi></msub></mrow></mfrac></mrow> 式中,W100为电动汽车的百公里平均耗电量,PC为EV的充电功率;In the formula, W 100 is the average power consumption per 100 kilometers of electric vehicles, and P C is the charging power of EVs; (e)计算抽样t0时刻的充电功率P(t0)(e) Calculate the charging power P(t 0 ) at sampling time t 0 在优化后的峰谷电价时间段内,电动汽车一般采取有序充模式,则单辆电动汽车在t0时刻的充电功率需求表述为:During the optimized peak and valley electricity price period, electric vehicles generally adopt an ordered charging mode, and the charging power demand of a single electric vehicle at time t 0 is expressed as: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>P</mi> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>=</mo> <msub> <mi>&amp;zeta;</mi> <mi>C</mi> </msub> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>&amp;times;</mo> <msub> <mi>P</mi> <mi>C</mi> </msub> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;zeta;</mi> <mi>C</mi> </msub> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>=</mo> <mi>&amp;Psi;</mi> <mo>(</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>&amp;Psi;</mi> <mo>(</mo> <mi>t</mi> <mo>&gt;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>24</mn> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mi>P</mi><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo><mo>=</mo><msub><mi>&amp;zeta;</mi><mi>C</mi></msub><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo><mo>&amp;times;</mo>mo><msub><mi>P</mi><mi>C</mi></msub><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mtd></mtr><mtr><mtd><msub><mi>&amp;zeta;</mi><mi>C</mi></msub><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo><mo>=</mo><mi>&amp;Psi;</mi><mo>(</mo><mi>t</mi><mo><</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>t</mi><mo>+</mo><msub><mi>T</mi><mi>C</mi></msub><mo>&amp;GreaterEqual;</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mtd></mtr><mtr><mtd><mo>+</mo><mi>&amp;Psi;</mi><mo>(</mo><mi>t</mi><mo&gt;&gt;</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>t</mi><mo>+</mo><msub><mi>T</mi><mi>C</mi></msub><mo>&amp;GreaterEqual;</mo><msub><mi>t</mi><mn>0</mn></msub><mo>+</mo><mn>24</mn><mo>)</mo></mtd></mtr></mtable></mfenced> 式中:P(t0)为t0时间断面上单辆电动汽车的功率需求;PC(t0)为t0时间断面上单辆EV的充电功率;ζC(t0)为t0时间断面上单辆电动汽车充电功率的概率,Ψ(·)则为电动汽车起始充电时刻的概率密度函数;In the formula: P(t 0 ) is the power demand of a single electric vehicle on the t 0 time section; P C (t 0 ) is the charging power of a single EV on the t 0 time section; ζ C (t 0 ) is t 0 The probability of the charging power of a single electric vehicle on the time section, Ψ( ) is the probability density function of the initial charging time of the electric vehicle; (f)累加[TS,TE]时段EV充电负荷(f) Accumulate EV charging load during [T S , T E ] period 假设某一地区拥有M辆电动汽车,其一天内总的充电负荷可由单辆电动汽车逐一累加获得,则第t0时间断面该区域总的电动汽车充电负荷为:Assuming that there are M electric vehicles in a certain area, the total charging load in one day can be obtained by accumulating single electric vehicles one by one, then the total charging load of electric vehicles in this area at time t0 is: <mrow> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msup> <mi>&amp;gamma;</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>P</mi> <msup> <mi>&amp;gamma;</mi> <mo>&amp;prime;</mo> </msup> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>24</mn> </mrow> <mrow><msub><mi>P</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><msup><mi>&amp;gamma;</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><msub><mi>P</mi><msup><mi>&amp;gamma;</mi><mo>&amp;prime;</mo></msup></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>t</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mn>24</mn></mrow> 其中,Pγ′(t0)表示t0时间断面上第γ′辆电动汽车的充电负荷;Among them, P γ′ (t 0 ) represents the charging load of the γ′th electric vehicle on the t 0 time section; (g)判断电动车数量是否超出预定值(g) Judging whether the number of electric vehicles exceeds a predetermined value 若M*<M成立,返回步骤(b),继续进行计算;If M * < M is established, return to step (b) and continue the calculation; 若M*<M不成立,则获取所有电动汽车充电负荷需求的标准差,并输出充电预测最优区间值。If M * < M is not established, then obtain the standard deviation of charging load demand of all electric vehicles, and output the optimal interval value of charging prediction. 另外,由于步骤(e)中公式很难推导出其解析解,因此需要基于大量历史统计数据,利用蒙特卡洛方法分别抽样出某一天内每个时间断面上电动汽车总的充电需求,且近似服从正态分布,其期望值和标准差分别为μEV和σEV,由此可用区间数对电动汽车充电需求进行表述:In addition, since the formula in step (e) is difficult to derive its analytical solution, it is necessary to use the Monte Carlo method to sample the total charging demand of electric vehicles on each time section in a day based on a large amount of historical statistical data, and approximate It obeys a normal distribution, and its expected value and standard deviation are μ EV and σ EV , respectively, so the available interval numbers can express the charging demand of electric vehicles: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;OverBar;</mo> </munder> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> <mo>-</mo> <mi>&amp;upsi;</mi> <mo>&amp;CenterDot;</mo> <msqrt> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;upsi;</mi> <mo>&amp;CenterDot;</mo> <msqrt> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>E</mi> <mi>V</mi> </mrow> </msub> </msqrt> </mrow> </mtd> </mtr> </mtable> </mfenced> 3 <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><munder><msub><mi>P</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub><mo>&amp;OverBar;</mo></munder><mo>=</mo><msub><mi>&amp;mu;</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub><mo>-</mo><mi>&amp;upsi;</mi><mo>&amp;CenterDot;</mo><msqrt><msub><mi>&amp;sigma;</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub></msqrt></mrow></mtd></mtr><mtr><mtd><mrow><mover><msub><mi>P</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub><mo>&amp;OverBar;</mo></mover><mo>=</mo><msub><mi>&amp;mu;</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub><mo>+</mo><mi>&amp;upsi;</mi><mo>&amp;CenterDot;</mo><msqrt><msub><mi>&amp;sigma;</mi><mrow><mi>E</mi><mi>V</mi></mrow></msub></msqrt></mrow></mtd></mtr></mtable></mfenced> 3 式中,υ为区间数的半径调节参数,可根据实际情况进行设定。In the formula, υ is the radius adjustment parameter of the interval number, which can be set according to the actual situation. 6.根据权利要求1所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(2)包括:6. the active distribution network three-phase interval state estimation method that contains node injection power uncertainty according to claim 1, is characterized in that, step (2) comprises: (21)考虑节点注入功率伪量测不确定因素后节点i的相,注入有功功率/无功功率可分别表示为:(21) Considering the uncertainty factor of node injection power pseudo-measurement, node i’s Mutually, The injected active power/reactive power can be expressed as: 式中,分别表示用区间数表述的常规负荷需求、分布式电源出力以及电动汽车充电的有功信息;则分别表示用区间数刻画的常规负荷需求、分布式电源出力的无功信息;类似于节点注入功率,支路有功/无功功率量测以及支路电流幅值量测区间数也可分别表示为式中,i,k表示节点i,k=1,2,…,n,则区间状态估计模型中的量测矢量[z]可表述为:In the formula, Respectively represent the conventional load demand expressed by the interval number, the distributed power output and the active information of electric vehicle charging; It represents the conventional load demand described by the interval number and the reactive power information of the distributed power output; similar to the node injection power, the branch active/reactive power measurement and the branch current amplitude measurement interval number can also be represented separately for In the formula, i,k represent nodes i,k=1,2,...,n, then the measurement vector [z] in the interval state estimation model can be expressed as: 取节点i的三相电压幅值和相角作为系统待求的状态变量xi,则有主动配电网三相区间状态估计即为根据量测矢量的上下界信息和非线性映射关系式来确定系统的状态变量信息,用数学关系式描述为:Take the three-phase voltage amplitude of node i and phase angle As the state variable x i to be demanded by the system, there is The three-phase interval state estimation of the active distribution network is to determine the state variable information of the system according to the upper and lower bound information of the measurement vector and the nonlinear mapping relational expression, which is described by the mathematical relational expression as: <mrow> <msup> <mi>X</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>M</mi> <mo>,</mo> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mi>n</mi> </msup> <mo>:</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;Element;</mo> <mi>Z</mi> <mrow> <mo>(</mo> <mi>M</mi> <mo>,</mo> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mrow><msup><mi>X</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><mi>M</mi><mo>,</mo><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mo>,</mo><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>&amp;Element;</mo><msup><mi>R</mi><mi>n</mi></msup><mo>:</mo><mi>h</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>&amp;Element;</mo>mo><mi>Z</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mo>,</mo><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mo>}</mo></mrow> 式中,X′(·)表示系统状态变量的不确定性集合,x表示待求的状态变量,h(x)表示量测矢量与状态变量之间的非线性映射关系,z表示区间量测矢量的下限,而表示区间量测矢量的上限,M为系统量测集合,Z′(·)则表示系统量测矢量的不确定性集合,具体为:In the formula, X′(·) represents the uncertainty set of system state variables, x represents the state variable to be obtained, h(x) represents the nonlinear mapping relationship between the measurement vector and the state variable, z represents the interval measurement The lower bound of the vector, while Indicates the upper limit of the interval measurement vector, M is the system measurement set, Z′(·) represents the uncertainty set of the system measurement vector, specifically: <mrow> <msup> <mi>Z</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>M</mi> <mo>,</mo> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mo>{</mo> <mover> <mi>z</mi> <mo>^</mo> </mover> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <msup> <mi>m</mi> <mo>&amp;prime;</mo> </msup> </msup> <mo>:</mo> <munder> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>&amp;OverBar;</mo> </munder> <mo>&amp;le;</mo> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>&amp;le;</mo> <mover> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>m</mi> <mo>}</mo> </mrow> <mrow><msup><mi>Z</mi><mo>&amp;prime;</mo></msup><mrow><mo>(</mo><mi>M</mi><mo>,</mo><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mo>,</mo><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo>{</mo><mover><mi>z</mi><mo>^</mo></mover><mo>&amp;Element;</mo><msup><mi>R</mi><msup><mi>m</mi><mo>&amp;prime;</mo></msup></msup><mo>:</mo><munder><msub><mi>z</mi><mi>j</mi></msub><mo>&amp;OverBar;</mo></munder><mo>&amp;le;</mo><msub><mi>z</mi><mi>j</mi></msub><mo>&amp;le;</mo><mover><msub><mi>z</mi><mi>j</mi></msub><mo>&amp;OverBar;</mo></mover><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>m</mi><mo>}</mo></mrow> 式中,为某一实际量测矢量,zj表示第j个量测量,z j表示第j个量测量的下限值,表示第j个量测量的上限值,m′为系统量测集合M的基数;In the formula, is an actual measurement vector, z j represents the jth quantity measurement, z j represents the lower limit value of the jth quantity measurement, Indicates the upper limit value of the jth quantity measurement, m' is the cardinality of the system measurement set M; 若不考虑分布式电源和负荷之间的相关性,则含多类型分布式电和负荷不确定性的主动配电网三相区间状态估计具体模型表述如下式所示:If the correlation between distributed power and load is not considered, the specific model expression of the three-phase interval state estimation of active distribution network with multi-type distributed power and load uncertainty is as follows: 式中,γ分别为a、b、c三相中的任意一相;为待求的节点i的相电压幅值,为节点i的相电压幅值的上限信息,为节点i的相电压幅值的下限信息,为待求的节点i的相电压幅值,为节点i的相电压相角的上限信息,为节点i的相电压相角的下限信息,为支路ik上相有功功率的下限值,为支路ik上相有功功率的上限值,为支路ik上相无功功率的下限值,为支路ik上相无功功率的上限值,为支路ik上相电流幅值的下限值,为支路ik上相电流幅值的上限值,为节点i注入相有功功率的下限信息,为节点i注入相有功功率的上限信息,为节点i注入相无功功率的下限信息,为节点i注入相无功功率的上限信息,为节点i的γ相电压相角,为节点i上相与γ相之间相角差,为节点i和节点k(或d)之间在相与γ相的相角差,为三相节点导纳矩阵中对应的元素,为节点k的γ相电压相角,为节点i的γ相电压幅值,为节点k的γ相电压幅值。In the formula, γ is any one of the three phases a, b and c respectively; for the node i to be sought phase voltage amplitude, for node i The upper limit information of the phase voltage amplitude, for node i The lower limit information of the phase voltage amplitude, for the node i to be sought phase voltage amplitude, for node i upper limit information of the phase voltage phase angle, for node i The lower limit information of the phase voltage phase angle, on branch road ik The lower limit of phase active power, on branch road ik Upper limit of phase active power, on branch road ik The lower limit of phase reactive power, on branch road ik upper limit of phase reactive power, on branch road ik The lower limit value of the phase current amplitude, on branch road ik The upper limit value of the phase current amplitude, Inject for node i The lower limit information of phase active power, Inject for node i Upper limit information of phase active power, Inject for node i Lower limit information of phase reactive power, Inject for node i upper limit information of phase reactive power, is the γ-phase voltage phase angle of node i, for node i Phase angle difference between phase and γ phase, between node i and node k (or d) in The phase angle difference between phase and γ phase, with is the corresponding element in the three-phase node admittance matrix, is the γ-phase voltage phase angle of node k, is the γ-phase voltage amplitude of node i, is the amplitude of the γ-phase voltage at node k. 7.根据权利要求1所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于:步骤(3)中,将原问题拆分为两个包含非线性区间约束条件的优化问题,对待求变量的上下界分别进行求取,则所建立的考虑不确定性的主动配电网三相区间状态估计模型用公式简述为:7. The method for estimating the three-phase interval state of an active distribution network containing node injection power uncertainty according to claim 1, characterized in that: in step (3), the original problem is split into two intervals containing nonlinear For the optimization problem of constraint conditions, the upper and lower bounds of the variables to be sought are obtained respectively, and the established three-phase interval state estimation model of active distribution network considering uncertainty is briefly expressed as: xi =min xi, x i =min x i , <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> </mrow> </mtd> <mtd> <mrow> <mi>x</mi> <mo>&amp;Element;</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>M</mi> <mo>,</mo> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>s</mi><mo>.</mo><mi>t</mi></mrow></mtd><mtd><mrow><mi>x</mi><mo>&amp;Element;</mo><mi>X</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mo>,</mo><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced> 式中表示节点i状态变量xi的不确定区间值,而xi ,则表示节点i状态变量xi波动的置信下界限和上界限。In the formula represents the uncertain interval value of node i state variable x i , and x i , Then represent the confidence lower bound and upper bound of node i state variable x i fluctuation. 8.根据权利要求1所述的含节点注入功率不确定性的主动配电网三相区间状态估计方法,其特征在于,步骤(4)包括:8. the active distribution network three-phase interval state estimation method that contains node injection power uncertainty according to claim 1, is characterized in that, step (4) comprises: (a)获取网络原始参数,网络原始参数包括支路阻抗、负荷和分布式电源的节点注入功率伪量测区间值以及支路功率和电流幅值实时量测区间值;(a) Obtain the original parameters of the network. The original parameters of the network include the pseudo-measurement interval value of the node injection power of the branch impedance, the load and the distributed power supply, and the real-time measurement interval value of the branch power and current amplitude; (b)生成节点三相导纳矩阵YB以及区间状态估计模型中的量测矢量[z],其中,(b) Generate the node three-phase admittance matrix Y B and the measurement vector [z] in the interval state estimation model, where, <mrow> <msub> <mi>Y</mi> <mi>B</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>Y</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mn>12</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>n</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>Y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>a</mi> <mi>a</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>b</mi> <mi>c</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>c</mi> <mi>b</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> <mrow> <mi>c</mi> <mi>c</mi> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msub><mi>Y</mi><mi>B</mi></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>Y</mi><mn>11</mn></msub></mtd><mtd><msub><mi>Y</mi><mn>12</mn></msub></mtd><mtd><mn>...</mn></mtd><mtd><msub><mi>Y</mi><mrow><mn>1</mn><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>Y</mi><mn>21</mn></msub></mtd><mtd><msub><mi>Y</mi><mn>22</mn></msub></mtd><mtd><mn>...</mn></mtd><mtd><msub><mi>Y</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><mn>...</mn></mtd><mtd><mn>...</mn></mtd><mtd><mn>...</mn></mtd><mtd><mn>...</mn></mtd></mtr><mtr><mtd><msub><mi>Y</mi><mrow><mi>n</mi><mn>1</mn></mrow></msub></mtd><mtd><msub><mi>Y</mi><mrow><mi>n</mi><mn>2</mn></mrow></msub></mtd><mtd><mn>...</mn></mtd><mtd><msub><mi>Y</mi><mrow><mi>n</mi><mi>n</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>,</mo><msub><mi>Y</mi><mrow><mi>i</mi><mi>k</mi></mrow></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>a</mi><mi>a</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>b</mi><mi>a</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>b</mi><mi>b</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>b</mi><mi>c</mi></mrow></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>c</mi><mi>a</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>c</mi><mi>b</mi></mrow></msubsup></mtd><mtd><msubsup><mi>y</mi><mrow><mi>i</mi><mi>k</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msubsup></mtd></mtr></mtable></mfenced></mrow> 式中,为三相导纳矩阵中相应元素,i,k=1,…,n, 分别为节点注入有功和无功功率的区间值,分别为支路有功、无功以及电流幅值实时量测的区间数;In the formula, are the corresponding elements in the three-phase admittance matrix, i,k=1,...,n, Inject active and reactive power interval values for nodes respectively, Respectively, the number of intervals for real-time measurement of branch active power, reactive power and current amplitude; (c)设置待求系统状态变量初始值 (c) Set the initial value of the system state variable to be requested 选取系统待求状态变量,设置状态变量初始区间近似解的中间值为待求系统状态变量初始值选取网络节点的三相电压幅值和相角作为系统待求的状态变量,则有 Select the system state variable to be sought, and set the intermediate value of the initial interval approximate solution of the state variable as the initial value of the system state variable to be sought Select the three-phase voltage amplitude and phase angle of the network nodes as the state variables to be obtained in the system, then we have (d)设置迭代次数S=0;(d) Set the number of iterations S=0; (e)获取修正方程组中相应的元素,包括△z n,z m-n, (e) Obtain the corresponding elements in the correction equations, including △ z n , z mn , 代入修正方程组中的△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12],并求取相应的元素△z n,z m-n,其中,△z n代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的前n行矩阵数据,代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的前n行矩阵数据;而代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]下限的剩余的m-n行矩阵数据,则代表△[P1]、△[Q1]、△[P12]、△[Q12]以及△[I12]上限的剩余的m-n行矩阵数据;修正方程组用矩阵的形式可表示为:Will Substituting △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and △[I 12 ] in the revised equations, and calculating the corresponding elements △ z n , z mn , Among them, △ z n represents the first n rows of matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the lower limit of △[I 12 ], Representing △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the upper limit of △[I 12 ] matrix data; and Representing △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the remaining mn row matrix data of the lower limit of △[I 12 ], Then represent the remaining mn row matrix data of △[P 1 ], △[Q 1 ], △[P 12 ], △[Q 12 ] and the upper limit of △[I 12 ]; the correction equations can be expressed in matrix form as : <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mo>&amp;lsqb;</mo> <msup> <mi>I</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>H</mi> <mo>*</mo> </msup> </mtd> <mtd> <msup> <mi>N</mi> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>K</mi> <mo>*</mo> </msup> </mtd> <mtd> <msup> <mi>L</mi> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>F</mi> <mo>*</mo> </msup> </mtd> <mtd> <msup> <mi>S</mi> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>U</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><mo>&amp;lsqb;</mo><msup><mi>I</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msup><mi>H</mi><mo>*</mo></msup></mtd><mtd><msup><mi>N</mi><mo>*</mo></msup></mtd></mtr><mtr><mtd><msup><mi>K</mi><mo>*</mo></msup></mtd><mtd><msup><mi>L</mi><mo>*</mo></msup></mtd></mtr><mtr><mtd><msup><mi>F</mi><mo>*</mo></msup></mtd><mtd><msup><mi>S</mi><mo>*</mo></msup></mtd></mtr></mtable></mfenced><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><mi>U</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><mi>&amp;theta;</mi></mrow></mtd></mtr></mtable></mfenced></mrow> 式中,△[P1]、△[Q1]分别表示节点区间注入有功和无功的不平衡量,△[P12]、△[Q12]分别表示支路区间注入有功和无功的不平衡量,△[I12]表示支路区间电流幅值的不平衡量,H*、N*、K*、L*、F*以及S*都为修正方程组中产生的辅助矩阵,△U、△θ分别表示节点电压幅值和相角的不平衡量;In the formula, △[P 1 ], △[Q 1 ] represent the unbalanced amount of active and reactive power injected into the node interval, respectively, and △[P 12 ], △[Q 12 ] represent the unbalanced amount of active and reactive power injected into the branch interval, respectively. △[I 12 ] represents the imbalance of the current amplitude in the branch section, H * , N * , K * , L * , F * and S * are auxiliary matrices generated in the correction equations, △U, △ θ respectively represent the unbalance of node voltage amplitude and phase angle; (f)计算并分解量测雅可比矩阵Jm,获取相应元素Jn以及Jm-n (f) Calculate and decompose the measurement Jacobian matrix J m to obtain the corresponding elements J n and J mn 计算量测雅可比中各个元素,将量测函数h(x)在处进行一阶泰勒展开,忽略高次项后得到量测雅可比矩阵Jm,并获取相应的Jn以及Jm-n;其中,use Calculate each element in the measurement Jacobian, the measurement function h(x) in The first-order Taylor expansion is carried out at , and the measurement Jacobian matrix J m is obtained after ignoring the high-order terms, and the corresponding J n and J mn are obtained; among them, <mrow> <msup> <mi>J</mi> <mi>m</mi> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>I</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>I</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msup><mi>J</mi><mi>m</mi></msup><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mn>mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>I</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>I</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr></mtable></mfenced></mrow> <mrow> <msup> <mi>J</mi> <mi>n</mi> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>1</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msup><mi>J</mi><mi>n</mi></msup><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mn>mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>1</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr></mtable></mfenced></mrow> <mrow> <msup> <mi>J</mi> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>P</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>Q</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>I</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mo>&amp;lsqb;</mo> <msup> <mi>I</mi> <mn>12</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msup><mi>J</mi><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>P</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>Q</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>I</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>U</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mo>&amp;part;</mo><mo>&amp;lsqb;</mo><msup><mi>I</mi><mn>12</mn></msup><mo>&amp;rsqb;</mo></mrow><mrow><mo>&amp;part;</mo><mi>&amp;theta;</mi></mrow></mfrac></mtd></mtr></mtable></mfenced></mrow> (g)对Jn求逆,并计算元素(Jn)-1以及Jm-n(Jn)-1(g) Invert J n and calculate elements (J n ) -1 and J mn (J n ) -1 ; (h)获取(Jn)-1矩阵中的每一行元素ai,并执行线性规划运算;(h) Obtain each row element a i in the (J n ) -1 matrix, and perform a linear programming operation; (i)获取修正量的区间值并计算新的迭代状态量初始区间值 (i) Obtain the interval value of the correction amount And calculate the initial interval value of the new iterative state quantity 结合△z n,z m-n,以及Jm-n(Jn)-1中相应元素分别代入下面的公式:Combining △ z n , z mn , And the corresponding elements in J mn (J n ) -1 are respectively substituted into the following formulas: xi =min ai·△zn x i = min a i · △ z n <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msup> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mi>n</mi> </msup> <mo>&amp;le;</mo> <msup> <mi>&amp;Delta;z</mi> <mi>n</mi> </msup> <mo>&amp;le;</mo> <mi>&amp;Delta;</mi> <msup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mi>n</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msup> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> <mo>&amp;le;</mo> <msup> <mi>J</mi> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>&amp;Delta;z</mi> <mi>n</mi> </msup> <mo>&amp;le;</mo> <mi>&amp;Delta;</mi> <msup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><msup><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mi>n</mi></msup><mo>&amp;le;</mo><msup><mi>&amp;Delta;z</mi><mi>n</mi></msup><mo>&amp;le;</mo><mi>&amp;Delta;</mi><msup><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mi>n</mi></msup></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><msup><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup><mo>&amp;le;</mo><msup><mi>J</mi><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mi>J</mi><mi>n</mi></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&amp;CenterDot;</mo>mo><msup><mi>&amp;Delta;z</mi><mi>n</mi></msup><mo>&amp;le;</mo><mi>&amp;Delta;</mi><msup><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup></mrow></mtd></mtr></mtable></mfenced></mrow> <mrow> <mi>&amp;Delta;</mi> <mover> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mi>max</mi> <mi> </mi> <msup> <mi>a</mi> <mi>i</mi> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>&amp;Delta;z</mi> <mi>n</mi> </msup> </mrow> <mrow><mi>&amp;Delta;</mi><mover><msub><mi>x</mi><mi>i</mi></msub><mo>&amp;OverBar;</mo></mover><mo>=</mo><mi>max</mi><mi></mi><msup><mi>a</mi><mi>i</mi></msup><mo>&amp;CenterDot;</mo><msup><mi>&amp;Delta;z</mi><mi>n</mi></msup></mrow> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msup> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mi>n</mi> </msup> <mo>&amp;le;</mo> <msup> <mi>&amp;Delta;z</mi> <mi>n</mi> </msup> <mo>&amp;le;</mo> <mi>&amp;Delta;</mi> <msup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mi>n</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msup> <munder> <mi>z</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> <mo>&amp;le;</mo> <msup> <mi>J</mi> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mi>&amp;Delta;z</mi> <mi>n</mi> </msup> <mo>&amp;le;</mo> <mi>&amp;Delta;</mi> <msup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>n</mi> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><msup><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mi>n</mi></msup><mo>&amp;le;</mo><msup><mi>&amp;Delta;z</mi><mi>n</mi></msup><mo>&amp;le;</mo><mi>&amp;Delta;</mi><msup><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mi>n</mi></msup></mrow></mtd></mtr><mtr><mtd><mrow><mi>&amp;Delta;</mi><msup><munder><mi>z</mi><mo>&amp;OverBar;</mo></munder><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup><mo>&amp;le;</mo><msup><mi>J</mi><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mi>J</mi><mi>n</mi></msup><mo>)</mo></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&amp;CenterDot;</mo>mo><msup><mi>&amp;Delta;z</mi><mi>n</mi></msup><mo>&amp;le;</mo><mi>&amp;Delta;</mi><msup><mover><mi>z</mi><mo>&amp;OverBar;</mo></mover><mrow><mi>m</mi><mo>-</mo><mi>n</mi></mrow></msup></mrow></mtd></mtr></mtable></mfenced></mrow> 式中,xi 分别表示节点i上待求状态变量的不平衡量的上下限值,△zn表示量测矢量矩阵中前n行元素的不平衡量;In the formula, x i represent the upper and lower limits of the unbalance of the state variable to be sought on node i respectively, and △ z n represents the unbalance of the first n rows of elements in the measurement vector matrix; 通过执行线性规划运算程序,求得系统电压修正量的区间值进而求得系统节点电压状态量新的初始区间值 Obtain the interval value of the system voltage correction amount by executing the linear programming operation program Then obtain the new initial interval value of the system node voltage state quantity (j)检验迭代是否收敛(j) Check whether the iteration converges 利用预定的收敛标准判断迭代是否已经收敛,算法收敛的判据为:Use the predetermined convergence criteria to judge whether the iteration has converged, and the criterion for algorithm convergence is: 式中,S为迭代次数,ε为给定任意小数;In the formula, S is the number of iterations, ε is a given arbitrary decimal; (k)如不收敛,更新迭代状态量,将代替作为新的方程初始近似解,且令S=S+1,返回至第(e)步开始进入下一次迭代,直至达到收敛判据,输出主动配电网三相区间状态估计的最优估计值;(k) If it does not converge, update the iterative state quantity, and set replace As the initial approximate solution of the new equation, let S=S+1, return to step (e) and enter the next iteration until the convergence criterion is reached, and output the optimal estimated value of the three-phase interval state estimation of the active distribution network ; 如果收敛,直接输出系统状态量的最佳估计区间值。If it converges, directly output the best estimated interval value of the system state quantity.
CN201710436621.8A 2017-06-12 2017-06-12 A Three-Phase Interval State Estimation Method for Active Distribution Networks with Uncertainty of Node Injection Power Expired - Fee Related CN107425520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710436621.8A CN107425520B (en) 2017-06-12 2017-06-12 A Three-Phase Interval State Estimation Method for Active Distribution Networks with Uncertainty of Node Injection Power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710436621.8A CN107425520B (en) 2017-06-12 2017-06-12 A Three-Phase Interval State Estimation Method for Active Distribution Networks with Uncertainty of Node Injection Power

Publications (2)

Publication Number Publication Date
CN107425520A true CN107425520A (en) 2017-12-01
CN107425520B CN107425520B (en) 2020-04-21

Family

ID=60428120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710436621.8A Expired - Fee Related CN107425520B (en) 2017-06-12 2017-06-12 A Three-Phase Interval State Estimation Method for Active Distribution Networks with Uncertainty of Node Injection Power

Country Status (1)

Country Link
CN (1) CN107425520B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400592A (en) * 2018-03-19 2018-08-14 国网江西省电力有限公司电力科学研究院 It is a kind of meter and trend constraint power distribution network state of section algorithm for estimating
CN108446506A (en) * 2018-03-26 2018-08-24 东北大学 A kind of uncertain system modeling method based on section Feedback Neural Network
CN110474355A (en) * 2019-08-22 2019-11-19 国网重庆市电力公司电力科学研究院 It is a kind of for optimizing the method and system of removable energy storage type charging unit capacity configuration
TWI684927B (en) * 2018-08-24 2020-02-11 楊念哲 Prediction system and method for solar photovoltaic power generation
CN110880757A (en) * 2019-11-20 2020-03-13 东南大学 Optimal partition-based distributed interval state estimation method for active power distribution network
CN111799774A (en) * 2020-05-26 2020-10-20 广西电网有限责任公司电力科学研究院 Power distribution network state estimation method
CN112100743A (en) * 2020-09-01 2020-12-18 国网上海市电力公司 An electric vehicle virtual unit control method suitable for stabilizing the fluctuation of new energy output
CN112100920A (en) * 2020-09-15 2020-12-18 东南大学 Power distribution network three-phase voltage calculation method, device, equipment and storage medium
CN112421611A (en) * 2019-11-06 2021-02-26 国网江苏省电力有限公司南通供电分公司 Power distribution network data security detection method based on interval state estimation
CN112564132A (en) * 2020-12-15 2021-03-26 深圳供电局有限公司 Wind power primary frequency modulation potential uncertainty modeling method
CN112861365A (en) * 2021-02-23 2021-05-28 国网冀北电力有限公司智能配电网中心 Low-voltage distribution network load state estimation method and device and terminal equipment
CN112883662A (en) * 2021-02-01 2021-06-01 清华大学 Method and system for estimating hydraulic state of dynamic operation of steam heating network
CN113315118A (en) * 2021-04-26 2021-08-27 中国南方电网有限责任公司 Power system state estimation method based on parallel computing and particle swarm optimization
CN113642787A (en) * 2021-08-04 2021-11-12 国网江苏省电力有限公司南通供电分公司 Regional power distribution network gridding load interval prediction method based on distribution and sale power competition situation
CN114004081A (en) * 2021-10-29 2022-02-01 合肥工业大学 Affine algorithm-based power distribution network load supply capacity calculation method
CN114614465A (en) * 2022-03-23 2022-06-10 广西电网有限责任公司电力科学研究院 Novel power distribution network random state estimation method
CN114970197A (en) * 2022-06-14 2022-08-30 国网河北省电力有限公司电力科学研究院 A cyber-physical system simulation method for automatic voltage control of active distribution network
CN115377977A (en) * 2022-10-26 2022-11-22 江苏金智科技股份有限公司 High-precision state estimation system and method for active power distribution network containing zero injection node
CN115828489A (en) * 2023-02-22 2023-03-21 中国电力科学研究院有限公司 Sensing equipment deployment method and system based on key measurement stationing position search
CN115980453A (en) * 2023-03-21 2023-04-18 中国电力科学研究院有限公司 Grid impedance intelligent sensing method, system, computer equipment and storage medium
CN116070535A (en) * 2023-03-30 2023-05-05 国网冀北电力有限公司 Method, device and equipment for calculating voltage interval of digital twin power distribution network
CN117970036A (en) * 2024-03-29 2024-05-03 杭州欣美成套电器制造有限公司 Power distribution network cable equipment state evaluation method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282041A (en) * 2008-05-09 2008-10-08 天津大学 Dynamic Security Risk Assessment and Optimization Method for Transmission System Based on Practical Dynamic Security Domain
CN103280821A (en) * 2013-06-25 2013-09-04 国家电网公司 Multi-period dynamic reactive power optimization method of intelligent power distribution system
CN103748755A (en) * 2011-09-26 2014-04-23 株式会社日立制作所 Power system state estimation device and power system using same
CN104537258A (en) * 2015-01-12 2015-04-22 天津大学 Cone optimization modeling method for allowing distributed stored energy to participate in running adjustment of active power distribution network
CN105720578A (en) * 2016-03-30 2016-06-29 东南大学 Active distribution network measurement optimization and configuration method containing node injection power uncertainty

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282041A (en) * 2008-05-09 2008-10-08 天津大学 Dynamic Security Risk Assessment and Optimization Method for Transmission System Based on Practical Dynamic Security Domain
CN103748755A (en) * 2011-09-26 2014-04-23 株式会社日立制作所 Power system state estimation device and power system using same
CN103280821A (en) * 2013-06-25 2013-09-04 国家电网公司 Multi-period dynamic reactive power optimization method of intelligent power distribution system
CN104537258A (en) * 2015-01-12 2015-04-22 天津大学 Cone optimization modeling method for allowing distributed stored energy to participate in running adjustment of active power distribution network
CN105720578A (en) * 2016-03-30 2016-06-29 东南大学 Active distribution network measurement optimization and configuration method containing node injection power uncertainty

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI ZZHINONG: "Wind power system state estimation with automatic differentiation technique", 《INTERNATIONAL JOURNAL OF ELECTRICAL POWER ENERGY SYSTEMS》 *
卫志农等: "含多类型分布式电源的主动配电网分布式三相状态估计", 《电力系统自动化》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400592A (en) * 2018-03-19 2018-08-14 国网江西省电力有限公司电力科学研究院 It is a kind of meter and trend constraint power distribution network state of section algorithm for estimating
CN108446506A (en) * 2018-03-26 2018-08-24 东北大学 A kind of uncertain system modeling method based on section Feedback Neural Network
CN108446506B (en) * 2018-03-26 2021-06-08 东北大学 A Modeling Method of Uncertain System Based on Interval Feedback Neural Network
TWI684927B (en) * 2018-08-24 2020-02-11 楊念哲 Prediction system and method for solar photovoltaic power generation
CN110474355B (en) * 2019-08-22 2021-05-11 国网重庆市电力公司电力科学研究院 Method and system for optimizing capacity configuration of movable energy storage type charging device
CN110474355A (en) * 2019-08-22 2019-11-19 国网重庆市电力公司电力科学研究院 It is a kind of for optimizing the method and system of removable energy storage type charging unit capacity configuration
CN112421611B (en) * 2019-11-06 2021-09-10 国网江苏省电力有限公司南通供电分公司 Power distribution network data security detection method based on interval state estimation
CN112421611A (en) * 2019-11-06 2021-02-26 国网江苏省电力有限公司南通供电分公司 Power distribution network data security detection method based on interval state estimation
CN110880757A (en) * 2019-11-20 2020-03-13 东南大学 Optimal partition-based distributed interval state estimation method for active power distribution network
CN110880757B (en) * 2019-11-20 2022-07-08 东南大学 Distributed interval state estimation method for active distribution network based on optimal partition
CN111799774A (en) * 2020-05-26 2020-10-20 广西电网有限责任公司电力科学研究院 Power distribution network state estimation method
CN111799774B (en) * 2020-05-26 2023-07-28 广西电网有限责任公司电力科学研究院 A State Estimation Method for Distribution Network
CN112100743A (en) * 2020-09-01 2020-12-18 国网上海市电力公司 An electric vehicle virtual unit control method suitable for stabilizing the fluctuation of new energy output
CN112100743B (en) * 2020-09-01 2024-04-30 国网上海市电力公司 Electric vehicle virtual machine set regulation and control method suitable for stabilizing new energy output fluctuation
CN112100920A (en) * 2020-09-15 2020-12-18 东南大学 Power distribution network three-phase voltage calculation method, device, equipment and storage medium
CN112564132A (en) * 2020-12-15 2021-03-26 深圳供电局有限公司 Wind power primary frequency modulation potential uncertainty modeling method
CN112883662A (en) * 2021-02-01 2021-06-01 清华大学 Method and system for estimating hydraulic state of dynamic operation of steam heating network
CN112883662B (en) * 2021-02-01 2024-05-10 清华大学 Dynamic operation hydraulic state estimation method and system for steam heating network
CN112861365A (en) * 2021-02-23 2021-05-28 国网冀北电力有限公司智能配电网中心 Low-voltage distribution network load state estimation method and device and terminal equipment
CN113315118A (en) * 2021-04-26 2021-08-27 中国南方电网有限责任公司 Power system state estimation method based on parallel computing and particle swarm optimization
CN113315118B (en) * 2021-04-26 2022-12-30 中国南方电网有限责任公司 Power system state estimation method based on parallel computing and particle swarm optimization
CN113642787A (en) * 2021-08-04 2021-11-12 国网江苏省电力有限公司南通供电分公司 Regional power distribution network gridding load interval prediction method based on distribution and sale power competition situation
CN114004081B (en) * 2021-10-29 2024-02-27 合肥工业大学 Affine algorithm-based power distribution network load supply capacity calculation method
CN114004081A (en) * 2021-10-29 2022-02-01 合肥工业大学 Affine algorithm-based power distribution network load supply capacity calculation method
CN114614465A (en) * 2022-03-23 2022-06-10 广西电网有限责任公司电力科学研究院 Novel power distribution network random state estimation method
CN114970197A (en) * 2022-06-14 2022-08-30 国网河北省电力有限公司电力科学研究院 A cyber-physical system simulation method for automatic voltage control of active distribution network
CN115377977A (en) * 2022-10-26 2022-11-22 江苏金智科技股份有限公司 High-precision state estimation system and method for active power distribution network containing zero injection node
CN115377977B (en) * 2022-10-26 2023-02-14 江苏金智科技股份有限公司 High-precision state estimation system and method for active power distribution network containing zero injection node
CN115828489A (en) * 2023-02-22 2023-03-21 中国电力科学研究院有限公司 Sensing equipment deployment method and system based on key measurement stationing position search
CN115980453A (en) * 2023-03-21 2023-04-18 中国电力科学研究院有限公司 Grid impedance intelligent sensing method, system, computer equipment and storage medium
CN115980453B (en) * 2023-03-21 2023-07-11 中国电力科学研究院有限公司 Intelligent sensing method, system, computer equipment and storage medium for power grid impedance
CN116070535A (en) * 2023-03-30 2023-05-05 国网冀北电力有限公司 Method, device and equipment for calculating voltage interval of digital twin power distribution network
CN117970036A (en) * 2024-03-29 2024-05-03 杭州欣美成套电器制造有限公司 Power distribution network cable equipment state evaluation method and system

Also Published As

Publication number Publication date
CN107425520B (en) 2020-04-21

Similar Documents

Publication Publication Date Title
CN107425520B (en) A Three-Phase Interval State Estimation Method for Active Distribution Networks with Uncertainty of Node Injection Power
CN107591844B (en) Active power distribution network robust reconstruction method considering node injection power uncertainty
CN106874630B (en) Electric quantity consumption-based regional power grid new energy development potential evaluation method
Capizzi et al. Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources
CN105720578B (en) The probabilistic active power distribution network of injecting power containing node measures Optimal Configuration Method
CN102184453A (en) Wind power combination predicting method based on fuzzy neural network and support vector machine
CN103473393B (en) A kind of transmission of electricity nargin Controlling model modeling method considering random chance
CN106532778A (en) Method for calculating distributed photovoltaic grid connected maximum penetration level
CN105741025A (en) Prevention and control method of online risk assessment based on wind power fluctuation
CN105610192A (en) On-line risk assessment method considering large-scale wind power integration
CN106786608B (en) An Uncertain Harmonic Power Flow Calculation Method Applicable to Distributed Power Access
CN108647415A (en) The reliability estimation method of electric system for high proportion wind-electricity integration
CN114662922B (en) Resident demand response potential evaluation method and system considering photovoltaic uncertainty
CN106655190A (en) Method for solving P-OPF (Probabilistic-Optimal Power Flow) of wind power stations
CN108565865B (en) A risk assessment method for an AC-DC hybrid system with wind power
CN108321801A (en) Method and system for making day-ahead power generation plan of energy base system
CN105305488A (en) Evaluation method considering influence of new energy grid connection on utilization rate of transmission network
CN110350535A (en) A kind of meter and large-scale wind power and the grid-connected distribution network voltage probability of stability appraisal procedure of electric car
CN115423153A (en) Photovoltaic energy storage system energy management method based on probability prediction
Ni et al. A review of line loss analysis of the low-voltage distribution system
CN105956760A (en) Intelligent power distribution network situation perception method Based on multivariate spatio-temporal information modeling
Zhang et al. Optimal energy management of hybrid power system with two-scale dynamic programming
CN109193643B (en) Method and system for calculating power distribution and distribution system network loss and reliability
CN105354761B (en) Safety and efficiency evaluation method and system for accessing wind power into power grid
CN106251238A (en) Choosing and Model Error Analysis method of wind energy turbine set modeling series of discrete step-length

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200421

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载