+

CN107292534A - The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment - Google Patents

The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment Download PDF

Info

Publication number
CN107292534A
CN107292534A CN201710567855.6A CN201710567855A CN107292534A CN 107292534 A CN107292534 A CN 107292534A CN 201710567855 A CN201710567855 A CN 201710567855A CN 107292534 A CN107292534 A CN 107292534A
Authority
CN
China
Prior art keywords
mrow
msub
distribution network
munderover
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710567855.6A
Other languages
Chinese (zh)
Inventor
张逸
陈彬
熊军
刘智煖
黄道姗
林健
陈浩珲
刘文亮
陈金祥
林焱
吴丹岳
陈国伟
刘友波
向月
刘俊勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Xiamen Power Supply Co of State Grid Fujian Electric Power Co Ltd
State Grid Corp of China SGCC
Original Assignee
Sichuan University
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Xiamen Power Supply Co of State Grid Fujian Electric Power Co Ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd, Xiamen Power Supply Co of State Grid Fujian Electric Power Co Ltd, State Grid Corp of China SGCC filed Critical Sichuan University
Priority to CN201710567855.6A priority Critical patent/CN107292534A/en
Publication of CN107292534A publication Critical patent/CN107292534A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种城市配电网中长期动态投资的标尺竞争评价方法及装置,该方法包括:选取多个评价指标,将评价指标对应归入6类评价准则中;通过模糊层次分析法对6类评价准则进行权重分配;通过数据包络分析法对各个评价指标长期的统计数据进行分析,将每类评价准则中的各个评价指标分为输入指标和输出指标;根据输入指标和输出指标,利用数据包络分析法的CCR模型,进而得到各类准则各规划周期的效率评价值;利用动态加权向量,对各规划周期的效率评价值进行线性动态加权集结,获取动态评价结果;根据动态评估结果,建立动态考核标尺,分别对建设成本和建设效率进行标尺考核。本发明适用于不同区域相似企业之间的间接竞争,实现资源配置效率最大化。

The invention relates to a scale competition evaluation method and device for medium and long-term dynamic investment in urban distribution networks. According to the weight distribution of each type of evaluation criteria; through the data envelopment analysis method to analyze the long-term statistical data of each evaluation index, each evaluation index in each type of evaluation criteria is divided into input indicators and output indicators; according to the input indicators and output indicators, use The CCR model of the data envelopment analysis method, and then obtain the efficiency evaluation value of each planning cycle of various criteria; use the dynamic weighting vector to carry out linear dynamic weighted aggregation on the efficiency evaluation value of each planning cycle to obtain the dynamic evaluation result; according to the dynamic evaluation result , establish a dynamic assessment scale, and conduct scale assessment on construction cost and construction efficiency respectively. The invention is suitable for indirect competition among similar enterprises in different regions, and realizes the maximization of resource allocation efficiency.

Description

城市配电网中长期动态投资的标尺竞争评价方法及装置Scale competition evaluation method and device for medium and long-term dynamic investment in urban distribution network

技术领域technical field

本发明涉及配电系统规划、运筹学等技术问题,具体涉及一种城市配电网中长期动态投资的标尺竞争评价方法及装置。The invention relates to technical issues such as power distribution system planning and operations research, and specifically relates to a scale competition evaluation method and device for medium and long-term dynamic investment in urban power distribution networks.

背景技术Background technique

随着规模化清洁能源的接入、供需交互的加深、增量配电业务放开以及电能替代战略实施,配电网作为保证用户高质量和高可靠性用电的重要环节已难以适应新形势下供电可靠性、配电智能化等发展需求,我国每年对配电网投资规模巨大且呈逐年递增趋势,对配电系统薄弱环节进行升级改造和精准投资是目前电网建设的重要难题。因此,研究一套合理、科学、全面的配电系统中长期动态投资策略评价模型对配电网规划、建设和改造具有重要的意义。With the access of large-scale clean energy, the deepening of supply and demand interaction, the liberalization of incremental power distribution business, and the implementation of power substitution strategy, the distribution network, as an important link to ensure high-quality and high-reliability power consumption of users, has been difficult to adapt to the new situation Under the development needs of power supply reliability and distribution intelligence, my country's annual investment in distribution networks is huge and is increasing year by year. Upgrading and transforming weak links in power distribution systems and making precise investments are important problems in power grid construction. Therefore, it is of great significance to study a set of reasonable, scientific and comprehensive medium and long-term dynamic investment strategy evaluation models for distribution network planning, construction and transformation.

配电网中长期动态投资策略评价是一个涉及到多个对象、多个指标和多个时段的典型动态综合评价问题,评价对象的建设目标与地区配电网的结构特点、薄弱环节以及阶段性运营目标不同而存在较大差异,只是单一对大量数据进行观察分析,难以客观认识配电网建设发展的时空特点和地区差异。现有工程实际运用中大多采用专家打分法,评价结果受专家个人主观性影响较大,评价结果所反映的信息量也相对较少,很难客观、综合、动态的反应配电网发展的实际情况。同时也有学者提出了配电网投资效果后评价模型,其主要是站在运营的角度对配电网投资建设后的运行效果和投资效率两方面进行了评价,缺乏在规划角度对若干建设方案优劣进行评价以确保配电网投资规划的精准性,也缺乏对若干规划周期配电网规划策略的动态滚动评价,评价模型也只是单一的反应配电网的建设效益,缺乏对评价结果引入激励制度,从而促进配电网规划建设的效益;而针对配电网性能指标问题,也有学者从配电网运行能力、结构、可靠性等方面构建评价指标体系,却忽略了投资建设对配电网带来的经济效益问题,评价的全面性有待进一步加强;也有学者提出了考虑配电网特性、经济性以及社会效益的智能配电网三级综合评价指标体系,但忽略了对指标计算和评价方法的研究,降低了实际可操作性。The medium and long-term dynamic investment strategy evaluation of distribution network is a typical dynamic comprehensive evaluation problem involving multiple objects, multiple indicators and multiple time periods. There are large differences due to different operational objectives. It is difficult to objectively understand the spatio-temporal characteristics and regional differences of distribution network construction and development only by observing and analyzing a large amount of data. In the actual application of existing projects, most of the expert scoring methods are used. The evaluation results are greatly affected by the subjectivity of the experts, and the amount of information reflected in the evaluation results is relatively small. It is difficult to objectively, comprehensively, and dynamically reflect the actual development of the distribution network. Condition. At the same time, some scholars have proposed the post-evaluation model of distribution network investment effect, which mainly evaluates the operation effect and investment efficiency of distribution network investment and construction from the perspective of operation, and lacks the optimization of several construction schemes from the perspective of planning. The evaluation is poor to ensure the accuracy of distribution network investment planning, and there is also a lack of dynamic rolling evaluation of distribution network planning strategies for several planning cycles. The evaluation model only reflects the construction benefits of distribution network, and lacks incentives for evaluation results. In order to promote the benefits of distribution network planning and construction; and for distribution network performance indicators, some scholars have constructed evaluation index systems from distribution network operation capacity, structure, reliability, etc., but ignored the impact of investment construction on distribution network. The comprehensiveness of the evaluation needs to be further strengthened; some scholars have proposed a three-level comprehensive evaluation index system for smart distribution networks that considers distribution network characteristics, economics, and social benefits, but ignores the calculation and evaluation of indicators. The study of the method reduces the actual operability.

总结发现,现有对配电网投资建设效率评价模型主要存在以下三方面不足:即评价方法主观性较强、指标体系综合性较低和评价的时间尺度单一。配电网投资规划是一个中长期动态滚动规划问题,建设规模庞大、建设目标随地区差异相差较大,投资策略的精准性将直接影响配电网升级改造的效率。It is concluded that the existing evaluation models for the efficiency of distribution network investment and construction mainly have the following three deficiencies: the evaluation method is highly subjective, the index system is relatively low in comprehensiveness, and the evaluation time scale is single. Distribution network investment planning is a medium- and long-term dynamic rolling planning problem. The construction scale is huge, and the construction goals vary greatly with regions. The accuracy of investment strategies will directly affect the efficiency of distribution network upgrading and transformation.

发明内容Contents of the invention

本发明的目的是针对以上不足之处,提供了一种城市配电网中长期动态投资的标尺竞争评价方法及装置,实现地区之间资源的优化配置,提升配电网投资的精准性。The purpose of the present invention is to address the above deficiencies and provide a scale competition evaluation method and device for medium and long-term dynamic investment in urban distribution networks, so as to realize optimal allocation of resources between regions and improve the accuracy of investment in distribution networks.

本发明解决技术问题所采用的方案是:一种城市配电网中长期动态投资的标尺竞争评价方法,包括以下步骤:The solution adopted by the present invention to solve the technical problem is: a scale competition evaluation method for medium and long-term dynamic investment in urban power distribution network, comprising the following steps:

步骤S1:选取多个评价指标,将评价指标对应归入6类评价准则中,6类评价准则为:供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力;Step S1: select multiple evaluation indicators, and classify the evaluation indicators into six types of evaluation criteria. The six types of evaluation criteria are: power supply quality, grid structure, equipment level, power supply capacity, informatization level, and investment capacity;

步骤S2:通过模糊层次分析法对6类评价准则进行权重分配,获得各类评价准则的权重;Step S2: assign weights to the six types of evaluation criteria through fuzzy analytic hierarchy process, and obtain the weights of various evaluation criteria;

步骤S3:通过数据包络分析法对各个评价指标长期的统计数据进行分析,将每类评价准则中的各个评价指标分为输入指标和输出指标,其中输入指标是指决策者从事配电网投资建设的投入量,输出指标是指决策者通过对配电网投资建设而获得的有效产出;Step S3: Analyze the long-term statistical data of each evaluation index by the data envelopment analysis method, and divide each evaluation index in each type of evaluation criteria into input index and output index, where the input index refers to the decision-maker engaged in distribution network investment The input amount of the construction, the output index refers to the effective output obtained by the decision-maker through the investment and construction of the distribution network;

步骤S4:根据输入指标和输出指标,利用数据包络分析法的CCR模型,进而得到各类准则各规划周期的效率评价值;Step S4: according to the input index and the output index, utilize the CCR model of the data envelopment analysis method, and then obtain the efficiency evaluation value of each planning cycle of various criteria;

步骤S5:利用动态加权向量,对各规划周期的效率评价值进行线性动态加权集结,获取动态评价结果。Step S5: Using the dynamic weighting vector, the efficiency evaluation values of each planning cycle are linearly and dynamically weighted to obtain the dynamic evaluation results.

进一步的,6类评价准则权重的决策方式为若干位专家评估,通过模糊层次分析法获取每位专家的权重向量,具体如下:Further, the decision-making method of the weight of the six types of evaluation criteria is evaluated by several experts, and the weight vector of each expert is obtained through the fuzzy analytic hierarchy process, as follows:

设模糊互补矩阵F=(fij)n×n(fij∈[0,1]),若fij=F(ai,aj),则fij表示ai与aj“…比…重要得多”的模糊隶属度关系,fij采用0.1-0.9给予数量标度,F具有以下性质:Let the fuzzy complementary matrix F=(f ij ) n×n (f ij ∈[0,1]), if f ij =F(a i ,a j ), then f ij means a i and a j "... ratio... much more important” fuzzy membership relationship, f ij uses 0.1-0.9 to give a quantitative scale, and F has the following properties:

(1)fii=0.5,i=1,2,…,n;(1) f ii =0.5, i=1,2,...,n;

(2)fij+fji=1,i,j=1,2,…,n;(2)f ij +f ji =1,i,j=1,2,...,n;

(3)存在归一化向量Uz=(uz1,uz2,…,uzn)及α(α>1),对任意的i,j,满足fij=logαuzi-logαuzj+0.5;其中,α表示决策者的分辨能力,Uz表示第z个专家对评价准则的权重决策向量,uzi和uzj为Uz的两个元素,表示专家z对评价准则i和评价j的权重决策结果,n为评价准则数,n=6;(3) There is a normalized vector U z =(u z1 ,u z2 ,…,u zn ) and α(α>1), for any i, j, f ij =log α u zi -log α u zj +0.5; Among them, α represents the resolution ability of the decision maker, U z represents the weight decision vector of the zth expert on the evaluation criteria, u zi and u zj are two elements of U z , which represent the expert z’s evaluation criteria i and Evaluate the weight decision result of j, n is the number of evaluation criteria, n=6;

权重向量Uz=(uz1,uz2,…,uzn)由下面约束规划问题的解确定:The weight vector U z =(u z1 ,u z2 ,...,u zn ) is determined by the solution of the following constraint programming problem:

利用拉格朗日乘子法化为无约束规划问题,可求得:Using the Lagrange multiplier method to transform it into an unconstrained programming problem, we can obtain:

通过上式(2)得到每位专家的权重向量。The weight vector of each expert is obtained through the above formula (2).

进一步的,采用聚类分析法对每位专家的决策结果进行聚类分析,并统一得到决策权重向量,具体包括以下步骤:Further, the decision-making results of each expert are clustered and analyzed by using the cluster analysis method, and the decision weight vector is uniformly obtained, which specifically includes the following steps:

步骤S21:假定配电网各类准则权重分配由N位专家完成,输入N个6维待分类的专家决策向量集D=(U1,U2,…,Uz,…,UN),其中Uz=(uz1,uz2,…,uz6)表示专家z对6类评价准则的权重分配结果,待分类的簇数为k;Step S21: Assuming that the weight distribution of various criteria in the distribution network is completed by N experts, input N 6-dimensional expert decision vector sets D=(U 1 , U 2 ,...,U z ,...,UN ), Among them, U z =(u z1 ,u z2 ,…,u z6 ) represents the weight distribution result of expert z to the 6 types of evaluation criteria, and the number of clusters to be classified is k;

步骤S22:随机选择k个专家对配电网6类评价准则权重分配的决策向量作为初始聚类中心{p1,p2,…,pk},其中pi={pi1,pi2,…,pi6}表示第i个聚类中心专家的权重决策向量;选择聚类最大迭代次数P;确定迭代结束的最大收敛系数M;Step S22: Randomly select the decision vectors of k experts to assign weights to the 6 types of distribution network evaluation criteria as the initial clustering centers {p 1 ,p 2 ,…,p k }, where p i ={p i1 ,p i2 , ..., p i6 } represents the weight decision vector of the i-th clustering center expert; select the maximum number of clustering iterations P; determine the maximum convergence coefficient M at the end of the iteration;

步骤S23:计算k个决策向量各自到各簇的欧氏距离,将各个决策向量分到具有最小距离的簇中,欧氏距离的计算公式为:Step S23: Calculate the Euclidean distances from each of the k decision vectors to each cluster, and divide each decision vector into the cluster with the smallest distance. The formula for calculating the Euclidean distance is:

式(3)中,dist(Uz,pj)表示第z个专家决策向量到第j个聚类的距离;In formula (3), dist(U z , p j ) represents the distance from the zth expert decision vector to the jth cluster;

步骤S24:重新计算k个聚类的中心值{p1,p2,…,pk},其中,pj={pj1,pj2,…,pj6},L表示归入该类中心的决策向量数目,计算公式为:Step S24: recalculate the center values {p 1 , p 2 ,...,p k } of the k clusters, where p j ={p j1 ,p j2 ,...,p j6 }, and L represents the center of the cluster The number of decision vectors of , the calculation formula is:

步骤S25:检验聚类操作是否结束:若迭代次数等于P,则结束聚类;否则计算该次迭代每个聚类的收敛距离,若收敛距离都小于给定的参数M则结束,否则继续迭代,第m次迭代收敛距离计算公式为:Step S25: Check whether the clustering operation is over: if the number of iterations is equal to P, then end the clustering; otherwise, calculate the convergence distance of each cluster in this iteration, if the convergence distance is less than the given parameter M, then end, otherwise continue to iterate , the formula for calculating the convergence distance of the mth iteration is:

步骤S26:假设类别pl包括个体排序向量np个,利用该类专家决策向量与决策向量总数的比值计算该类专家决策向量的权重ηlStep S26: Assuming that category p l includes individual sorting vectors n p , the weight η l of this type of expert decision vector is calculated using the ratio of the expert decision vector to the total number of decision vectors:

由此得到最终权重向量为:From this, the final weight vector is obtained as:

式(7)中,pl表示第l类的聚类中心值。In formula (7), p l represents the cluster center value of the lth class.

进一步的,采用轮廓系数法对聚类质量进行判定,选取聚类质量最优的权重向量,具体包括以下步骤:Further, the clustering quality is judged by the silhouette coefficient method, and the weight vector with the best clustering quality is selected, which specifically includes the following steps:

步骤S27:假设专家决策向量集D被划分为k个簇p1,p2,…,pk,对于每个决策向量u∈D,计算u与u所属簇的其他向量的平均距离b(u),类似,c(u)表示u到不属于u的所有簇的最小平均距离。Step S27: Assuming that the expert decision vector set D is divided into k clusters p 1 , p 2 ,...,p k , for each decision vector u∈D, calculate the average distance b(u ), similarly, c(u) represents the minimum average distance from u to all clusters that do not belong to u.

向量u的轮廓系数计算公式为:The calculation formula of the silhouette coefficient of vector u is:

步骤S28:通过轮廓系数判断聚类质量,获取聚类质量最佳的权重向量。Step S28: Judging the clustering quality by the silhouette coefficient, and obtaining the weight vector with the best clustering quality.

进一步的,在步骤S4中,CCR模型的构建包括以下步骤:Further, in step S4, the construction of the CCR model includes the following steps:

步骤S41:假设有h个地区配电网同时进行规划建设,第j个地区配电网拟投入建设量和预计有效产出量的原始输入指标和输出指标分别为每个地区配电网预计有s种输入量和r种输出量;Step S41: Assuming that distribution networks in h regions are planned and constructed at the same time, the original input indicators and output indicators of the planned input construction amount and expected effective output of the j-th regional distribution network are respectively with Each regional distribution network is expected to have s types of input and r types of output;

步骤S42:对输入指标和输出指标进行规范化处理,其中,正向输入指标采用式(11)和式(12)进行处理,负向输入指标采用式(13)和式(14)进行处理:Step S42: Carry out normalization processing on the input index and output index, wherein, the positive input index is processed by formula (11) and formula (12), and the negative input index is processed by formula (13) and formula (14):

xij表示第j个地区配电网对第i种类型输入指标的投入量;yrj表示第j个地区配电网获得的第r种类型输出指标有效产出量;分别为原始的输入和输出数据;x ij represents the input amount of the j-th regional distribution network to the i-th type of input index; y rj represents the effective output of the r-th type of output index obtained by the j-th regional distribution network; with are the original input and output data respectively;

步骤S43:设vi为第i种输入的权系数变量,fr为第r种输出的权系数变量,各类准则的输出量与输入量之比定义为周期t的配电网投资建设的效率指数:Step S43: Let v i be the weight coefficient variable of the i-th type of input, f r be the weight coefficient variable of the r-th type of output, and the ratio of the output volume to the input volume of various criteria is defined as the distribution network investment construction period t Efficiency index:

步骤S44:以第j0个地区配电网的效益指数为目标,所有配电网的效益指数为约束,构建最优化CCR模型:Step S44: Taking the benefit index of the distribution network in the j 0th region as the target and the benefit indices of all distribution networks as constraints, construct an optimal CCR model:

θt,j0=1表明该地区配电网建设效益相对较高,θt,j0<1表明该地区配电网建设效益相对较低。θ t, j0 = 1 indicates that the benefits of distribution network construction in this area are relatively high, and θ t, j0 < 1 indicates that the benefits of distribution network construction in this area are relatively low.

进一步的,在步骤S5中,引入信息熵和时间度计算动态加权向量;动态加权向量τt和时间度β的定义式如下所示:Further, in step S5, introduce information entropy and time degree to calculate dynamic weight vector; the definition formula of dynamic weight vector τ t and time degree β is as follows:

式中,τ=[τ1,τ2,…,τt]表示时序加权向量,反映不同规划周期投资策略对动态评估的贡献差异性,τt∈[0,1],动态加权向量的信息熵反映了对每个周期投资效率评价值动态加权过程中权重包含信息的程度,熵值越小,表示它获取的信息量越大;β表示时间度,其大小表示在每个周期样本集结过程中对各周期的重视程度,其值越小,表示对近期的数据更加重视;时间度由决策者预先给定,动态加权向量计算的数学模型可表示为:In the formula, τ=[τ 1 , τ 2 ,...,τ t ] represents the time series weighted vector, which reflects the difference in the contribution of investment strategies in different planning cycles to the dynamic evaluation, τ t ∈ [0, 1], the information of the dynamic weighted vector Entropy reflects the extent to which the weight contains information in the dynamic weighting process of the investment efficiency evaluation value of each period. The smaller the entropy value, the greater the amount of information it acquires; The degree of emphasis on each cycle in , the smaller the value, the more attention to recent data; the time is predetermined by the decision maker, and the mathematical model of dynamic weighted vector calculation can be expressed as:

进一步的,根据步骤S5的评价结果,建立动态考核标尺,分别对建设成本和建设效率进行标尺考核,所述标尺考核具体如下:监管机构对配电网投资效率较高的地区给予相应的考核奖励,相反,对于配电网投资效率较低的地区给予考核惩罚,数学模型如下所示:Further, according to the evaluation result of step S5, a dynamic assessment scale is established, and the scale assessment is carried out on the construction cost and construction efficiency respectively. The scale assessment is as follows: the regulatory agency gives corresponding assessment rewards to regions with high distribution network investment efficiency , on the contrary, for areas with low distribution network investment efficiency, assessment penalties are given, and the mathematical model is as follows:

rj,t=ρj,t+gj,t (21)r j,t = ρ j,t + g j,t (21)

式(21)中,rj,t为地区j在建设周期t内对配电网建设获得的回报;ρj,t为地区j在建设周期t内获得的建设收益,正数表示奖励,负数表示惩罚;gj,t为地区j在建设周期t内获得的成本补贴。In formula (21), r j , t is the return obtained by region j for distribution network construction within the construction period t; ρ j , t is the construction income obtained by region j within the construction period t, positive numbers indicate rewards, and negative numbers Indicates the penalty; g j , t is the cost subsidy obtained by region j in the construction period t.

进一步的,所述建设收益的计算包括以下步骤:Further, the calculation of the construction income includes the following steps:

步骤S61:计算各地区配电网建设的效率评价值θj’和动态加权向量τtStep S61: Calculate the efficiency evaluation value θ j ' and dynamic weighting vector τ t of distribution network construction in each region;

步骤S62:对各周期的配电网投资效率评价值进行线性加权,得到地区j在建设周期t内的配电网投资效率动态评价值θt,j,即:Step S62: Carry out linear weighting on the distribution network investment efficiency evaluation value of each period, and obtain the distribution network investment efficiency dynamic evaluation value θ t,j of region j in the construction period t, namely:

θt,j dynamic=τ1θ1,j2θ2,j+…+τtθt,j (22)θ t,j dynamic =τ 1 θ 1,j2 θ 2,j +…+τ t θ t,j (22)

步骤S63:定义地区j在建设周期t内的奖惩系数ξt,j为:Step S63: Define the reward and punishment coefficient ξ t,j of region j in the construction period t as:

计算得到地区j在建设周期t内配电网的建设收益:Calculate the construction income of distribution network in region j in construction period t:

式中,Pt,j表示地区j在建设周期t内相比周期t-1内对配电网投资的增加值。In the formula, P t , j represents the added value of distribution network investment in region j during construction period t compared with period t-1.

进一步的,每个地区配电网的建设成本补贴由自身的建设成本和其他地区的建设成本共同决定,其计算方法如下式所示:Furthermore, the construction cost subsidy of the distribution network in each region is jointly determined by its own construction cost and the construction cost of other regions, and its calculation method is shown in the following formula:

式(25)中,Lj,t表示地区j在建设周期t内的配电网建设投入量;cj,t为地区j在建设周期t内配电网的单位建设成本,εj为地区j自身成本所占比例,lit为观察中公司i在建设周期t内的配电网建设成本所占权重。In formula (25), L j, t represents the investment in the distribution network construction of region j in the construction period t; c j, t is the unit construction cost of the distribution network in region j in the construction period t, and ε j is the area The proportion of j's own cost, l i , t is the weight of the distribution network construction cost of company i in the observation period t.

本发明还提供一种基于上述所述的城市配电网中长期动态投资的标尺竞争评价方法的装置,包括中央处理器、存储模块、显示模块;The present invention also provides a device based on the above-mentioned scale competition evaluation method for medium and long-term dynamic investment in urban distribution networks, including a central processing unit, a storage module, and a display module;

所述中央处理器用以进行下述步骤:The central processing unit is used to perform the following steps:

步骤S1:选取多个评价指标,将评价指标对应归入6类评价准则中,6类评价准则为:供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力;Step S1: select multiple evaluation indicators, and classify the evaluation indicators into six types of evaluation criteria. The six types of evaluation criteria are: power supply quality, grid structure, equipment level, power supply capacity, informatization level, and investment capacity;

步骤S2:通过模糊层次分析法对6类评价准则进行权重分配,获得各类评价准则的权重;Step S2: assign weights to the six types of evaluation criteria through fuzzy analytic hierarchy process, and obtain the weights of various evaluation criteria;

步骤S3:通过数据包络分析法对各个评价指标长期的统计数据进行分析,将每类评价准则中的各个评价指标分为输入指标和输出指标,其中输入指标是指决策者从事配电网投资建设的投入量,输出指标是指决策者通过对配电网投资建设而获得的有效产出;Step S3: Analyze the long-term statistical data of each evaluation index by the data envelopment analysis method, and divide each evaluation index in each type of evaluation criteria into input index and output index, where the input index refers to the decision-maker engaged in distribution network investment The input amount of the construction, the output index refers to the effective output obtained by the decision-maker through the investment and construction of the distribution network;

步骤S4:根据输入指标和输出指标,利用数据包络分析法的CCR模型,进而得到各类准则各规划周期的效率评价值;Step S4: according to the input index and the output index, utilize the CCR model of the data envelopment analysis method, and then obtain the efficiency evaluation value of each planning cycle of various criteria;

步骤S5:利用动态加权向量,对各规划周期的效率评价值进行线性动态加权集结,获取动态评价结果。Step S5: Using the dynamic weighting vector, the efficiency evaluation values of each planning cycle are linearly and dynamically weighted to obtain the dynamic evaluation results.

与现有技术相比,本发明有以下有益效果:本发明提出了评价模型,选取相似的企业作为研究对象,利用区域间对比评价的思想从空间、时间维度对配电网投资策略精准性进行判定,选取投资效率较好的地区作为标杆地区,其他地区的评价值参照标杆地区评定,克服了评价标准难以统一、评价方法主观性较强等不足,评价结果可以客观反映配电网各方面的投资规划效率,从而为配电网精准投资提供指导。该模型适用于不同区域相似企业之间的间接竞争,在建设成本最小化、资源配置效率最大化有着明显的优势。Compared with the prior art, the present invention has the following beneficial effects: the present invention proposes an evaluation model, selects similar enterprises as research objects, and utilizes the idea of inter-regional comparison and evaluation to accurately evaluate distribution network investment strategies from space and time dimensions. Judgment, select areas with better investment efficiency as benchmark areas, and evaluate the evaluation values of other areas with reference to benchmark areas, which overcomes the shortcomings of difficult to unify evaluation standards and relatively subjective evaluation methods, and the evaluation results can objectively reflect the various aspects of the distribution network. Investment planning efficiency, so as to provide guidance for precise investment in distribution network. This model is suitable for indirect competition between similar enterprises in different regions, and has obvious advantages in minimizing construction costs and maximizing resource allocation efficiency.

附图说明Description of drawings

下面结合附图对本发明专利进一步说明。Below in conjunction with accompanying drawing, the patent of the present invention is further described.

图1为配电网中长期动态投资策略标尺评价模型的流程图。Figure 1 is a flow chart of the evaluation model of the medium and long-term dynamic investment strategy of the distribution network.

图2为配电网投资策略标尺评价指标体系图。Figure 2 is a diagram of the distribution network investment strategy scale evaluation index system.

图3为该省2016-2022年配电网投资规划效率评价值条形图。Figure 3 is a bar chart of the province's 2016-2022 distribution network investment planning efficiency evaluation value.

图4为该省2016-2022年典型地区各准则投资效率评价值雷达图。Figure 4 is a radar map of the investment efficiency evaluation values of each criterion in typical regions of the province from 2016 to 2022.

图5为该省2016-2022年奖惩系数示意图。Figure 5 is a schematic diagram of the reward and punishment coefficient of the province from 2016 to 2022.

具体实施方式detailed description

下面结合附图和具体实施方式对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

如图1~2所示,本实施例的一种城市配电网中长期动态投资的标尺竞争评价方法,包括以下步骤:As shown in Figures 1-2, a scale competition evaluation method for mid- and long-term dynamic investment in urban distribution networks in this embodiment includes the following steps:

步骤S1:选取多个评价指标,将评价指标对应归入6类评价准则中,6类评价准则为:供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力;Step S1: select multiple evaluation indicators, and classify the evaluation indicators into six types of evaluation criteria. The six types of evaluation criteria are: power supply quality, grid structure, equipment level, power supply capacity, informatization level, and investment capacity;

步骤S2:通过模糊层次分析法对6类评价准则进行权重分配,获得各类评价准则的权重;Step S2: assign weights to the six types of evaluation criteria through fuzzy analytic hierarchy process, and obtain the weights of various evaluation criteria;

步骤S3:通过数据包络分析法对各个评价指标长期的统计数据进行分析,将每类评价准则中的各个评价指标分为输入指标和输出指标,其中输入指标是指决策者从事配电网投资建设的投入量,输出指标是指决策者通过对配电网投资建设而获得的有效产出;Step S3: Analyze the long-term statistical data of each evaluation index by the data envelopment analysis method, and divide each evaluation index in each type of evaluation criteria into input index and output index, where the input index refers to the decision-maker engaged in distribution network investment The input amount of the construction, the output index refers to the effective output obtained by the decision-maker through the investment and construction of the distribution network;

步骤S4:根据输入指标和输出指标,利用数据包络分析法的CCR模型,进而得到各类准则各规划周期的效率评价值;Step S4: according to the input index and the output index, utilize the CCR model of the data envelopment analysis method, and then obtain the efficiency evaluation value of each planning cycle of various criteria;

步骤S5:利用动态加权向量,对各规划周期的效率评价值进行线性动态加权集结,获取动态评价结果。Step S5: Using the dynamic weighting vector, the efficiency evaluation values of each planning cycle are linearly and dynamically weighted to obtain the dynamic evaluation results.

在本实施例中,在步骤S1中,从配电网规划建设的实际出发,结合电力企业内部推行的同业标准,选取评价指标。In this embodiment, in step S1, the evaluation index is selected based on the reality of distribution network planning and construction, combined with industry standards implemented within the electric power enterprise.

如图1为配电网中长期动态投资策略标尺评价模型,配电网中长期动态投资策略评价主要分为指标体系构建和评价模型构建两个阶段。指标体系构建需要根据规划周期内地区配电网建设的总体目标确定评价指标、评价判据和评价标准,并根据规划建设的重点分配指标权重;评价阶段主要完成各指标的量化评价和各规划周期评价值的加权。Figure 1 shows the scale evaluation model of medium and long-term dynamic investment strategy of distribution network. The evaluation of medium and long-term dynamic investment strategy of distribution network is mainly divided into two stages: index system construction and evaluation model construction. The construction of the index system needs to determine the evaluation index, evaluation criterion and evaluation standard according to the overall goal of the regional distribution network construction in the planning cycle, and assign the weight of the index according to the key points of the planning and construction; the evaluation stage mainly completes the quantitative evaluation of each index and the planning cycle. Weighting of evaluation values.

从配电网规划建设的实际出发,结合电力企业内部推行的同业标准,选取了如下指标体系:停电时间、电网通过N-1主变数量、主变数量、电网通过N-1线路条数、电缆线路条数、架空线路条数、重载线路条数、重载主变台数、供电半径之和、供电低压用户数、公用配变容量、实现信息采集的配变数量、智能电表数量、净资产等。将以上的指标体系分为评价投资策略精准性的6类准则,即供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力。将配电网相对建设效率为总目标,6类评价准则为中间层,每个评价指标归入相应的准则层,可建立评价配电网投资策略精准性的层次结构模型,如图2所示。Proceeding from the reality of distribution network planning and construction, combined with the industry standards implemented by power companies, the following index system is selected: power outage time, number of main transformers passing through N-1 in the power grid, number of main transformers, number of lines passing through N-1 lines in the power grid, The number of cable lines, the number of overhead lines, the number of heavy-duty lines, the number of heavy-duty main transformers, the sum of power supply radius, the number of low-voltage power supply users, the capacity of public distribution transformers, the number of distribution transformers for information collection, the number of smart meters, net assets etc. The above index system is divided into six categories of criteria for evaluating the accuracy of investment strategies, namely power supply quality, grid structure, equipment level, power supply capacity, informatization level, and investment capacity. Taking the relative construction efficiency of the distribution network as the overall goal, the six types of evaluation criteria as the middle layer, and each evaluation index into the corresponding criterion layer, a hierarchical structure model for evaluating the accuracy of distribution network investment strategies can be established, as shown in Figure 2 .

本发明对指标层的评价采用数据包络分析法,其基本思想就是将评价指标分为“输入指标”和“输出指标”,通过分析两者之间的比值关系确定DEA评价值,其中,“输入指标”是指决策者从事配电网投资建设的投入量,“输出指标”是指决策者通过对配电网投资建设而获得的有效产出。输入输出指标可从数据关联性分析的角度对长期的统计数据进行分析确定,两者存在一定的定性正相关性。各准则的DEA输入输出关系如表1所示:The present invention adopts the data envelopment analysis method for the evaluation of the index layer, and its basic idea is to divide the evaluation index into "input index" and "output index", and determine the DEA evaluation value by analyzing the ratio relationship between the two, wherein, " "Input index" refers to the amount of input that decision makers engage in investment and construction of distribution network, and "output index" refers to the effective output obtained by decision makers through investment and construction of distribution network. The input and output indicators can be analyzed and determined from the perspective of data correlation analysis on long-term statistical data, and there is a certain qualitative positive correlation between the two. The DEA input-output relationship of each criterion is shown in Table 1:

表1各准则的DEA输入、输出指标Table 1 DEA input and output indicators of each criterion

配电网投资规划以提高配电网供电质量、优化配电网线路结构、改善配电网装备水平、增强配电网供电能力和提升配电网信息化水平为主要目标,对配电网中长期动态投资策略评价是典型的多指标、跨专业多维非结构化指标体系评价问题,指标权重的分配是评价的关键问题之一,需要由数学分析方法辅助处理。模糊层次分析法是模糊数学与层次分析法相结合的多指标权重分配方法,改进了层次分析法判断矩阵一致性指标难以达到以及判断矩阵一致性与人们决策思维的一致性存在差异等问题,避免了“甲比乙重要,乙比丙重要,而丙又比甲重要”的违反常识的情况,应用模糊层次分析法可消除指标权重分配中的不确定性问题,决策者可根据不同规划周期配电网的建设目标合理改变模糊矩阵,使得评价结果更能反映当前配电网发展的实际情况。Distribution network investment planning aims to improve the quality of distribution network power supply, optimize the structure of distribution network lines, improve the level of distribution network equipment, enhance the power supply capacity of distribution network, and improve the information level of distribution network. The evaluation of long-term dynamic investment strategies is a typical multi-indicator, multi-disciplinary and multi-dimensional unstructured index system evaluation problem. The distribution of index weights is one of the key issues in the evaluation, which needs to be assisted by mathematical analysis methods. Fuzzy analytic hierarchy process is a multi-index weight distribution method combining fuzzy mathematics and analytic hierarchy process. It improves the problems that the analytic hierarchy process judgment matrix consistency index is difficult to achieve and the consistency of the judgment matrix is different from the consistency of people's decision-making thinking. The situation that "A is more important than B, B is more important than C, and C is more important than A" violates common sense. The application of fuzzy analytic hierarchy process can eliminate the uncertainty in the distribution of index weights, and decision makers can distribute power according to different planning cycles Reasonably change the fuzzy matrix according to the goal of network construction, so that the evaluation results can better reflect the actual situation of the current distribution network development.

在本实施例中,6类评价准则权重的决策方式为若干位专家评估,通过模糊层次分析法获取每位专家的权重向量,具体如下:In this embodiment, the decision-making method of the weight of the 6 types of evaluation criteria is evaluated by several experts, and the weight vector of each expert is obtained through the fuzzy analytic hierarchy process, as follows:

设模糊互补矩阵F=(fij)n×n(fij∈[0,1]),若fij=F(ai,aj),则fij表示ai与aj“…比…重要得多”的模糊隶属度关系,fij采用0.1-0.9给予数量标度,数据标度如表2所示,Let the fuzzy complementary matrix F=(f ij ) n×n (f ij ∈[0,1]), if f ij =F(a i ,a j ), then f ij means a i and a j "... ratio... much more important” fuzzy membership relationship, f ij uses 0.1-0.9 to give a quantitative scale, and the data scale is shown in Table 2.

表2 0.1-0.9数量标度Table 2 0.1-0.9 Quantity Scale

F具有以下性质:F has the following properties:

(1)fii=0.5,i=1,2,…,n;(1) f ii =0.5, i=1,2,...,n;

(2)fij+fji=1,i,j=1,2,…,n;(2)f ij +f ji =1,i,j=1,2,...,n;

(3)存在归一化向量Uz=(uz1,uz2,…,uzn)及α(α>1),对任意的i,j,满足fij=logαuzi-logαuzj+0.5;其中,α表示决策者的分辨能力,Uz表示第z个专家对评价准则的权重决策向量,uzi和uzj为Uz的两个元素,表示专家z对评价准则i和评价j的权重决策结果,n为评价准则数,n=6;(3) There is a normalized vector U z =(u z1 ,u z2 ,…,u zn ) and α(α>1), for any i, j, f ij =log α u zi -log α u zj +0.5; Among them, α represents the resolution ability of the decision maker, U z represents the weight decision vector of the zth expert on the evaluation criteria, u zi and u zj are two elements of U z , which represent the expert z’s evaluation criteria i and Evaluate the weight decision result of j, n is the number of evaluation criteria, n=6;

权重向量Uz=(uz1,uz2,…,uzn)由下面约束规划问题的解确定:The weight vector U z =(u z1 ,u z2 ,...,u zn ) is determined by the solution of the following constraint programming problem:

利用拉格朗日乘子法化为无约束规划问题,可求得:Using the Lagrange multiplier method to transform it into an unconstrained programming problem, we can obtain:

通过上式(2)得到每位专家的权重向量。The weight vector of each expert is obtained through the above formula (2).

为得到更为科学的决策,模糊矩阵由多名专家共同构建,专家们的知识背景和经验的不同可能会导致对于同一个对象存在不同的决策,为将多个专家的决策结果提炼出统一决策权重向量,同时降低决策的主观性,因此本文引入聚类分析法。现有较成熟的聚类方法包括划分方法、层次方法、基于密度的方法和基于网格的方法并已广泛应用于商务智能、图像模式识别、生物学和安全等领域。本文引入k均值算法对专家决策向量进行聚类分析。In order to obtain a more scientific decision-making, the fuzzy matrix is jointly constructed by multiple experts. Different knowledge backgrounds and experiences of experts may lead to different decisions for the same object. In order to extract a unified decision-making result from the decision-making results of multiple experts Weight vector, while reducing the subjectivity of decision-making, so this article introduces the cluster analysis method. The existing relatively mature clustering methods include partition method, hierarchical method, density-based method and grid-based method, and have been widely used in business intelligence, image pattern recognition, biology and security and other fields. In this paper, k-means algorithm is introduced to cluster analysis of expert decision vectors.

假设专家对配电网各准则指标权重分配的决策结果构成向量集D,每个决策向量包括6个欧氏空间中的对象,即供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力,给定各准则权重向量集的聚类数目k,随机创建一个初始划分,采用迭代方法通过将聚类中心不断移动并以簇内高相似性和簇间低相似性为目标来尝试改进划分。Assume that the decision-making results of experts on the weight distribution of each criterion index of the distribution network constitute a vector set D, and each decision vector includes 6 objects in the Euclidean space, namely, power supply quality, power grid structure, equipment level, power supply capacity, information level and Investment capacity, given the number k of clusters of each criterion weight vector set, randomly create an initial partition, and use an iterative method to try to improve by continuously moving the cluster center and aiming at high intra-cluster similarity and low inter-cluster similarity divided.

在本实施例中,采用聚类分析法对每位专家的决策结果进行聚类分析,并统一得到决策权重向量,具体包括以下步骤:In this embodiment, the decision-making results of each expert are clustered and analyzed by using the cluster analysis method, and the decision-making weight vector is uniformly obtained, which specifically includes the following steps:

步骤S21:假定配电网各类准则权重分配由N位专家完成,输入N个6维待分类的专家决策向量集D=(U1,U2,…,Uz,…,UN),其中Uz=(uz1,uz2,…,uz6)表示专家z对6类评价准则的权重分配结果,待分类的簇数为k;Step S21: Assuming that the weight distribution of various criteria in the distribution network is completed by N experts, input N 6-dimensional expert decision vector sets D=(U 1 , U 2 ,...,U z ,...,UN ), Among them, U z =(u z1 ,u z2 ,…,u z6 ) represents the weight distribution result of expert z to the 6 types of evaluation criteria, and the number of clusters to be classified is k;

步骤S22:随机选择k个专家对配电网6类评价准则权重分配的决策向量作为初始聚类中心{p1,p2,…,pk},其中pi={pi1,pi2,…,pi6}表示第i个聚类中心专家的权重决策向量;选择聚类最大迭代次数P;确定迭代结束的最大收敛系数M;Step S22: Randomly select the decision vectors of k experts to assign weights to the 6 types of distribution network evaluation criteria as the initial clustering centers {p 1 ,p 2 ,…,p k }, where p i ={p i1 ,p i2 , ..., p i6 } represents the weight decision vector of the i-th clustering center expert; select the maximum number of clustering iterations P; determine the maximum convergence coefficient M at the end of the iteration;

步骤S23:计算k个决策向量各自到各簇的欧氏距离,将各个决策向量分到具有最小距离的簇中,欧氏距离的计算公式为:Step S23: Calculate the Euclidean distances from each of the k decision vectors to each cluster, and divide each decision vector into the cluster with the smallest distance. The formula for calculating the Euclidean distance is:

式(3)中,dist(Uz,pj)表示第z个专家决策向量到第j个聚类的距离;In formula (3), dist(U z , p j ) represents the distance from the zth expert decision vector to the jth cluster;

步骤S24:重新计算k个聚类的中心值{p1,p2,…,pk},其中,pj={pj1,pj2,…,pj6},L表示归入该类中心的决策向量数目,计算公式为:Step S24: recalculate the center values {p 1 , p 2 ,...,p k } of the k clusters, where p j ={p j1 ,p j2 ,...,p j6 }, and L represents the center of the cluster The number of decision vectors of , the calculation formula is:

步骤S25:检验聚类操作是否结束:若迭代次数等于P,则结束聚类;否则计算该次迭代每个聚类的收敛距离,若收敛距离都小于给定的参数M则结束,否则继续迭代,第m次迭代收敛距离计算公式为:Step S25: Check whether the clustering operation is over: if the number of iterations is equal to P, then end the clustering; otherwise, calculate the convergence distance of each cluster in this iteration, if the convergence distance is less than the given parameter M, then end, otherwise continue to iterate , the formula for calculating the convergence distance of the mth iteration is:

步骤S26:假设类别pl包括个体排序向量np个,利用该类专家决策向量与决策向量总数的比值计算该类专家决策向量的权重ηlStep S26: Assuming that category p l includes individual sorting vectors n p , the weight η l of this type of expert decision vector is calculated using the ratio of the expert decision vector to the total number of decision vectors:

由此得到最终权重向量为:From this, the final weight vector is obtained as:

式(7)中,pl表示第l类的聚类中心值。In formula (7), p l represents the cluster center value of the lth class.

由于输入参数k会对聚类的结果造成一定的影响,因此在实际聚类中会选取几个k值多次进行聚类并分析聚类结果,选取最优的结果作为最终权重向量,本文引入轮廓系数法评价聚类的优劣。Since the input parameter k will have a certain impact on the clustering results, in the actual clustering, several k values will be selected for multiple clustering and the clustering results will be analyzed, and the optimal result will be selected as the final weight vector. This paper introduces The silhouette coefficient method evaluates the quality of clustering.

在本实施例中,采用轮廓系数法对聚类质量进行判定,选取聚类质量最优的权重向量,具体包括以下步骤:In this embodiment, the clustering quality is judged by the silhouette coefficient method, and the weight vector with the best clustering quality is selected, which specifically includes the following steps:

步骤S27:假设专家决策向量集D被划分为k个簇p1,p2,…,pk,对于每个决策向量u∈D,计算u与u所属簇的其他向量的平均距离b(u),类似,c(u)表示u到不属于u的所有簇的最小平均距离。Step S27: Assuming that the expert decision vector set D is divided into k clusters p 1 , p 2 ,...,p k , for each decision vector u∈D, calculate the average distance b(u ), similarly, c(u) represents the minimum average distance from u to all clusters that do not belong to u.

向量u的轮廓系数计算公式为:The calculation formula of the silhouette coefficient of vector u is:

步骤S28:通过轮廓系数判断聚类质量,获取聚类质量最佳的权重向量。Step S28: Judging the clustering quality by the silhouette coefficient, and obtaining the weight vector with the best clustering quality.

轮廓系数方法结合了凝聚度和分离度,可以以此来判断聚类的优良,其在-1到+1之间取值,值越大表示聚类效果越好。The silhouette coefficient method combines the degree of cohesion and separation, which can be used to judge the quality of the clustering. It takes a value between -1 and +1, and the larger the value, the better the clustering effect.

配电网规划建设目标与地区配电网的结构特点、薄弱环节以及阶段性运营目标不同而存在较大差异,只是单一的对大量的统计数据进行分析难以公平、客观的认识各地区配电网建设的实际情况。因此,引入数据包络法“相对有效”的思想到配电网投资规划效率评价模型中,利用配电网建设投入与有效产出之间的关系分析配电网投资策略的规模有效性和技术有效性,该模型在避免主观因素、简化算法和减小误差等方面有着不可低估的优越性,已成熟运用到资源配置和生产力进步等多个领域。Distribution network planning and construction objectives are quite different from the structural characteristics, weak links, and phased operation objectives of regional distribution networks. It is only difficult to understand the distribution networks in various regions by simply analyzing a large number of statistical data. actual conditions of construction. Therefore, the idea of "relatively effective" data envelopment method is introduced into the distribution network investment planning efficiency evaluation model, and the scale effectiveness and technical Effectiveness, the model has advantages that cannot be underestimated in avoiding subjective factors, simplifying algorithms and reducing errors, etc., and has been maturely applied to many fields such as resource allocation and productivity improvement.

数据包络法(DEA)的基本思路是将一个地区配电网看成是一个决策单元(Decision Making Unit,DMU),再由众多的DMUs构成评价总体,以配电网“输入指标”和“输出指标”的权重为变量,“输出指标”与“输入指标”比率最大化为目标函数构建DEA评价模型,计算出所有配电网投资建设的有效生产沿面,从而确定配电网投资建设是否DEA有效。The basic idea of the data envelopment method (DEA) is to regard a regional distribution network as a decision-making unit (Decision Making Unit, DMU), and then form an overall evaluation by many DMUs, and use the "input indicators" and " The weight of "output index" is a variable, and the ratio of "output index" and "input index" is maximized as the objective function to build a DEA evaluation model, and calculate the effective production edge of all distribution network investment construction, so as to determine whether the distribution network investment construction is DEA efficient.

CCR模型为DEA的一般经典模型。The CCR model is a general classic model of DEA.

在本实施例中,在步骤S4中,CCR模型的构建包括以下步骤:In this embodiment, in step S4, the construction of the CCR model includes the following steps:

步骤S41:假设有h个地区配电网同时进行规划建设,第j个地区配电网拟投入建设量和预计有效产出量的原始输入指标和输出指标分别为每个地区配电网预计有s种输入量和r种输出量;Step S41: Assuming that distribution networks in h regions are planned and constructed at the same time, the original input indicators and output indicators of the planned input construction amount and expected effective output of the j-th regional distribution network are respectively with Each regional distribution network is expected to have s types of input and r types of output;

步骤S42:对输入指标和输出指标进行规范化处理,其中,正向输入指标采用式(11)和式(12)进行处理,负向输入指标采用式(13)和式(14)进行处理:Step S42: Carry out normalization processing on the input index and output index, wherein, the positive input index is processed by formula (11) and formula (12), and the negative input index is processed by formula (13) and formula (14):

xij表示第j个地区配电网对第i种类型输入指标的投入量;yrj表示第j个地区配电网获得的第r种类型输出指标有效产出量;分别为原始的输入和输出数据;x ij represents the input amount of the j-th regional distribution network to the i-th type of input index; y rj represents the effective output of the r-th type of output index obtained by the j-th regional distribution network; with are the original input and output data respectively;

公式(11)和(13)中的xij均为各指标规范化处理后的原始输入数据,可通过历史数据利用统计分析和数据挖掘技术获取,正向输入指标(即指标值越大则反映评价值越好)采用公式(11)规范化处理,负向输入指标(即指标值越大则反映评价值越差)采用公式(13)规范化处理;同理,公式(12)和(14)中的yij均为各指标规范化处理后的原始输出数据,式(12)和(14)分别为正向输出指标(即指标值越大则反映评价值越好)和负向输出指标(即指标值越大则反映评价值越差)的规范化处理公式;分别为原始的输入输出数据,即对配电网投资规划的各项投入指标数据和预期有效产出数据。The x ij in formulas (11) and (13) are the original input data after standardization processing of each index, which can be obtained through historical data using statistical analysis and data mining techniques, and the positive input index (that is, the larger the index value reflects the evaluation index). The better the value) is normalized by formula (11), and the negative input index (that is, the larger the index value is, the worse the evaluation value is) is normalized by formula (13); similarly, in formulas (12) and (14) y and ij are the original output data after standardization processing of each index, formulas (12) and (14) are positive output index (that is, the larger the index value, the better the evaluation value) and negative output index (that is, the index value The larger the value, the worse the evaluation value) the normalized processing formula; with They are the original input and output data, that is, the input index data and expected effective output data of distribution network investment planning.

步骤S43:设vi为第i种输入的权系数变量,fr为第r种输出的权系数变量,各类准则的输出量与输入量之比定义为周期t的配电网投资建设的效率指数:Step S43: Let v i be the weight coefficient variable of the i-th type of input, f r be the weight coefficient variable of the r-th type of output, and the ratio of the output volume to the input volume of various criteria is defined as the distribution network investment construction period t Efficiency index:

步骤S44:以第j0个地区配电网的效益指数为目标,所有配电网的效益指数为约束,构建最优化CCR模型:Step S44: Taking the benefit index of the distribution network in the j 0th region as the target and the benefit indices of all distribution networks as constraints, construct an optimal CCR model:

θt,j0=1表明该地区配电网建设效益相对较高,θt,j0<1表明该地区配电网建设效益相对较低。θ t, j0 = 1 indicates that the benefits of distribution network construction in this area are relatively high, and θ t, j0 < 1 indicates that the benefits of distribution network construction in this area are relatively low.

在本实施例中,在步骤S5中,引入信息熵和时间度计算动态加权向量;动态加权向量τt和时间度β的定义式如下所示:In this embodiment, in step S5, the dynamic weight vector is calculated by introducing information entropy and time degree; the definition formula of dynamic weight vector τ t and time degree β is as follows:

式中,τ=[τ1,τ2,…,τt]表示时序加权向量,反映不同规划周期投资策略对动态评估的贡献差异性,τt∈[0,1],动态加权向量的信息熵反映了对每个周期投资效率评价值动态加权过程中权重包含信息的程度,熵值越小,表示它获取的信息量越大;β表示时间度,其大小表示在每个周期样本集结过程中对各周期的重视程度,其值越小,表示对近期的数据更加重视,具体含义见表3。In the formula, τ=[τ 1 , τ 2 ,...,τ t ] represents the time series weighted vector, which reflects the difference in the contribution of investment strategies in different planning cycles to the dynamic evaluation, τ t ∈ [0, 1], the information of the dynamic weighted vector Entropy reflects the extent to which the weight contains information in the dynamic weighting process of the investment efficiency evaluation value of each period. The smaller the entropy value, the greater the amount of information it acquires; The degree of emphasis on each cycle in , the smaller the value, the more attention to recent data, see Table 3 for specific meanings.

表3时间度的标度参考表Table 3 Scale reference table of time scale

时间度由决策者预先给定,动态加权向量计算的数学模型可表示为:The time is given in advance by the decision maker, and the mathematical model of dynamic weight vector calculation can be expressed as:

在本实施例中,根据步骤S5的评价结果,建立动态考核标尺,分别对建设成本和建设效率进行标尺考核,所述标尺考核具体如下:In this embodiment, according to the evaluation result of step S5, a dynamic assessment scale is established, and the scale assessment is performed on the construction cost and construction efficiency respectively, and the scale assessment is specifically as follows:

监管机构对配电网投资效率较高的地区给予相应的考核奖励,相反,对于配电网投资效率较低的地区给予考核惩罚,数学模型如下所示:Regulatory agencies give corresponding assessment rewards to areas with high distribution network investment efficiency. On the contrary, they give assessment penalties to areas with low distribution network investment efficiency. The mathematical model is as follows:

rj,t=ρj,t+gj,t (21)r j,t = ρ j,t +g j,t (21)

式(21)中,rj,t为地区j在建设周期t内对配电网建设获得的回报;ρj,t为地区j在建设周期t内获得的建设收益,正数表示奖励,负数表示惩罚;gj,t为地区j在建设周期t内获得的成本补贴。In formula (21), r j , t is the reward obtained by region j for distribution network construction within the construction period t; ρ j , t is the construction income obtained by region j within the construction period t, positive numbers indicate rewards, and negative numbers Indicates the penalty; g j , t is the cost subsidy obtained by region j in the construction period t.

在本实施例中,所述建设收益的计算包括以下步骤:In this embodiment, the calculation of the construction income includes the following steps:

步骤S61:计算各地区配电网建设的效率评价值θj’和动态加权向量τtStep S61: Calculate the efficiency evaluation value θ j ' and dynamic weighting vector τ t of distribution network construction in each region;

步骤S62:对各周期的配电网投资效率评价值进行线性加权,得到地区j在建设周期t内的配电网投资效率动态评价值θt,j,即:Step S62: Carry out linear weighting on the distribution network investment efficiency evaluation value of each period, and obtain the distribution network investment efficiency dynamic evaluation value θ t,j of region j in the construction period t, namely:

θt,j dynamic=τ1θ1,j2θ2,j+…+τtθt,j (22)θ t,j dynamic =τ 1 θ 1,j2 θ 2,j +…+τ t θ t,j (22)

步骤S63:定义地区j在建设周期t内的奖惩系数ξt,j为:Step S63: Define the reward and punishment coefficient ξ t,j of region j in the construction period t as:

计算得到地区j在建设周期t内配电网的建设收益:Calculate the construction income of distribution network in region j in construction period t:

式中,Pt,j表示地区j在建设周期t内相比周期t-1内对配电网投资的增加值。In the formula, P t , j represents the added value of distribution network investment in region j during construction period t compared with period t-1.

在本实施例中,每个地区配电网的建设成本补贴由自身的建设成本和其他地区的建设成本共同决定,其计算方法如下式所示:In this embodiment, the construction cost subsidy of the distribution network in each region is jointly determined by its own construction cost and the construction cost of other regions, and its calculation method is shown in the following formula:

式(25)中,Lj,t表示地区j在建设周期t内的配电网建设投入量;cj,t为地区j在建设周期t内配电网的单位建设成本,εj为地区j自身成本所占比例,lit为观察中公司i在建设周期t内的配电网建设成本所占权重。In formula (25), L j, t represents the investment in the distribution network construction of region j within the construction period t; c j, t is the unit construction cost of the distribution network in region j within the construction period t, and ε j is the area The proportion of j's own cost, l i , t is the weight of the distribution network construction cost of company i in the observation period t.

本发明的具体实施过程:Concrete implementation process of the present invention:

选取某省网9个市级地区4个规划周期数据作为研究对象,以验证本发明所体模型合理性。The data of 4 planning cycles in 9 municipal areas of a certain provincial network are selected as the research object to verify the rationality of the model embodied in the present invention.

(1)计算各准则权重系数(1) Calculate the weight coefficient of each criterion

模糊互补矩阵由专家评估方式得出,参照模糊层次分析法公式(2)可计算得到每位专家的权重向量,由聚类分析法公式(3)-(7)对专家排序向量进行聚类分析并计算得出统一决策向量,最后由公式(8)-(10)检验聚类的质量。分辨率的取值对比和聚类质量检验结果分别见表4和5,从而验证了本文对各参数取值的合理性,本文取α=e,k=3,得到准则层评价模型为:The fuzzy complementary matrix is obtained by expert evaluation, and the weight vector of each expert can be calculated by referring to the formula (2) of the fuzzy analytic hierarchy process, and the cluster analysis of the expert ranking vector is carried out by the formula (3)-(7) of the cluster analysis method And calculate the unified decision vector, and finally test the quality of clustering by the formula (8)-(10). The value comparison of the resolution and the results of the clustering quality inspection are shown in Tables 4 and 5, respectively, thus verifying the rationality of the value of each parameter in this paper. In this paper, α = e, k = 3, and the evaluation model of the criterion layer is obtained as follows:

θ=0.1969θ1+0.1722θ2+0.1835θ3+0.2031θ4+0.1335θ5+0.1108θ6 θ=0.1969θ 1 +0.1722θ 2 +0.1835θ 3 +0.2031θ 4 +0.1335θ 5 +0.1108θ 6

式中,θ12,…,θ6分别表示各类准则(即供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力)输入输出量的效率评价值,由模型(16)计算得出;θ表示电网投资效率评价值。In the formula, θ 1 , θ 2 ,..., θ 6 represent the efficiency evaluation values of the input and output quantities of various criteria (namely power supply quality, power grid structure, equipment level, power supply capacity, informatization level and investment capacity) respectively, and are determined by the model ( 16) Calculated; θ represents the evaluation value of grid investment efficiency.

表4不同α取值下的权重分配情况Table 4 Weight distribution under different α values

表5聚类中心数k取值规则Table 5 Rules for selecting the number k of cluster centers

(2)标尺评价模型(2) Scale evaluation model

各指标输入输出数据均为某配电系统未来4个周期的建设规划数据,各规划周期的数据可针对历史数据利用统计或数据挖掘的方法获取,本文假设所有规划的决策者均为理性决策,将规划数据按照数据包络方法CCR模型计算得到各准则的相对效率评价值,通过权重线性加权得到配电网投资效率综合评价值。The input and output data of each index are the construction planning data of a power distribution system in the next four cycles. The data of each planning cycle can be obtained by using statistics or data mining methods for historical data. This paper assumes that all planning decision makers are rational decisions. The planning data is calculated according to the CCR model of the data envelopment method to obtain the relative efficiency evaluation value of each criterion, and the comprehensive evaluation value of the investment efficiency of the distribution network is obtained through weight linear weighting.

(3)构建动态标尺(3) Build a dynamic scale

动态加权向量τ=[τ2016,τ2018,τ2020,τ2022]由模型(20)计算得出,其中时间度β=0.40;计算结果见表6。The dynamic weighting vector τ=[τ 2016 , τ 2018 , τ 2020 , τ 2022 ] is calculated by the model (20), where the time degree β=0.40; the calculation results are shown in Table 6.

表6时序加权向量Table 6 Timing weighting vector

将各规划周期的静态模型按动态加权向量加权可得到动态标尺评价模型:The dynamic scale evaluation model can be obtained by weighting the static model of each planning cycle according to the dynamic weight vector:

θ2022,j=0.141θ'2016,j+0.203θ'2018,j+0.306θ'2020,j+0.350θ'2022,j θ 2022,j =0.141θ' 2016,j +0.203θ' 2018,j +0.306θ' 2020,j +0.350θ' 2022,j

由该省9个地区6项准则和4个规划周期的数据可建立配电网投资建设效率动态标尺沿面,位于该沿面以上的地区和准则,投资建设的效益相对较高,相反,则该地区和准则的投资建设效益相对较低,针对效益评价值,引入考核激励,效率较高的地区可获得考核收入,相反则会得到考核惩罚,从而可以刺激各地区提高对配电网的投资建设效率。Based on the data of 6 criteria and 4 planning cycles in 9 regions of the province, the dynamic scale of distribution network investment and construction efficiency can be established. The regions and criteria above the boundary have relatively high investment and construction benefits. On the contrary, the area The investment and construction benefits of the guidelines are relatively low, and assessment incentives are introduced for the benefit evaluation value. Regions with higher efficiency can obtain assessment income, and on the contrary, they will receive assessment penalties, which can stimulate various regions to improve the efficiency of investment and construction of distribution networks .

计算结果如表7所示:The calculation results are shown in Table 7:

表7 2016年各准则效率评价值Table 7 Efficiency Evaluation Values of Each Standard in 2016

从表7可以看出,该省9个地市2016年配电网建设投资的整体效率处于中等偏上水平,其中供电质量、电网结构和供电能力都相对处于较高水准,大部分地区都超过了0.9,但装备水平和信息化水平依然处于相对较低水平,平均水平分别在0.547和0.764,各地区的投资能力也相对处于较高水平,平均值在0.871。It can be seen from Table 7 that the overall efficiency of distribution network construction investment in 9 cities in the province in 2016 was at the upper-middle level, and the power supply quality, grid structure and power supply capacity were relatively high, and most areas exceeded However, the level of equipment and informatization is still relatively low, with an average of 0.547 and 0.764 respectively. The investment capacity of each region is relatively high, with an average of 0.871.

然后对该省配电网投资效率评价值进行横向对比,该省各地区配电网投资效率评价值如图3所示。从图中可以看到:该省配电网发展水平随地区不同而存在较大差异,东部地区(地区2、3、8)配电网的投资效率相对较高,2016年评价值大多处于0.85及以上水平,西部地区(地区4、5、9)效率则相对较低,2016年评价值大多处于0.8以下水平,全省配电网发展水平与地区经济发展水平存在相似的规律,总体为东部地区相对超前,西部地区相对滞后。决策者可重点针对建设效率相对较低的地区或准则调整下一周期的建设目标,针对效率相对较低的地区采取考核惩罚,以刺激其提高建设效率,从而提高全省配电网的整体水平。Then the investment efficiency evaluation value of the province's distribution network is compared horizontally, and the evaluation value of the investment efficiency of the distribution network in each region of the province is shown in Figure 3. It can be seen from the figure that the development level of the distribution network in the province varies greatly depending on the region. The investment efficiency of the distribution network in the eastern region (regions 2, 3, and 8) is relatively high, and the evaluation value in 2016 is mostly at 0.85 And above the level, the efficiency of the western region (regions 4, 5, 9) is relatively low, and most of the evaluation values in 2016 are below 0.8. There are similar laws between the development level of the province's distribution network and the regional economic development level. The region is relatively advanced, and the western region is relatively lagging behind. Decision makers can focus on areas with relatively low construction efficiency or guidelines to adjust the construction goals for the next cycle, and take assessment and punishment for areas with relatively low efficiency to stimulate them to improve construction efficiency, thereby improving the overall level of the province's distribution network .

对该省配电网投资效率评价值进行纵向对比(时间维度)分析。图4和图5分别展示了该省9个市级地区在2016至2022年4个滚动规划周期内的配电网投资规划效率评价值,A、B、C、D、E、F分别表示供电质量、电网结构、装备水平、供电能力、信息化水平和投资水平,图中不同标识符代表了不同建设周期配电网投资效率评价值,可以从市级角度描述该省各地区配电网投资建设情况。由图4可以明显的看到,各典型地区配电网投资效率从2016到2022年由较低水平逐渐上升到较高水平,反映了在该省的4个规划周期内,配电网的投资效率正逐步提高,部分地区效率增幅甚至达到了30%;不同地区发展得短板也呈现不同的分布,地区1和地区5呈相似的规律,均为装备水平建设效率相对较差,处于0.6及以下水平,地区3则供电质量相对其他地区处于相对较低水平,处于0.9及以下水平,地区7发展相对较为均衡,各项指标均处于相对较高水平。A longitudinal comparison (time dimension) analysis is carried out on the investment efficiency evaluation value of the distribution network in the province. Figure 4 and Figure 5 respectively show the distribution network investment planning efficiency evaluation values of 9 city-level regions in the province during the four rolling planning cycles from 2016 to 2022, and A, B, C, D, E, and F represent power supply respectively Quality, power grid structure, equipment level, power supply capacity, informatization level, and investment level. Different identifiers in the figure represent the evaluation value of distribution network investment efficiency in different construction periods, which can describe the distribution network investment in various regions of the province from a municipal perspective. Building progress. From Figure 4, it can be clearly seen that the distribution network investment efficiency in each typical region gradually rises from a low level to a high level from 2016 to 2022, reflecting the investment in the distribution network during the four planning cycles of the province. Efficiency is gradually improving, and the efficiency increase in some areas has even reached 30%. The development of short boards in different areas also presents different distributions. Area 1 and area 5 show a similar pattern, and the efficiency of equipment level construction is relatively poor, at 0.6 and The quality of power supply in region 3 is at a relatively low level compared to other regions, at 0.9 or below. The development of region 7 is relatively balanced, and all indicators are at relatively high levels.

实际工程中,监管者可利用该模型对配电网建设进行评价并引入考核激励制度,在最小化建设成本的同时使得建设效率最大化,投资建设精准化,有利于提高配电网整体水平,从而适应新形势下更多的配电需求。In actual projects, regulators can use this model to evaluate the construction of distribution networks and introduce an assessment and incentive system to minimize construction costs while maximizing construction efficiency and precise investment and construction, which is conducive to improving the overall level of distribution networks. In order to adapt to more power distribution needs under the new situation.

本实施例还提供一种基于上述所述的城市配电网中长期动态投资的标尺竞争评价方法的装置,包括中央处理器、存储模块、显示模块;This embodiment also provides a device based on the scale competition evaluation method for medium and long-term dynamic investment in the urban distribution network described above, including a central processing unit, a storage module, and a display module;

所述中央处理器用以进行下述步骤:The central processing unit is used to perform the following steps:

步骤S1:选取多个评价指标,将评价指标对应归入6类评价准则中,6类评价准则为:供电质量、电网结构、装备水平、供电能力、信息化水平和投资能力;Step S1: select multiple evaluation indicators, and classify the evaluation indicators into six types of evaluation criteria. The six types of evaluation criteria are: power supply quality, grid structure, equipment level, power supply capacity, informatization level, and investment capacity;

步骤S2:通过模糊层次分析法对6类评价准则进行权重分配,获得各类评价准则的权重;Step S2: assign weights to the six types of evaluation criteria through fuzzy analytic hierarchy process, and obtain the weights of various evaluation criteria;

步骤S3:通过数据包络分析法对各个评价指标长期的统计数据进行分析,将每类评价准则中的各个评价指标分为输入指标和输出指标,其中输入指标是指决策者从事配电网投资建设的投入量,输出指标是指决策者通过对配电网投资建设而获得的有效产出;Step S3: Analyze the long-term statistical data of each evaluation index by the data envelopment analysis method, and divide each evaluation index in each type of evaluation criteria into input index and output index, where the input index refers to the decision-maker engaged in distribution network investment The input amount of the construction, the output index refers to the effective output obtained by the decision-maker through the investment and construction of the distribution network;

步骤S4:根据输入指标和输出指标,利用数据包络分析法的CCR模型,进而得到各类准则各规划周期的效率评价值;Step S4: according to the input index and the output index, utilize the CCR model of the data envelopment analysis method, and then obtain the efficiency evaluation value of each planning cycle of various criteria;

步骤S5:利用动态加权向量,对各规划周期的效率评价值进行线性动态加权集结,获取动态评价结果。Step S5: Using the dynamic weighting vector, the efficiency evaluation values of each planning cycle are linearly and dynamically weighted to obtain the dynamic evaluation results.

综上所述,本发明提供的一种城市配电网中长期动态投资的标尺竞争评价方法及装置,适用于不同区域相似企业之间的间接竞争,在建设成本最小化、资源配置效率最大化有着明显的优势。In summary, the present invention provides a method and device for evaluating the scale competition of medium and long-term dynamic investment in urban distribution networks, which is suitable for indirect competition between similar enterprises in different regions, and minimizes construction costs and maximizes resource allocation efficiency. has obvious advantages.

上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above-listed preferred embodiments have further described the purpose, technical solutions and advantages of the present invention in detail. It should be understood that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.

Claims (10)

1. a kind of yardstick competition evaluation method of urban power distribution network long term dynamics investment, it is characterised in that comprise the following steps:
Step S1:Multiple evaluation indexes are chosen, by evaluation index to belonging in 6 class interpretational criterias, 6 class interpretational criterias are:For Electricity quality, electric network composition, equipment, power supply capacity, the level of IT application and the investment capacity;
Step S2:Weight distribution is carried out to 6 class interpretational criterias by Fuzzy AHP, the power of all kinds of interpretational criterias is obtained Weight;
Step S3:Analyzed by the DEA Method statistics long-term to each evaluation index, will be per class evaluation Each evaluation index in criterion is divided into input pointer and output-index, and wherein input pointer refers to that policymaker is engaged in power distribution network throwing The input amount built is provided, output-index refers to that policymaker passes through the throughput that is obtained to power distribution network investment construction;
Step S4:According to input pointer and output-index, using the CCR models of DEA Method, and then all kinds of standards are obtained The then efficiency rating value of each planning horizon;
Step S5:Using dynamic weight vectors, the efficiency rating value to each planning horizon carries out linear dynamic weighting assembly, obtained Dynamic evaluation result.
2. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 1, its feature exists In:The decision mode of 6 class interpretational criteria weights is that some experts assess, and obtains every expert's by Fuzzy AHP Weight vectors, it is specific as follows:
If fuzzy complementary matrix F=(fij)n×n(fij∈ [0,1]), if fij=F (ai,aj), then fijRepresent aiWith aj" ... ratio ... weight Will be much " fuzzy membership relation, fijQuantity scale is given using 0.1-0.9, F has the following properties that:
(1)fii=0.5, i=1,2 ..., n;
(2)fij+fji=1, i, j=1,2 ..., n;
(3) there is normalized vector Uz=(uz1,uz2,…,uzn) and α (α>1), to arbitrary i, j, f is metij=logαuzi- logαuzj+0.5;Wherein, α represents the resolution capability of policymaker, UzRepresent z-th of expert to the Weight Decision-making of interpretational criteria to Amount, uziAnd uzjFor UzTwo elements, represent expert z to interpretational criteria i and evaluate j Weight Decision-making result, n is interpretational criteria Number, n=6;
Weight vectors Uz=(uz1,uz2,…,uzn) determined by the solution of following constraint planning problem:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi> </mi> <mi>Z</mi> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>log</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>log</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mn>0.5</mn> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>j</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Unconstrained optimization problem is turned to using method of Lagrange multipliers, can be tried to achieve:
<mrow> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msup> <mi>&amp;alpha;</mi> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mi>&amp;alpha;</mi> <mrow> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>f</mi> <mrow> <mi>k</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
The weight vectors of every expert are obtained by above formula (2).
3. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 2, its feature exists In:Clustering is carried out to the result of decision of every expert using clustering methodology, and uniformly obtains decision weights vector, specifically Comprise the following steps:
Step S21:It is assumed that all kinds of criterion weight distribution of power distribution network are completed by N experts, input N number of 6 dimension expert to be sorted and determine Plan vector set D=(U1,U2,…,Uz,…,UN), wherein Uz=(uz1,uz2,…,uz6) represent power of the expert z to 6 class interpretational criterias Result is reassigned, number of clusters to be sorted is k;
Step S22:K expert of random selection is used as initial clustering to the decision vector of the class interpretational criteria weight distribution of power distribution network 6 Center { p1,p2,…,pk, wherein pi={ pi1,pi2,…,pi6Represent that the Weight Decision-making of ith cluster center expert is vectorial;Choosing Select cluster maximum iteration P;Determine the maximum convergence coefficient M that iteration terminates;
Step S23:The Euclidean distance that k decision vector each arrives each cluster is calculated, each decision vector is assigned to most narrow spacing From cluster in, the calculation formula of Euclidean distance is:
<mrow> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula (3), dist (Uz,pj) represent z-th of expert decision-making vector to the distance of j-th of cluster;
Step S24:Recalculate the central value { p of k cluster1,p2,…,pk, wherein, pj={ pj1,pj2,…,pj6, L is represented The decision vector number at such center is included into, calculation formula is:
<mrow> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>u</mi> <mi>z</mi> </msub> <mo>&amp;Element;</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </munder> <msub> <mi>u</mi> <mrow> <mi>z</mi> <mi>l</mi> </mrow> </msub> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>6</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Step S25:Examine whether cluster operation terminates:If iterations is equal to P, terminate cluster;Otherwise this iteration is calculated The convergence distance each clustered, terminates if given parameter M is both less than if convergence distance, otherwise continues iteration, the m times iteration is received Hold back and be apart from calculation formula:
<mrow> <msub> <mi>d</mi> <mrow> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo>(</mo> <mi>m</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Step S26:Assuming that classification plIncluding individual ordering vector npIt is individual, utilize such expert decision-making vector and decision vector sum Ratio calculation such expert decision-making vector weight ηl
<mrow> <msub> <mi>&amp;eta;</mi> <mi>l</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>n</mi> <mi>p</mi> </msub> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>n</mi> <mi>q</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Thus obtaining final weight vector is:
<mrow> <mi>&amp;omega;</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>&amp;eta;</mi> <mi>l</mi> </msub> <msub> <mi>p</mi> <mi>l</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
In formula (7), plRepresent the cluster centre value of l classes.
4. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 3, its feature exists In:Clustering result quality is judged using silhouette coefficient method, the optimal weight vectors of clustering result quality is chosen, specifically includes following step Suddenly:
Step S27:Assuming that expert decision-making vector set D is divided into k cluster p1,p2,…,pk, for each decision vector u ∈ D, U and the affiliated clusters of u other vectorial average distance b (u) are calculated, similar, c (u) represents u to the minimum for all clusters for being not belonging to u Average distance;
<mrow> <mi>b</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>u</mi> <mo>,</mo> <msup> <mi>u</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;Element;</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>u</mi> <mo>&amp;NotEqual;</mo> <msup> <mi>u</mi> <mo>&amp;prime;</mo> </msup> </mrow> </munder> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msup> <mi>u</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>c</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>:</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <mi>k</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>k</mi> </mrow> </munder> <mo>{</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <msup> <mi>u</mi> <mo>&amp;prime;</mo> </msup> <mo>&amp;Element;</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </munder> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msup> <mi>u</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>|</mo> </mrow> </mfrac> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Vectorial u silhouette coefficient calculation formula is:
<mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>b</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>{</mo> <mi>b</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Step S28:Clustering result quality is judged by silhouette coefficient, the optimal weight vectors of clustering result quality are obtained.
5. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 1, its feature exists In:In step s 4, the structure of CCR models comprises the following steps:
Step S41:Assuming that have h local distribution network while carrying out planning construction, j-th of local distribution network intend input construction amount and It is expected that throughput amount is originally inputted index and output-index respectively xj 0=(x1j 0,x1j 0,…,xsj 0)T>0 and yj 0= (y1j 0,y1j 0,…,yrj 0)T>0, j=1,2 ..., h;Each local distribution network is pre- in respect of s kinds input quantity and r kind output quantities;
Step S42:Standardization processing is carried out to input pointer and output-index, wherein, positive input pointer using formula (11) and Formula (12) is handled, and negative sense input pointer is handled using formula (13) and formula (14):
<mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> <mrow> <munder> <mi>max</mi> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> <mrow> <munder> <mi>max</mi> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> <mrow> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mi>min</mi> <mi>i</mi> </munder> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> <mrow> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <munder> <mi>min</mi> <mi>r</mi> </munder> <msubsup> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
xijRepresent input amount of j-th of local distribution network to the i-th type input pointer;yrjRepresent that j-th of local distribution network is obtained The r type output-index throughput amounts obtained;
Step S43:If viFor the weight coefficient variable of i-th kind of input, frFor r kinds export weight coefficient variable, all kinds of criterions it is defeated The ratio between output and input quantity are defined as the efficiency index of cycle t power distribution network investment construction:
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>f</mi> <mi>r</mi> </msub> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>s</mi> </munderover> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Step S44:With jth0The performance index of individual local distribution network is target, and the performance index of all power distribution networks is constraint, is built Optimize CCR models:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>max&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>f</mi> <mi>r</mi> </msub> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> <mn>0</mn> </mrow> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>s</mi> </munderover> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>z</mi> </munderover> <msub> <mi>f</mi> <mi>r</mi> </msub> <msub> <mi>y</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>s</mi> </munderover> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>V</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>v</mi> <mi>s</mi> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
θT, j0=1 shows that this area's distribution network construction benefit is of a relatively high, θT, j0<1 shows that this area's distribution network construction benefit is relative It is relatively low.
6. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 5, its feature exists In:In step s 5, introduce comentropy and time degree calculates dynamic weight vectors;Dynamic weight vectors τtWith determining for time degree β Adopted formula is as follows:
<mrow> <mi>I</mi> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <msub> <mi>ln&amp;tau;</mi> <mi>t</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;beta;</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mfrac> <mrow> <mi>T</mi> <mo>-</mo> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
In formula, τ=[τ1, τ2..., τt] sequential weighing vector is represented, reflect different investment tacticses planning horizon to dynamic evaluation Contribute otherness, τt∈ [0,1], the comentropy of dynamic weight vectors is reflected dynamically to be added to each cycle investments efficiency rating value Weight includes the degree of information during power, and entropy is smaller, represents that the information content that it is obtained is bigger;β represents time degree, its size The attention degree in each periodic samples assembling process to each cycle is represented, its value is smaller, represented to recent data more Pay attention to;Time degree is previously given by policymaker, and the mathematical modeling that dynamic weight vectors are calculated is represented by:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <msub> <mi>ln&amp;tau;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mi>&amp;Sigma;</mi> <mfrac> <mrow> <mi>T</mi> <mo>-</mo> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&amp;tau;</mi> <mi>t</mi> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>T</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
7. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 1, its feature exists In:According to step S5 evaluation result, dynamic examination scale is set up, carrying out scale to construction cost and construction efficiency respectively examines Core, the scale examination is specific as follows:
Corresponding examination reward is given in the area higher to power distribution network efficiency of investment by regulator, on the contrary, being invested for power distribution network Examination punishment is given in less efficient area, and mathematical modeling is as follows:
rj,tj,t+gj,t (21)
In formula (21), rj, t is the return that area j is obtained in construction period t to distribution network construction;ρj, t is that area j is being built The construction income obtained in cycle t, positive number represents reward, negative number representation punishment;gj, t is that area j is obtained in construction period t Effort Cost Subsidy.
8. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 7, its feature exists In:The calculating for building income comprises the following steps:
Step S61:Calculate the efficiency rating value θ of each department distribution network constructionj' and dynamic weight vectors τt
Step S62:Power distribution network efficiency of investment evaluation of estimate to each cycle carries out linear weighted function, obtains regional j in construction period t Power distribution network efficiency of investment dynamic evaluation value θT, j, i.e.,:
θt,j dynamic1θ1,j2θ2,j+…+τtθt,j (22)
Step S63:Define coefficient of rewards and punishment ξs of the area j in construction period tT, jFor:
<mrow> <msub> <mi>&amp;xi;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <msub> <mi>&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mi>d</mi> <mi>y</mi> <mi>n</mi> <mi>a</mi> <mi>m</mi> <mi>i</mi> <mi>c</mi> </mrow> </msup> <mo>-</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <msub> <mi>&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mi>d</mi> <mi>y</mi> <mi>n</mi> <mi>a</mi> <mi>m</mi> <mi>i</mi> <mi>c</mi> </mrow> </msup> </mrow> <mrow> <msup> <msub> <mi>&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>max</mi> </mrow> </msub> <mrow> <mi>d</mi> <mi>y</mi> <mi>n</mi> <mi>a</mi> <mi>m</mi> <mi>i</mi> <mi>c</mi> </mrow> </msup> <mo>-</mo> <msup> <msub> <mi>&amp;theta;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>min</mi> </mrow> </msub> <mrow> <mi>d</mi> <mi>y</mi> <mi>n</mi> <mi>a</mi> <mi>m</mi> <mi>i</mi> <mi>c</mi> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
Calculate the construction income for obtaining regional j power distribution networks in construction period t:
<mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>t</mi> </msub> <msub> <mi>&amp;xi;</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mi>t</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>P</mi> <mi>t</mi> </msub> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;xi;</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mo>|</mo> <msub> <mi>P</mi> <mi>t</mi> </msub> <msub> <mi>&amp;xi;</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>P</mi> <mi>t</mi> </msub> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&amp;xi;</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
In formula, Pt, j represents regional j in construction period t compared to the value added invested to power distribution network in cycle t-1.
9. the yardstick competition evaluation method of urban power distribution network long term dynamics investment according to claim 8, its feature exists In:The construction cost subsidy of each local distribution network is together decided on by the construction cost of itself and other regional construction costs, Its computational methods is shown below:
<mrow> <msub> <mi>g</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>{</mo> <msub> <mi>&amp;epsiv;</mi> <mi>j</mi> </msub> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
In formula (25), LJ, tRepresent distribution network construction input amounts of the area j in construction period t;cj,tIt is regional j in the construction period The unit construction cost of power distribution network, ε in tjFor regional j cost taken by themselves proportion, lI, tIt is company i in observation in construction period t Weight shared by interior distribution network construction cost.
10. a kind of dress of the yardstick competition evaluation method of the urban power distribution network long term dynamics investment based on described in claim 1 Put, it is characterised in that:Including central processing unit, memory module, display module;
The central processing unit is to carry out following step:
Step S1:Multiple evaluation indexes are chosen, by evaluation index to belonging in 6 class interpretational criterias, 6 class interpretational criterias are:For Electricity quality, electric network composition, equipment, power supply capacity, the level of IT application and the investment capacity;
Step S2:Weight distribution is carried out to 6 class interpretational criterias by Fuzzy AHP, the power of all kinds of interpretational criterias is obtained Weight;
Step S3:Analyzed by the DEA Method statistics long-term to each evaluation index, will be per class evaluation Each evaluation index in criterion is divided into input pointer and output-index, and wherein input pointer refers to that policymaker is engaged in power distribution network throwing The input amount built is provided, output-index refers to that policymaker passes through the throughput that is obtained to power distribution network investment construction;
Step S4:According to input pointer and output-index, using the CCR models of DEA Method, and then all kinds of standards are obtained The then efficiency rating value of each planning horizon;
Step S5:Using dynamic weight vectors, the efficiency rating value to each planning horizon carries out linear dynamic weighting assembly, obtained Dynamic evaluation result.
CN201710567855.6A 2017-07-12 2017-07-12 The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment Pending CN107292534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710567855.6A CN107292534A (en) 2017-07-12 2017-07-12 The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710567855.6A CN107292534A (en) 2017-07-12 2017-07-12 The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment

Publications (1)

Publication Number Publication Date
CN107292534A true CN107292534A (en) 2017-10-24

Family

ID=60101400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710567855.6A Pending CN107292534A (en) 2017-07-12 2017-07-12 The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment

Country Status (1)

Country Link
CN (1) CN107292534A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564245A (en) * 2018-02-27 2018-09-21 国网冀北电力有限公司电力科学研究院 A kind of distribution efficiency of investment evaluation method based on DEA analyses
CN109034644A (en) * 2018-08-10 2018-12-18 中国南方电网有限责任公司 Appraisal procedure, device, computer equipment and the storage medium of electrically-charging equipment programme
CN109255553A (en) * 2018-10-09 2019-01-22 国网浙江省电力有限公司 A kind of grid company sale of electricity enterprise power supply reliability rewards and punishments method and system
CN109376949A (en) * 2018-11-19 2019-02-22 南方电网能源发展研究院有限责任公司 Incremental distribution network planning scheme determination method, device and computer equipment
CN109615275A (en) * 2019-01-21 2019-04-12 国网福建省电力有限公司 A comprehensive evaluation method for the health degree of power communication network equipment
CN111080068A (en) * 2019-11-18 2020-04-28 中能瑞通(北京)科技有限公司 Method and device for evaluating running state of electric energy meter
CN111428754A (en) * 2020-02-29 2020-07-17 贵州电网有限责任公司 Optimal design method of line loss rate benchmark value based on ground state correction
CN113033991A (en) * 2021-03-23 2021-06-25 河海大学 Credit evaluation method and system based on dynamic development trend
CN113822536A (en) * 2021-08-26 2021-12-21 国网河北省电力有限公司邢台供电分公司 Power distribution network index evaluation method based on branch definition algorithm
CN113947281A (en) * 2021-09-09 2022-01-18 西华大学 Evaluation method of urban rail transit equipment manufacturing cluster competitiveness
CN114266478A (en) * 2021-12-22 2022-04-01 广东电网有限责任公司 Power transformation operation standardization comprehensive evaluation method and related device
CN114792371A (en) * 2022-05-10 2022-07-26 北京御航智能科技有限公司 Algorithm evaluation method, device, equipment and medium based on fuzzy hierarchical analysis
CN114880617A (en) * 2021-12-22 2022-08-09 长沙理工大学 Power distribution network differentiated investment decision method based on dynamic weight
CN114911609A (en) * 2022-03-31 2022-08-16 联想(北京)有限公司 Computing resource scheduling method, device, electronic device and storage medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564245A (en) * 2018-02-27 2018-09-21 国网冀北电力有限公司电力科学研究院 A kind of distribution efficiency of investment evaluation method based on DEA analyses
CN109034644A (en) * 2018-08-10 2018-12-18 中国南方电网有限责任公司 Appraisal procedure, device, computer equipment and the storage medium of electrically-charging equipment programme
CN109255553A (en) * 2018-10-09 2019-01-22 国网浙江省电力有限公司 A kind of grid company sale of electricity enterprise power supply reliability rewards and punishments method and system
CN109376949A (en) * 2018-11-19 2019-02-22 南方电网能源发展研究院有限责任公司 Incremental distribution network planning scheme determination method, device and computer equipment
CN109615275A (en) * 2019-01-21 2019-04-12 国网福建省电力有限公司 A comprehensive evaluation method for the health degree of power communication network equipment
CN111080068A (en) * 2019-11-18 2020-04-28 中能瑞通(北京)科技有限公司 Method and device for evaluating running state of electric energy meter
CN111428754A (en) * 2020-02-29 2020-07-17 贵州电网有限责任公司 Optimal design method of line loss rate benchmark value based on ground state correction
CN113033991A (en) * 2021-03-23 2021-06-25 河海大学 Credit evaluation method and system based on dynamic development trend
CN113822536A (en) * 2021-08-26 2021-12-21 国网河北省电力有限公司邢台供电分公司 Power distribution network index evaluation method based on branch definition algorithm
CN113947281A (en) * 2021-09-09 2022-01-18 西华大学 Evaluation method of urban rail transit equipment manufacturing cluster competitiveness
CN114266478A (en) * 2021-12-22 2022-04-01 广东电网有限责任公司 Power transformation operation standardization comprehensive evaluation method and related device
CN114880617A (en) * 2021-12-22 2022-08-09 长沙理工大学 Power distribution network differentiated investment decision method based on dynamic weight
CN114911609A (en) * 2022-03-31 2022-08-16 联想(北京)有限公司 Computing resource scheduling method, device, electronic device and storage medium
CN114792371A (en) * 2022-05-10 2022-07-26 北京御航智能科技有限公司 Algorithm evaluation method, device, equipment and medium based on fuzzy hierarchical analysis
CN114792371B (en) * 2022-05-10 2023-07-25 北京御航智能科技有限公司 Method, device, equipment and medium for determining wire real-time segmentation and identification algorithm

Similar Documents

Publication Publication Date Title
CN107292534A (en) The yardstick competition evaluation method and device of urban power distribution network long term dynamics investment
CN107169633B (en) Comprehensive evaluation method for peak regulation schemes of gas transmission pipe network and gas storage
CN108491969A (en) Spatial Load Forecasting model building method based on big data
CN109829604A (en) A kind of grid side energy-accumulating power station operational effect comprehensive estimation method
CN115713241B (en) A method and terminal for evaluating the whole life cycle of power grid infrastructure projects
CN108805743A (en) A kind of power grid enterprises&#39; sale of electricity company operation Benefit Evaluation Method
CN109872061A (en) Power grid infrastructure improvement and promotion decision-making method
CN105160416A (en) Transformer area reasonable line loss prediction method based on principal component analysis and neural network
CN105956757A (en) Comprehensive evaluation method for sustainable development of smart power grid based on AHP-PCA algorithm
CN111861089A (en) A Comprehensive Evaluation Method of Electricity Spot Market
CN113327047A (en) Power marketing service channel decision method and system based on fuzzy comprehensive model
CN106056307B (en) A comprehensive benefit evaluation method of electric energy replacement technology based on comprehensive weighting method
CN116823008A (en) Park energy utilization efficiency evaluation method, system, equipment and storage medium
CN101320449A (en) Distribution Network Evaluation Method Based on Combination Evaluation Method
CN111949939A (en) Evaluation method of smart meter running state based on improved TOPSIS and cluster analysis
CN110837952A (en) A method and system for selecting new technology equipment for power grid based on game theory
CN111667090A (en) Load prediction method based on deep belief network and weight sharing
CN115994778A (en) Behavior fine portrait method for multiple users
CN108108874A (en) A kind of power distribution network synthesis evaluation method of the grey target model based on positive and negative target center
CN109190858A (en) A kind of power network construction project investment policy making period method
CN107133722A (en) Power distribution network difference characteristic diagnostic analysis method based on electric power enterprise big data technology
Yang et al. Multi-channel Attention Mechanism Graph Convolutional Network Considering Cumulative Effect and Temporal Causality for Day-ahead Wind Power Prediction
CN112818544B (en) Power distribution network reliability assessment method considering terminal differentiated reliability requirements
CN110135743A (en) Scientific and technological achievement benefit evaluation method based on intuition fuzzy hierarchical analysis model
CN108898322A (en) A kind of electric grid investment strategy benefit integrated evaluating method based on FCM algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171024

RJ01 Rejection of invention patent application after publication
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载