CN107312793A - Cas9介导的番茄基因编辑载体及其应用 - Google Patents
Cas9介导的番茄基因编辑载体及其应用 Download PDFInfo
- Publication number
- CN107312793A CN107312793A CN201710540810.XA CN201710540810A CN107312793A CN 107312793 A CN107312793 A CN 107312793A CN 201710540810 A CN201710540810 A CN 201710540810A CN 107312793 A CN107312793 A CN 107312793A
- Authority
- CN
- China
- Prior art keywords
- tomato
- cas9
- dfd
- dna
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000007688 Lycopersicon esculentum Nutrition 0.000 title claims abstract description 47
- 108091033409 CRISPR Proteins 0.000 title claims abstract description 30
- 108020004414 DNA Proteins 0.000 title claims abstract description 18
- 240000003768 Solanum lycopersicum Species 0.000 title claims description 56
- 238000003860 storage Methods 0.000 claims abstract description 22
- 239000013604 expression vector Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 16
- 241000196324 Embryophyta Species 0.000 claims abstract description 12
- 238000010354 CRISPR gene editing Methods 0.000 claims abstract description 11
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 7
- 108700019146 Transgenes Proteins 0.000 claims abstract description 6
- 241000589158 Agrobacterium Species 0.000 claims description 6
- 239000000969 carrier Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000000692 anti-sense effect Effects 0.000 claims description 4
- 230000004087 circulation Effects 0.000 claims description 4
- 230000007850 degeneration Effects 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000004925 denaturation Methods 0.000 claims description 3
- 230000036425 denaturation Effects 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 206010020649 Hyperkeratosis Diseases 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000034303 cell budding Effects 0.000 claims description 2
- 239000012154 double-distilled water Substances 0.000 claims description 2
- 239000002773 nucleotide Substances 0.000 claims description 2
- 125000003729 nucleotide group Chemical group 0.000 claims description 2
- 235000013399 edible fruits Nutrition 0.000 abstract description 15
- 238000005516 engineering process Methods 0.000 abstract description 12
- 238000010362 genome editing Methods 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 4
- 230000012010 growth Effects 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 2
- 241000227653 Lycopersicon Species 0.000 abstract 6
- 235000013311 vegetables Nutrition 0.000 description 5
- 101150078668 Dfd gene Proteins 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000003898 horticulture Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 206010064571 Gene mutation Diseases 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005078 fruit development Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000006285 Physalis pubescens Species 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 101000910035 Streptococcus pyogenes serotype M1 CRISPR-associated endonuclease Cas9/Csn1 Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006160 differential media Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 244000037671 genetically modified crops Species 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8213—Targeted insertion of genes into the plant genome by homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明属于基因工程技术领域,具体公开了一种Cas9介导的番茄基因编辑载体及其应用。发明通过构建CRISPR/Cas9番茄植物表达载体,将Cas9基因导入番茄M82中,对番茄自身DFD基因进行基因编辑。提供一种创建耐储藏转基因番茄的方法,以此得到耐储藏的番茄新品种,提高番茄果实耐储藏性,同时不影响植株的生长与其他品质,可以弥补前人研究方案的不足之处。
Description
技术领域
本发明属于基因工程技术领域,具体公开了一种Cas9介导的番茄基因编辑载体及其应用。
背景技术
储运时间及货架期的限制是园艺产品所面临的主要问题,延长蔬菜和水果储运时间将给供应链上各个环节从农民到批发商到零售商及最终消费者带来巨大的利益,特别是生产及流通渠道效率并不高的中国生鲜产品现状,研究表明,生鲜蔬菜在整个供应链环就的损耗率高达20%-30%,可以通过转基因的技术手段改善而具有巨大的市场潜力。番茄是在世界上栽培极为广泛的蔬菜,也是我国主要的栽培蔬菜之一。
成熟表型是果实发育到末期生物化学和生理学变化的总和,这一表型使器官变得可食用,并依赖动物传播种子,同时使其作为农业产品具有一定的价值。这些变化,虽然在不同的物种间有所不同,但一般包含细胞壁超微结构和质地的改变、淀粉转化为糖、增加果实对采后病原菌的敏感性、改变色素的生物合成和积累、提高芳香物质的含量并释放出香味。这些成熟特性中,有一些趋向于减少果实的货架寿命、增加采收、货运和贮存的成本,尤其是果实硬度的改变和成熟果实全面的降低对微生物侵染的抵抗。据估计,从离开农田到零售,果实和蔬菜产品会损失12一20%。现在常用的降低不期望成熟特征的技术包括成熟前采收、气调贮藏、杀虫剂应用、以及利用化学物质诱导来调控果实适时成熟。不幸的是,这些手段往往增加了生产、货运和加工的费用、同时也降低了果实的品质,是对现有农业生产水平竞争力和可持续发展的挑战。
随着番茄高产、优质、抗逆等多目标育种难度的增加,利用杂种互补效应实现番茄产量、品质、抗性等性状的同步突破,已成为番茄育种研究的一个重要发展方向。因此,为了丰富我国番茄品种的遗传资源,改良番茄的耐储藏性,选育耐储藏强、品味好的品种一直是番茄育种的重要目标。市场上已经存在耐储藏番茄的品种,基本都是通过传统的杂交育种的方式培育而来的,但是这些品种的耐储藏性只能是基本合格,转基因产品耐储藏的时间将相对较长,而且产品可以有效地改善果实采摘后的细菌感染这种在储藏运输中的主要问题。尽管关于转基因技术的争论从诞生之日起就从来没有停止过,但是科技发展的速度是日新月异,伴随着其生物经济的迅速发展,全球转基因作物逐年持续增长,无不显示转基因技术的在育种中的主流特性。
发明内容
本发明的目在于:运用最新的基因编辑技术,提供一种创建耐储藏转基因番茄的方法。该方法采用农杆菌转基因技术,通过构建CRISPR/Cas9植物表达载体和转化番茄,以此得到耐储藏的番茄新品种。
本发明的技术方案:一种通过构建CRISPR/Cas9番茄植物表达载体,所述番茄植物表达载体核苷酸序列如SEQ ID NO.1所示。
番茄植物载体是由CaMV 35S启动子的调控,由AtU6启动子表达,所述的35S启动子引物序列如SEQ ID NO.2所示;AtU6启动子引物序列如SEQ ID NO.3所示。
一种定向突变番茄基因的方法,采用上述的番茄植物表达载体,包括下述步骤:
(1)将CRISPR/Cas9载体与DFD-gRNA片段连接,与35S启动子构建番茄植物表达载体;
(2)将构建的CRISPR/Cas9番茄植物表达载体转化的农杆菌LBA4404感染番茄下胚轴;
(3)感染后的番茄下胚轴置于MS培养基上进行愈伤、出芽、生根培养;
(4)将该生根转化苗移栽入土栽培,PCR鉴定;
(5)田间种植、F1代自交后,形成稳定的转基因自交系,获得耐储藏性好的转基因番茄新品种。
上述方法中PCR鉴定中的上游引物DFD-JCF:acaaacataaagtagtggaccca如SEQ IDNO.4所示;下游引物DFD-JCR:acctctttcggctatttcgtata如SEQ ID NO.5所示。
上述方法中采用PCR鉴定,其20μL反应体系中,
含DFD基因的转基因植株的基因组DNA 1.0μL
PCR Master Mix 10μL
10 pM上游引物 1.0μL
10 pM下游引物 1.0μL
ddH2O 补至20μL。
上述方法中PCR工作程序为:94℃预变性3 min;94℃变性35 s,55℃退火35 s,72℃延伸1 min,35个循环;72℃终延伸10 min,4℃保存。
有益效果:本发明通过构建CRISPR/Cas9植物表达载体,将Cas9基因导入番茄M82中,对番茄自身DFD基因进行基因编辑。提高番茄果实耐储藏性,同时不影响植株的生长与其他品质,可以弥补前人研究方案的不足之处,开创基因编辑运用转基因植物的先河,因而该技术路线具有较强、前沿的创新性。
附图说明
附图1对CRISPR/Cas9参与表达载体的示意图说明:spcas9由CaMV 35S启动子的控制,参与由atu6启动子表达;双划线标记DFD靶位点的靶序列,单划线标记的PAM,下黑点是DFD/DFD基因突变位点;附图2、DFD/DFD基因突变位点:基因中A替换为T编辑;附图3、农杆菌转化番茄下胚轴组织培养再生;附图4、转化再生番茄植物的DFD基因PCR检测;附图5为DFD基因片段测序结果;附图6、转基因番茄对的结果与储藏。
具体实施方式
番茄已成为世界上的主要蔬菜作物,由于番茄生产的季节性和需求的周年均衡性矛盾,导致番茄旺季上市,采后腐烂损失高达50%。本发明利用基因编辑技术与转基因相结合提高番茄过时耐储藏的方法。通过农杆菌介导与番茄下胚轴组培技术,将CRISPR/Cas9植物表达载体转入番茄,利用Cas9蛋白编辑DFD基因,提高了番茄果实的耐储藏性获得了可用于耐储藏番茄新品种选育的特异材料。
实施例、1)、材料
番茄M82种子的直接来源由新疆农业科学院园艺作物研究所培育保存,原始来源是2008年9月由王柏柯从美国番茄遗传中心引进。
PCR所用的高保真聚合酶、DNA回收试剂盒及克隆载体由北京全式金生物技术有限公司购买。限制性内切酶和连接酶购自TaKaRa公司,PCR引物合成与片段测序均委托生工生物工程(上海)股份有限公司完成。
2)、表达载体构建
spCas9载体从中国科学院高彩霞研究员处获得,此载体为公开载体,一般研究人员可通过在线质粒库引进(http://www.addgene.org/),由北京康伟生物公司直接合成设计的靶基因。用于组合的主要载体是新疆农业科学院园艺作物研究所生物技术实验室保存的pCAM1301载体,此载体为公开载体,一般实验室都可引进。DFD基因的序列为公开序列,一般研究人员可通过在线的生物技术信息中心获得(https://www.ncbi.nlm.nih.gov/,登陆号:AY573803)。DFD基因的供体序列使用聚合酶环状延伸克隆构建到pCAM1301载体上。载体上spcas9基因由35S启动子驱动,gRNA由拟南芥U6启动子驱动。构建好的载体通过热激法转化到大肠杆菌DH5a菌株中扩增。测序验证载体序列,再通过冻融法转化农杆菌EHA105菌株,扩增以备侵染利用。
3)、番茄遗传转化及转化体再生
A、播种
挑取健康的番茄种子蒸馏水冲洗数次后,先用70%酒精30s,再用20% NaClO表面消毒20min,最后用无菌水清洗3-4次,播种于1/2MS培养基中。环境要求16h/8h,光强1800Lx,26±1℃。
B、预培养
取14-16d幼苗,在超净工作台中取无菌下胚轴,切去叶片和叶柄,外植体约0.5cm长短,在含有3.0 mg/L 6-BA和0.2 mg/L NAA的MS分化培养基上预培养2d。
C、共培养
将预培养的下胚轴刺破置于OD600=1农杆菌悬浮液中8-12min,用滤纸吸干多余的菌液,置于共培养基上,28℃暗培养2d。
D、分化培养与生根
共培养后的下胚轴置于分化培养基中(含有2.0 mg/L 6-BA+1.0 mg/L IAA+3 mg/L 潮霉素+100mg/L 羧苄青霉素)。待筛选出的抗性再生芽长到2cm高时,转接到MS+0.1 mg/LIAA+ 2 mg/L 潮霉素+80 mg/L 羧苄青霉素的生根培养基中,待生根后移栽。
4)、转基因植株的分子检测
PCR检测:将当代转化植株编号为C0-1、C0-2等。各株系自交后代为C1-1、C1-2、C2-1、C2-2等以此类推。去转化植株嫩叶片0.2g用天根DNA提取试剂盒提取基因组DNA。利用DFD-JCF/DFD-JCR引物扩增转基因植株中DFD基因,20μL体系中,包括MIX 10μL,ddH2O 7μL,引物各1μL。PCR反应条件:94℃预变性3 min;94 ℃变性35 s,55 ℃退火35 s,72 ℃延伸1 min,35个循环;72 ℃终延伸10min,4℃保存。
PCR结束后,于1%琼脂糖凝胶中分别点样进行电泳观察,然后将PCR产物回收转化,菌液送生工生物工程(上海)股份有限公司测序。所得结果DFD基因序列中碱基A变为T,由此证明番茄转基因植株基因编辑成功。
5)、转基因植株性状观察及果实耐储藏测试
通过对转基因植株与野生型植株M82田间性状观察相比较,两者在番茄株高、茎粗、固形物、果肉厚度、耐压力上都没显著性差异。从果实发育周期来看也是相差无几。将两组果实采摘后,在同一环境下放置40d后,野生型M82果实明显出现萎蔫变软,而转基因番茄明显比对照耐储藏,如附图6所示。
SEQUENCE LISTING
<110> 新疆农业科学院园艺作物研究所
<120> Cas9介导的番茄基因编辑载体及其应用
<160> 5
<170> PatentIn version 3.5
<210> 1
<211> 4144
<212> DNA
<213> 人工序列
<400> 1
atggctccta agaagaagcg gaaggttggt attcacgggg tgcctgcggc tatggataag 60
aagtacagca ttggtctgga catcgggacg aattccgttg gctgggccgt gatcaccatg 120
agtacaaggt cccttccaag aagtttaagg ttctggggaa caccgatcgg cacagcatca 180
agaagaatct cattggagcc ctcctgttcg actcaggcga gaccgccgaa gcaacaaggc 240
taaagaaccg caaggagacg gtatacaaga aggaagaata ggatctgcta cctgcaggag 300
attttcagca acgaaatggc gaaggtggac gattcgttct ttcatagatt ggaagaaagt 360
ttcctcgtgg gaagataaga agcacgagag gcatcctatc tttggcaaca ttgtcgacga 420
ggttgcctat cacgaaaagt accccacaat ctatcatctg cggaagaagc ttgtggactc 480
gactgataag gcggattaga ttgatctacc tcgctctggc acacatgatt aagttcaggg 540
gccattttct gatcgagggg gatcttaacc cggacaatag cgatgtggac aagttgttca 600
tccagctcgt ccaaacctac aaagctcttt gaggaaaacc caattaatgc ttcaggcgtc 660
gacgccaagg cgatcctgtc tgcacgcctt tcaaagtctc gccggcttga gaacttgatc 720
gctcaactcc cgggcgaaaa gaagaacgct gttcgggaat ctcattgcac tttcgttggg 780
gctcacacca aacttcaaga gtaattttga tctcgctgag gacgcaaagc tgcagctttc 840
caaggacact tatgacgatg acctggataa cctttgccca aatcggcgat cagtacgcgg 900
acttgttcct cgccgcgaag aatttgtcgg acgcgatcct cctgagtgat attctccgcg 960
tgaacaccga gattacaaag gccccgctct cggcgagtat atcagcgcta tgacgagcac 1020
catcaggatc tgaccctttt gaaggctttg gtccggcagc aactcccaga gaagtacaag 1080
gaaatcttct ttgatcaatc caagaacggc tacgctggtt atattgcggc gggcatcgca 1140
ggaggaattc tacaagttta tcaagccaat tctggagaag atggatggca cagaggaact 1200
cctggtgaag ctcaataggg aggacctttt gcggaagcaa agaactttcg atacggcgca 1260
tccctcacca gattcatctc ggggagctgc acgccatcct gagaaggcag gaagacttct 1320
acccctttct taaggataac cgggagaaga tcgaaaagat tctgacgttc agaattccta 1380
ctattcggac cactcgcccg gggtaattcc agatttgcgt ggatgaccag aaagagcgag 1440
gaaaccatca caccttggaa cttcgaggaa gtggtcgata agggcgcttc cgcacagagc 1500
ttcatgagcg ctgacaaatt ttgacaagaa cctgcctaat gagaaggtcc ttcccaagca 1560
ttccctcctg tacgagtatt tcactgttta taacgaactc acgaaggtga agtatgtgac 1620
cgagggaatg gcaagccccc ttcctgagcg gcgagcaaaa gaaggcgatc gtggaccttt 1680
tgtttaagac caatcggaag gtcacagtta agcagctcaa ggaggactac ttcaagaaga 1740
ttgaatgctt cgattcgttg agatcgcggc gtggaagaca ggtttaacgc ctcactgggg 1800
acttaccacg atctcctgaa gatcattaag gataaggact tcttggacaa cgaggaaaat 1860
gaggatatcc tcgaagacat tgcctgactc ttcgttgttt gaggataggg aaatgatcga 1920
ggaacgcttg aagacgtatg cccatctctt cgatgacaag gttatgaagc agctcaagag 1980
aagaagatac accggatggg gaaggctgcc cgcaagcttt caatggcatt agagacaagc 2040
aatcagggaa gacaatcctt gactttttga agtctgatgg cttcgcgaac aggaatttta 2100
tgcagctgat tcacgatgac tcacttactt tcaagaggat atccagaggc tcaagtgtcg 2160
ggacaaggtg acagtctgca cgagcatatc gccaaccttg cgggatctcc tgcaatcaag 2220
aagggtattc tgcagacagt caaggttgtg gatgagcttg gaaggtcatg ggaggcataa 2280
gcccgagaac atcgttattg agatggccag agaaaatcag accacacaaa agggtcagaa 2340
gaactcgagg gagcgcatga agcgcatcga ggaaggcatt aaggagtggg gagtcagatc 2400
ttaaggagca cccggtggaa aacacgcagt tgcaaaatga gaagctctat ctgtactatc 2460
tgcaaaatgg cagggatatg tatgtggacc aggagttgga tattaaccgc cttcggatta 2520
cgacgtcgat catatcgttc ctcagtcctt ccttaaggat gacagcattg acaataaggt 2580
tctcaccagg tccgacaaga accgcgggaa gtccgataat gtgcccagcg aggaagtcgt 2640
aagaagatga agaactactg gaggcaactt ttgaatgcca agttgatcac acagaggaag 2700
tttgataacc tcactaaggc cgagcgcggg gtctcagcga actggacaag gcgggcttca 2760
ttaagggcaa ctggttgaga ctagacagat cacgaagcac gtggcgcaga ttctcgattc 2820
acgcatgaac acgaagtacg atgagaatga caagctatcc gggaagtgaa ggtcatcacc 2880
ttgaagtcaa actcgtttct gacttcagga aggatttcca attttataag gtgcgcgaga 2940
tcaacaatta tcaccatgct catgacgcat acctcaacgc tgtgtcggaa cagcattgat 3000
taagaagtac ccgaagccga gtccgaattc gtgtacggtg actataaggt ttacgatgtg 3060
cgcaagatga tcgccaagtc agagcaggaa attggcaagg ccactgcgaa tatttctttt 3120
actctaacat tatgaatttc tttagactga gatcacgctg gctaatggcg aaatccggaa 3180
gagaccactt attgagacca acggcgagac aggggaaatc gtgtgggaca aggggaggat 3240
ttcgccacag tccgcaaggt tctctctatc ctcaagtgaa tattgtcaag aagactgaag 3300
tccagacggg cgggttctca aaggaatcta ttctgcccaa gcggaactcg gataagctta 3360
tcgcagaaag aaggactggg atccgaagaa gtatgaggtt tcgactcacc aacggtggct 3420
tactctgtcc tggttgtggc aaaggtggag aagggaaagt caaagaagct caagtctgtc 3480
aaggagctcc tggtatcacc attatggaga ggtccagctt caaaagaatc cgatcgattt 3540
tctcgaggcg aagggatata aggaagtgaa gaaggacctg atcattaagc ttccaaagta 3600
cagtcttttc gagttggaaa cggcaggaag cgcatgttgg cttccgcgga gagctccaga 3660
agggtaacga gcttgctttg ccgtccaagt atgtgaactt cctctatctg gcatcccact 3720
acgagaagct caagggcagc ccagagataa cgaacagaag caactgtttg tgggcaacac 3780
aagcattatc ttgacgagat cattgaacag atttcggagt tcagtaagcg cgtcatcctc 3840
gccgacgcga atttggataa ggttctctca gctacaacaa gcaccgggac aagcctatcg 3900
agagcaggcg gaaaatatca ttcatctctt caccctgaca aaccttgggg ctcccgctgc 3960
attcaagtat tttgacacta cgattgatcg gaagagataa cttctacgaa ggaggtgctg 4020
gatgcaccct tatccaccaa tcgattactg gcctctacga gacgcggatc gacttgagtc 4080
agctcggtgg cgataagaga cccgcagcaa ccaagaaggc agggcagcaa agaagaagaa 4140
gtga 4144
<210> 2
<211> 485
<212> DNA
<213> 人工序列
<400> 2
ggatcctcta gagtcccccg tgttctctcc aaatgaaatg aacttcctta tatagaggaa 60
gggtcttgcg aaggatagtg ggattgtgcg tcatccctta cgtcagtgga gattccagat 120
aggcctaacg cttgtccaag atctattcag gatatcacat caatccactt gctttgaaga 180
cgtggttgga acgtcttctt tttccacgat gctcctcgtg ggtgggggtc catctttggg 240
accactgtcg gcagaggcat cttcaacgat ggcctttcct ttatcgcaat gatggcattt 300
gtaggagcca ccttcctttt ccactatctt cacaataaag tgacagatag ctgggcaatg 360
gaatccgagg aggtttccgg atattaccct ttgttgaaaa gtctcaattg ccctttggtc 420
ttctgagact gtatctttga tatttttgga gtagacaagt gtgtcgtgct ccaccatgtt 480
gacga 485
<210> 3
<211> 313
<212> DNA
<213> 人工序列
<400> 3
ttccgtggga gaaatctcaa aattccggca gaacaatttt gaatctcgat ccgtagaaac 60
gagacggtca ttgttttagt tccaccacga ttatatttga aatttacgtg agtgtgagtg 120
agacttgcat aagaaaataa aatctttagt tgggaaaaaa ttcaataata taaatgggct 180
tgagaaggaa gcgagggata ggcctttttc taaaataggc ccatttaagc tattaacaat 240
cttcaaaagt accacagcgc ttaggtaaag aaagcagctg agtttatata tggttagaga 300
cgaagtagtg att 313
<210> 4
<211> 23
<212> DNA
<213> 人工序列
<400> 4
acaaacataa agtagtggac cca 23
<210> 5
<211> 23
<212> DNA
<213> 人工序列
<400> 5
acctctttcg gctatttcgt ata 23
Claims (6)
1.一种通过构建CRISPR/Cas9番茄植物表达载体,其特征在于:所述番茄植物表达载体核苷酸序列如SEQ ID NO.1所示。
2.如权利要求1所示番茄植物载体是由CaMV 35S启动子的调控,由AtU6启动子表达,所述的35S启动子引物序列如SEQ ID NO.2所示;AtU6启动子引物序列如SEQ ID NO.3所示。
3.一种定向突变番茄基因的方法,采用权利要求1所述的番茄植物表达载体,其特征在于,包括下述步骤:
(1)将CRISPR/Cas9载体与DFD-gRNA片段连接,与35S启动子构建番茄植物表达载体;
(2)将构建的CRISPR/Cas9番茄植物表达载体转化的农杆菌LBA4404感染番茄下胚轴;
(3)感染后的番茄下胚轴置于MS培养基上进行愈伤、出芽、生根培养;
(4)将该生根转化苗移栽入土栽培,PCR鉴定;
(5)田间种植、F1代自交后,形成稳定的转基因自交系,获得耐储藏性好的转基因番茄新品种。
4.如权利要求3所述的一种定向突变番茄基因的方法,其特征在于,所述PCR鉴定中的上游引物DFD-JCF:acaaacataaagtagtggaccca如SEQ ID NO.4所示;下游引物DFD-JCR:acctctttcggctatttcgtata如SEQ ID NO.5所示。
5.如权利要求3所述的一种定向突变番茄基因的方法,其特征在于,采用PCR鉴定,其20μL反应体系中,
含DFD基因的转基因植株的基因组DNA 1.0μL
PCR Master Mix 10μL
10 pM上游引物 1.0μL
10 pM下游引物 1.0μL
ddH2O 补至20μL。
6.如权利要求5所述的一种定向突变番茄基因的方法,其特征在于,PCR工作程序为:94℃预变性3 min;94℃变性35 s,55℃退火35 s,72℃延伸1 min,35个循环;72℃终延伸10min,4℃保存。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710540810.XA CN107312793A (zh) | 2017-07-05 | 2017-07-05 | Cas9介导的番茄基因编辑载体及其应用 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710540810.XA CN107312793A (zh) | 2017-07-05 | 2017-07-05 | Cas9介导的番茄基因编辑载体及其应用 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107312793A true CN107312793A (zh) | 2017-11-03 |
Family
ID=60181059
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710540810.XA Pending CN107312793A (zh) | 2017-07-05 | 2017-07-05 | Cas9介导的番茄基因编辑载体及其应用 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107312793A (zh) |
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| CN109097387A (zh) * | 2018-08-08 | 2018-12-28 | 华南农业大学 | 一种运用CRISPR/Cas9基因编辑系统创制紫果番茄突变体的方法和应用 |
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| WO2020038384A1 (zh) * | 2018-08-22 | 2020-02-27 | 中国科学院遗传与发育生物学研究所 | 具有提高的糖含量的植物 |
| CN110878324A (zh) * | 2019-12-09 | 2020-03-13 | 新疆农业科学院园艺作物研究所 | 一种果实高固形物含量的番茄材料的制备方法 |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| CN110923231A (zh) * | 2019-12-09 | 2020-03-27 | 新疆农业科学院园艺作物研究所 | 一种果实高固形物含量的番茄材料的创制方法 |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| CN113025646A (zh) * | 2021-03-12 | 2021-06-25 | 浙江大学 | Lob1基因编辑方法及在制备耐储运易后熟番茄中的应用 |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009143155A2 (en) * | 2008-05-19 | 2009-11-26 | Cornell University | Delayed fruit deterioration allele in plants and methods of detection |
| CN102533853A (zh) * | 2012-03-02 | 2012-07-04 | 江苏省农业科学院 | 一种利用RNAi技术培育抗TYLCV番茄的方法 |
| CN104988160A (zh) * | 2015-07-31 | 2015-10-21 | 中国农业科学院蔬菜花卉研究所 | 一种粉果番茄材料的制备方法 |
| CN106086062A (zh) * | 2016-04-19 | 2016-11-09 | 上海市农业科学院 | 一种获得番茄基因组定点敲除突变体的方法 |
| CN106636182A (zh) * | 2016-10-21 | 2017-05-10 | 山西省农业科学院蔬菜研究所 | 一种番茄PSY 1基因的CRISPR‑Cas9体系构建及其应用 |
-
2017
- 2017-07-05 CN CN201710540810.XA patent/CN107312793A/zh active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009143155A2 (en) * | 2008-05-19 | 2009-11-26 | Cornell University | Delayed fruit deterioration allele in plants and methods of detection |
| CN102533853A (zh) * | 2012-03-02 | 2012-07-04 | 江苏省农业科学院 | 一种利用RNAi技术培育抗TYLCV番茄的方法 |
| CN104988160A (zh) * | 2015-07-31 | 2015-10-21 | 中国农业科学院蔬菜花卉研究所 | 一种粉果番茄材料的制备方法 |
| CN106086062A (zh) * | 2016-04-19 | 2016-11-09 | 上海市农业科学院 | 一种获得番茄基因组定点敲除突变体的方法 |
| CN106636182A (zh) * | 2016-10-21 | 2017-05-10 | 山西省农业科学院蔬菜研究所 | 一种番茄PSY 1基因的CRISPR‑Cas9体系构建及其应用 |
Non-Patent Citations (2)
| Title |
|---|
| CHANGTIAN PAN等: ""CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations"", 《SSCIENTIFIC REPORTS》 * |
| MONTSERRAT SALADIE等: ""A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity"", 《PLANT PHYSIOLOGY》 * |
Cited By (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
| US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12398406B2 (en) | 2014-07-30 | 2025-08-26 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US12435331B2 (en) | 2017-03-10 | 2025-10-07 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| CN109097387A (zh) * | 2018-08-08 | 2018-12-28 | 华南农业大学 | 一种运用CRISPR/Cas9基因编辑系统创制紫果番茄突变体的方法和应用 |
| CN112969791B (zh) * | 2018-08-22 | 2023-11-17 | 苏州齐禾生科生物科技有限公司 | 具有提高的糖含量的植物 |
| CN112969791A (zh) * | 2018-08-22 | 2021-06-15 | 中国科学院遗传与发育生物学研究所 | 具有提高的糖含量的植物 |
| WO2020038384A1 (zh) * | 2018-08-22 | 2020-02-27 | 中国科学院遗传与发育生物学研究所 | 具有提高的糖含量的植物 |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| CN110878324A (zh) * | 2019-12-09 | 2020-03-13 | 新疆农业科学院园艺作物研究所 | 一种果实高固形物含量的番茄材料的制备方法 |
| CN110923231A (zh) * | 2019-12-09 | 2020-03-27 | 新疆农业科学院园艺作物研究所 | 一种果实高固形物含量的番茄材料的创制方法 |
| US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| CN113025646A (zh) * | 2021-03-12 | 2021-06-25 | 浙江大学 | Lob1基因编辑方法及在制备耐储运易后熟番茄中的应用 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107312793A (zh) | Cas9介导的番茄基因编辑载体及其应用 | |
| CN116640799A (zh) | 蒺藜苜蓿MtMET1基因在调控植物耐逆境胁迫中的应用 | |
| CN112996804A (zh) | 甜菜坏死性黄脉病毒(bnyvv)抗性修饰基因 | |
| CN116731986B (zh) | 一种水稻OsLOX10基因在调节水稻盐碱胁迫抗性中的应用 | |
| CN109609527A (zh) | Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用 | |
| CN116024241B (zh) | 一种具有咪唑啉酮类除草剂抗性的花生als突变基因及其应用 | |
| CN116732090A (zh) | 一种水稻脂氧合酶OsLOX10基因在调节水稻种子活性中的应用 | |
| CN101096703B (zh) | 一种非抗生素筛选小麦转基因植物的方法 | |
| CN116042661A (zh) | 番茄SlXERICO基因在提高番茄高温耐受性中的应用 | |
| CN110358772A (zh) | 提高水稻非生物胁迫抗性的OsEBP89基因及制备方法与应用 | |
| CN103739686A (zh) | 与植物产量提高和品质改良相关的蛋白及编码基因与应用 | |
| Kang et al. | A robust genome-editing method for wild plant species Nicotiana attenuata | |
| CN118440977A (zh) | SlCHP16基因及其超量表达载体在番茄种植中的应用 | |
| CN108866080B (zh) | 番茄胁迫响应基因、其重组表达载体及其在培育耐盐番茄中的应用 | |
| CN102732553A (zh) | 提高植物产量的基因工程方法及材料 | |
| CN1307312C (zh) | 四倍体刺槐转基因及组培快繁方法 | |
| CN102559676B (zh) | 水稻根特异性启动子及其应用 | |
| CN105219794A (zh) | 一种利用光敏基因创制避荫性玉米种质的方法 | |
| CN105063062A (zh) | 小麦耐盐、抗旱基因TaDHN3,表达载体及其应用 | |
| JP5164093B2 (ja) | イネの病原菌に対する抵抗性を高める方法及び病原菌耐性イネ形質転換体 | |
| Suri et al. | High frequency regeneration and Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) | |
| Pavlichenko et al. | Obtaining and Primary Phenotypic Characterization of Berlin Poplar Transformed by AtGA20ox1 Gene | |
| Coates | Assessment and Characterization of Various Gene-Editing Platforms for Brassica napus (Canola) Using TRANSPARENT TESTA 8 (TT8) as the Target Gene | |
| CN119823245B (zh) | Rtn3蛋白及其相关生物材料在调控水稻分蘖数中的应用 | |
| CN116769799B (zh) | 一种提高豆科作物产量的大豆突变基因及其应用 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171103 |