CN107247460A - A kind of cluster control method and system of machine honeybee - Google Patents
A kind of cluster control method and system of machine honeybee Download PDFInfo
- Publication number
- CN107247460A CN107247460A CN201710402156.6A CN201710402156A CN107247460A CN 107247460 A CN107247460 A CN 107247460A CN 201710402156 A CN201710402156 A CN 201710402156A CN 107247460 A CN107247460 A CN 107247460A
- Authority
- CN
- China
- Prior art keywords
- bee
- robot
- bees
- robotic
- task
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 241000256844 Apis mellifera Species 0.000 title claims description 95
- 241000257303 Hymenoptera Species 0.000 claims abstract description 70
- 238000004891 communication Methods 0.000 claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 7
- 241000256837 Apidae Species 0.000 claims abstract 2
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 10
- 230000001276 controlling effect Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000004438 eyesight Effects 0.000 claims description 6
- 230000000875 corresponding effect Effects 0.000 claims description 5
- 235000012907 honey Nutrition 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000009193 crawling Effects 0.000 claims description 3
- 230000008447 perception Effects 0.000 claims description 3
- 230000016776 visual perception Effects 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000006855 networking Effects 0.000 abstract description 2
- 230000006399 behavior Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102220583556 Small nuclear ribonucleoprotein F_T13E_mutation Human genes 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- OCUUDCWEKWOMFA-UHFFFAOYSA-N imidazol-1-yl-dimethyl-propan-2-ylsilane Chemical compound CC(C)[Si](C)(C)N1C=CN=C1 OCUUDCWEKWOMFA-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Programmable Controllers (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及一种机器蜜蜂的集群控制方法与系统,机器蜜蜂可以通过自身的传感器模块感知外界环境,定位系统定位自身的位置以便群体协作,执行机构执行当前任务,机器蜜蜂之间可以通过通信模块互相通信,机器蜜蜂内的协同控制器通过通信和组网后形成分布式计算机网络。集群控制系统的通信模块用于用户和机器蜜蜂集群交流,包括下达指令和分配任务,同步模块用于统一机器蜜蜂集群的时间标准。本发明明显的益处是,单个机器蜜蜂的“智商”不高,成本低,控制简单,但整个机器蜜蜂集群能够组成自组织网络进行分布式协同计算,满足单只机器蜜蜂无法胜任的高难度任务需要,任务执行过程中无须人工干预,并有动态自愈合能力,可靠性高。
The invention relates to a cluster control method and system of robotic bees. The robotic honeybees can perceive the external environment through their own sensor modules, and the positioning system locates their own position for group cooperation. Communicate with each other, and the cooperative controllers in the robot bees form a distributed computer network through communication and networking. The communication module of the swarm control system is used for communication between the user and the machine bee swarm, including issuing instructions and assigning tasks, and the synchronization module is used to unify the time standard of the machine bee swarm. The obvious benefit of the present invention is that the "IQ" of a single robot bee is not high, the cost is low, and the control is simple, but the entire robot bee cluster can form a self-organizing network for distributed collaborative computing to meet the difficult tasks that a single robot bee cannot do Need, there is no need for manual intervention in the process of task execution, and it has dynamic self-healing ability and high reliability.
Description
技术领域technical field
本发明属于智能机器人应用领域和集群控制领域,具体而言,是一种机器蜜蜂的集群控制方法与系统。The invention belongs to the field of application of intelligent robots and the field of swarm control, and specifically relates to a method and system for swarm control of robot bees.
背景技术Background technique
随着计算机和机械自动化技术的快速发展,促使人们不断开发新的智能机器人来帮助我们做复杂,精细,危险,工程量浩大的工作,来减轻我们的压力和保护人身安全。一些新型机器人的出现,为我们的生活带来很多便利,例如月球探测仪,排爆机器人,服务型(饭店服务型,迎宾型)机器人,无人机。With the rapid development of computer and mechanical automation technology, people are constantly developing new intelligent robots to help us do complex, delicate, dangerous, and large-scale work to reduce our pressure and protect personal safety. The emergence of some new robots has brought a lot of convenience to our lives, such as lunar probes, EOD robots, service-type (restaurant service-type, welcome-type) robots, and drones.
但是,目前机器人大都停留在单个个体完成一个任务,缺点是显而易见的。However, at present, most of the robots stay at a single individual to complete a task, and the disadvantages are obvious.
首先,机器人个体能力往往是有限的,常常会遇见单个个体不能完成的任务。特别是在搜索、救援、战场等复杂场景,单个个体显然无法胜任,即使使用多个单个的机器人也难以胜任,甚至很容易妨碍人们的正常秩序。单个机器人的“智商”是有限的,其控制芯片往往只能完成预定难度的计算任务,在执行任务的过程中,往往会出现超过单个机器人“智商”的场合。First of all, the individual abilities of robots are often limited, and they often encounter tasks that cannot be completed by a single individual. Especially in complex scenes such as search, rescue, battlefield, etc., a single individual is obviously not competent, even if multiple individual robots are used, it is also difficult to be competent, and it is even easy to hinder the normal order of people. The "IQ" of a single robot is limited, and its control chip can often only complete calculation tasks of predetermined difficulty. In the process of performing tasks, there are often occasions when the "IQ" of a single robot is exceeded.
其次,目前机器人领域任务分配困难,特别是大任务、多任务。当任务为绘制地图、测量某个复杂建筑时,逐一给机器人下达具体指令极为复杂的。在完成某个复杂任务时,没有涉及到相互协作,靠人工给机器人持续分配任务和人工协作会导致任务完成效率低下。在执行任务的过程中,也会出现各种意想不到的情况,如机器人与控制者失去联系,如果此时失去了人工干预,机器人在智能不足的情况下往往会导致任务失败。Secondly, task assignment in the field of robotics is currently difficult, especially large tasks and multi-tasks. When the task is to draw a map or measure a complex building, it is extremely complicated to give specific instructions to the robot one by one. When completing a complex task, there is no mutual cooperation involved. Relying on continuous assignment of tasks to robots and manual cooperation will lead to low efficiency of task completion. In the process of performing tasks, various unexpected situations will also occur, such as the robot loses contact with the controller. If human intervention is lost at this time, the robot will often fail the task due to insufficient intelligence.
最后,机器人也是有一定故障几率的,在单个机器人作业的情况下,单个个体的失败往往就意味着整个任务的失败。在复杂的多机器人任务中,每个机器人都有具体的任务,缺一不可,无可替代,一旦一个环节(机器人)出问题后,整个任务都会受影响,比如流水线上的机器手。Finally, robots also have a certain probability of failure. In the case of a single robot operation, the failure of a single individual often means the failure of the entire task. In complex multi-robot tasks, each robot has a specific task, which is indispensable and irreplaceable. Once a problem occurs in one link (robot), the entire task will be affected, such as the robot hand on the assembly line.
近年来出现的集群控制是一种有效的解决方案。而集群行为是一种生物的集体行为,最典型的例子是外观上看起来一群实体聚集在一起兜圈或朝特定方向行动。生物界中的昆虫、鸟类、鱼类、水生动物、人与细菌都会出现集群行为。更好的方案就是给机器人集群一个整体任务,群体自行分解、协同、分段作业、无缝的完成任务。但是,目前市场上还没一种机器蜜蜂的集群控制方法与系统。Cluster control, which has emerged in recent years, is an effective solution. The swarm behavior is a collective behavior of creatures, the most typical example is the appearance that a group of entities gather together to circle or move in a specific direction. Insects, birds, fish, aquatic animals, humans and bacteria in the biological world all exhibit flocking behavior. A better solution is to give the robot cluster an overall task, and the group can decompose, collaborate, work in sections, and complete the task seamlessly. But, also do not have a kind of swarm control method and system of robotic honeybee on the market at present.
发明内容Contents of the invention
为了解决上述技术问题,本发明提出以下技术方案:一种机器蜜蜂的集群控制方法与系统,包括机器蜜蜂系统,集群控制系统;机器蜜蜂系统包括协同控制器、传感器模块,定位系统、执行机构、通信模块;集群控制系统包括控制器,通信模块,同步模块;In order to solve the above-mentioned technical problems, the present invention proposes the following technical solutions: a method and system for cluster control of robotic bees, including a robotic honeybee system and a cluster control system; the robotic honeybee system includes a cooperative controller, a sensor module, a positioning system, an actuator, Communication module; the cluster control system includes a controller, a communication module, and a synchronization module;
当需要机器蜜蜂执行同一任务时,集群控制系统的控制器,用于计算和产生机器蜜蜂的集体所需的任务信息和资源需求;同步模块用于产生同步信息,统一整个群体中各个机器蜜蜂个体的时间标准;通信模块将集群控制系统的控制器产生的任务信息和资源需求,以及同步模块产生的同步信息发送到每个机器蜜蜂;机器蜜蜂的通信模块能够接收集群控制系统的通信信号,以及其他机器蜜蜂系统的通信信号;接收到通信信号后,能够根据自身当前任务和资源情况予以响应;机器蜜蜂系统的传感器模块会感知外界的实时状态;定位系统探测机器蜜蜂所在的实时位置及周围环境信息;执行机构用于完成各种机器蜜蜂预先定义的动作,包括起飞、飞行、降落、加速、减速、采蜜等;采集的数据通过机器蜜蜂系统的通信模块传输给同团队的其他机器蜜蜂,以便进行信息的共享和蜜蜂集群的协同;协同控制器对能够与其他机器蜜蜂的协同控制器进行分布式计算,通过通信模块组成分布式集群协同控制器,能够根据各自的物理状态和任务的状态、以及邻近蜜蜂的相关信息进行分析和协同计算,进而调整本机器蜜蜂的位置和相应的动作,达到协同完成同一个任务的目的。When the robot bees are required to perform the same task, the controller of the cluster control system is used to calculate and generate the task information and resource requirements required by the collective of the robot bees; the synchronization module is used to generate synchronization information and unify the individual robot bees in the entire group The time standard; the communication module sends the task information and resource requirements generated by the controller of the swarm control system and the synchronization information generated by the synchronization module to each robot bee; the communication module of the robot bee can receive the communication signal of the swarm control system, and Communication signals from other robot bee systems; after receiving the communication signals, they can respond according to their current tasks and resource conditions; the sensor module of the robot bee system will perceive the real-time status of the outside world; the positioning system detects the real-time location and surrounding environment of the robot bee Information; the actuator is used to complete various predefined actions of the robot bees, including take-off, flight, landing, acceleration, deceleration, honey harvesting, etc.; the collected data is transmitted to other robot bees in the same team through the communication module of the robot bee system, In order to carry out information sharing and coordination of bee clusters; the cooperative controller can perform distributed calculations with the cooperative controllers of other machine bees, and form a distributed cluster cooperative controller through communication modules, which can be based on their respective physical status and task status. , and the relevant information of neighboring bees for analysis and collaborative calculation, and then adjust the position and corresponding actions of the robot bees to achieve the purpose of completing the same task collaboratively.
集群控制系统与机器蜜蜂系统是一对多的关系,他们之间能够通过通信模块来联系。There is a one-to-many relationship between the cluster control system and the robot bee system, and they can be connected through a communication module.
所述集群控制系统,包括控制器,通信模块,同步模块,不需要保持一直与机器蜜蜂系统联网,只需要布置任务的时候联网布置一次任务就可以;当布置任务的时候,所有机器蜜蜂系统均在集群控制系统的通信模块工作范围内,能够接收到集群控制系统的通信模块发布的任务信息。The cluster control system, including a controller, a communication module, and a synchronization module, does not need to be connected to the network of the robot bee system all the time, and only needs to be connected to the network to arrange a task once when arranging tasks; Within the working range of the communication module of the cluster control system, task information released by the communication module of the cluster control system can be received.
机器蜜蜂系统的协同控制器能够通过通信模块与附近的其他机器蜜蜂系统的协同控制器组成分布式计算网络,共同完成集群控制系统的控制器下达的任务目标。The cooperative controller of the robot bee system can form a distributed computing network with the cooperative controllers of other nearby robot bee systems through the communication module, and jointly complete the task objectives assigned by the controller of the cluster control system.
机器蜜蜂系统根据传感器模块感知外界的信息,以便与附近的机器蜜蜂控制协调,指导协同控制器控制机器蜜蜂系统内的四个模块的工作,来协同完成相应的任务动作;机器蜜蜂系统的传感器模块包含视觉感知(包括摄像头),嗅觉感知,以便能够识别花朵花粉,躲避障碍物,和帮助识别其他情况(例如通过视觉和通信识别机器蜜蜂)。此外,机器蜜蜂依靠计算机视觉(传感器模块和定位系统)对环境进行检测,分析周围环境的特征,实现自我规划路径,躲避障碍物。The robot bee system perceives the information of the outside world according to the sensor module, so as to control and coordinate with the nearby robot bees, and guide the cooperative controller to control the work of the four modules in the robot bee system to cooperate to complete the corresponding task actions; the sensor module of the robot bee system Contains visual perception (including cameras), olfactory perception to be able to recognize flower pollen, avoid obstacles, and help recognize other situations (such as recognizing robotic bees through vision and communication). In addition, robot bees rely on computer vision (sensor modules and positioning systems) to detect the environment, analyze the characteristics of the surrounding environment, realize self-planning paths, and avoid obstacles.
机器蜜蜂系统根据定位系统能够定位机器蜜蜂自身的位置,以便成为和同伴进行信息交流、任务分配和操作调整的依据。The robot bee system can locate the position of the robot bee itself according to the positioning system, so as to become the basis for information exchange, task assignment and operation adjustment with companions.
机器蜜蜂系统通过执行机构控制机器蜜蜂的当前各类动作,包括飞行机构、爬行机构、采蜜机构等。The robot bee system controls the current various actions of the robot bee through the actuator, including the flight mechanism, crawling mechanism, and honey collecting mechanism.
机器蜜蜂系统通过通信模块可以和其他机器蜜蜂系统通信,也可以和集群控制系统通信,优选地,使用自组织网络。The robot bee system can communicate with other robot bee systems through the communication module, and can also communicate with the swarm control system. Preferably, an ad hoc network is used.
集群控制系统的控制器用于获取用户的指令和任务数据,并将用户的指令和任务数据进行分解计算,分配给机器蜜蜂集群。The controller of the cluster control system is used to obtain the user's instructions and task data, and decompose and calculate the user's instructions and task data, and distribute them to the machine bee cluster.
集群控制系统的通信模块,用于信息传输,包括向多个机器蜜蜂系统发布任务的信息,也可以接收来自多个机器蜜蜂系统的数据(如机器蜜蜂传回图像、任务完成回归报告),还可以向多个机器蜜蜂系统发布同步信息和时间信号。The communication module of the swarm control system is used for information transmission, including issuing task information to multiple robotic bee systems, and can also receive data from multiple robotic bee systems (such as robotic bees returning images, task completion return reports), and Synchronization information and time signals can be issued to multiple robotic bee systems.
集群控制系统的同步模块是标准的时候信号,用于调控整个机器蜜蜂集群的时间,确保不同机器蜜蜂在接收任务时能够统一各自的时间标准,并接收机器蜜蜂传回的同步成功或失败的信息。The synchronization module of the cluster control system is a standard time signal, which is used to regulate the time of the entire machine bee cluster, to ensure that different machine bees can unify their respective time standards when receiving tasks, and receive the synchronization success or failure information sent back by the machine bees .
通过分布在各个机器蜜蜂体系统内的协同控制器联网组成分布式计算网络,完成任务的分解计算和机器蜜蜂的行为控制,进而控制着整个群体;用户只需要分配一次任务,任务分配完以后,在整个任务执行过程中,不需要强制的中心控制器和用户的干预;机器蜜蜂系统具有自治的特质,之间彼此高度连接,互相感知,某一只机器蜜蜂的故障不影响整个任务的顺利完成。The distributed computing network is formed by the cooperative controllers distributed in each robot bee system, and the task decomposition calculation and the behavior control of the robot bees are completed, and then the entire group is controlled; the user only needs to assign a task once, and after the task is assigned, During the entire task execution process, there is no need for mandatory central controller and user intervention; the robot bee system has the characteristics of autonomy, and is highly connected to each other and perceives each other. The failure of a certain robot bee does not affect the smooth completion of the entire task. .
本发明一种机器蜜蜂的集群控制方法与系统,主要具有以下优点:A cluster control method and system of robotic bees according to the present invention mainly have the following advantages:
首先,能完成个体无法胜任的任务。通过多个机器蜜蜂的分布式计算提高其“智商”和“能力”,多个机器蜜蜂能够表现出比单个机器蜜蜂更聪明的“智商”和更强大的“能力”,能够完成更加复杂、需要更高“智商”的任务。集群控制的机器蜜蜂,单个个体的“智商”仍然是很低的,但是能够多个机器蜜蜂协作和分布式计算,在全局性能和整体性能上能表现出更高的“智商”和计算能力出来。First, the ability to perform tasks that the individual cannot perform. Through the distributed computing of multiple robot bees to improve their "IQ" and "ability", multiple robot bees can show smarter "IQ" and stronger "ability" than a single robot bee, and can complete more complex and demanding tasks. Higher "IQ" tasks. For the robot bees controlled by the cluster, the "IQ" of a single individual is still very low, but the cooperation and distributed computing of multiple robot bees can show higher "IQ" and computing power in terms of global performance and overall performance. .
其次,蜜蜂集群的控制和任务分配简单。用户仅需一开始把指令和任务信息发送给机器蜜蜂集群即可,由机器蜜蜂自行分配和分解任务。执行任务时,机器蜜蜂的个体是独立行动,行动是本地的和独立的;机器蜜蜂仅需要本地信息即可行动,即使无法知道全局信息,个体也能行动;并且它们行动匿名,独立于身份,不了解个体信息也能完成任务。在一定区域内的机器蜜蜂能够自行避开同类、障碍,保持良好有序的空中交通,不需要用户的干预。Second, the control and task assignment of the bee colony is simple. Users only need to send instructions and task information to the robot bee cluster at the beginning, and the robot bees will assign and decompose tasks by themselves. When performing tasks, the individual robot bees act independently, and the actions are local and independent; the robot bees only need local information to act, even if they cannot know the global information, individuals can act; and they act anonymously, independent of identity, It is possible to complete the task without knowing the individual information. Robot bees in a certain area can avoid similar obstacles and maintain good and orderly air traffic without user intervention.
再次,集群的机器蜜蜂能够提高故障冗余度。单一的高可靠机器人可能会因故障失效从而影响任务执行,但是集群中即使有一个或几个机器蜜蜂失效,集群整体也能继续工作确保任务的顺利完成,所以本发明的机器蜜蜂集群稳定性好,可靠性高,鲁棒性高。目前的无人机通信模式主要以单机与地面站通信方式为主,信息传输仍是集中式的,去中心化的机器蜜蜂集群利用自组织网技术可以实现无人机之间信息的高速共享,同时提高集群的抗故障与自愈能力。Thirdly, the clustered robot bees can improve the failure redundancy. A single high-reliability robot may fail to affect task execution due to failure, but even if one or several robot bees in the cluster fail, the cluster as a whole can continue to work to ensure the smooth completion of the task, so the robot bee cluster of the present invention has good stability , high reliability and high robustness. The current UAV communication mode is mainly based on the communication between a single machine and a ground station, and the information transmission is still centralized. The decentralized machine bee cluster can realize high-speed information sharing between UAVs by using self-organizing network technology. At the same time, it improves the anti-fault and self-healing capabilities of the cluster.
最后,本发明能解决有限空间内多机器之间的冲突,以低成本,高度分散的形式满足功能需求。本发明的单个机器蜜蜂体积小、成本低、结构简单、芯片要求不高,集群的机器蜜蜂能够以低成本完成类似分布式探测、分布式计算、分布式投票、分布式攻击等高难度任务,通过多个简单的小平台的协作以更高的标准完成目标。Finally, the present invention can resolve conflicts among multiple machines in a limited space, and satisfy functional requirements in a low-cost and highly decentralized form. The single robot bee of the present invention is small in size, low in cost, simple in structure and low in chip requirements, and the clustered robot bees can complete high-difficulty tasks such as distributed detection, distributed calculation, distributed voting, and distributed attack at low cost. Accomplish goals at a higher standard through the collaboration of multiple simple, small platforms.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
图1是本发明所述一种机器蜜蜂的集群控制方法与系统的系统结构示意图。Fig. 1 is a schematic diagram of the system structure of a swarm control method and system for robotic bees according to the present invention.
图2是本发明所述一种机器蜜蜂的集群控制方法与系统的多机器蜜蜂终端组的设计实施。Fig. 2 is a design and implementation of a multi-robot bee terminal group of a robot bee cluster control method and system according to the present invention.
图3是本发明所述一种机器蜜蜂的集群控制方法与系统的系统工作流程示意图。Fig. 3 is a schematic diagram of the system workflow of a method and system for controlling a swarm of robotic bees according to the present invention.
具体实施方式detailed description
下面结合附图对本发明的实施方式做进一步的说明。Embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,为本发明实例提供的一种基于机器蜜蜂的集群控制系统的系统结构示意图,包括如下模块:As shown in Figure 1, a kind of system structural representation of the cluster control system based on robotic bees provided for the example of the present invention, comprises following modules:
协同控制器(101)、传感器模块(102)、定位系统(103)、执行机构(104)、通信模块(105)、控制器(106),通信模块(107),同步模块(108)。A cooperative controller (101), a sensor module (102), a positioning system (103), an actuator (104), a communication module (105), a controller (106), a communication module (107), and a synchronization module (108).
协同控制器(101)的硬件分为 CPU 模块、电源模块、数字 I/O 输入模块、数字I/O输出模块和模拟 I/O 模块,通过底板连接模块将各个模块连接起来。电源模块为各模块提供各种等级工作电压;CPU 模块是整个协同控制器系统的核心,与其他 I/O 模块构成虚拟PLC系统,通过在 CPU 模块内移植嵌入式系统,以执行应用程序,并采集输入模块的信号,经过处理控制其他 I/O 模块的输出,达到实现功能定制的目的。协同控制器的CPU。协同控制器,优选地,使用ARM Cortex-A9微处理器作为控制芯片,超过2.0 DMIPS/MHz,最高可配置2MB的缓存内存,适用于要求高性能、低功耗、成本敏感、基于单核处理器的方案;扩展16MB 容量的SDRAM用来执行内部的嵌入式操作系统,以提高整个系统的运行速度;扩展8MB容量的Flash芯片作为嵌入式操作系统及应用程序的存储;RS232通信接口1作为整个装置的监视接口,通过上位机提供的接口软件监控系统的启动信息,同时作为调试接口,可以通过命令实现对装置系统变量的设置等功能;以太网接口实现与上位机的通讯,快速下载嵌入式系统和应用程序,监视系统运行状态变化,实现上位机与虚拟 PLC 系统之间的信息交互;I2C 总线接口与基于该协议的外设器件进行通讯。接口信号处理模块要实现装置与外部 I/O 接口的联系。为了抑制噪声信号和防止灵敏电路因外部电压突变而引起损坏,数字 I/O 电路需要使用光电耦合器,通过上拉电阻和光电耦合器实现信号输入,通过下拉电阻和光电耦合器实现信号输出。模拟量 I/O 电路选用 PCF8591 芯片。电路预处理部分主要完成信号滤波、电平转换等功能,先将现场的模拟量转变为 A/D 转换后适用的电压信号后再进行转换。电压输入信号通过滤波和电压钳制电路,再进行电平增益转换输入到 A/D接口;如果是 4~20 mA 电流输入,首先进行 I/V 转换再进行处理。PCF8591 的模拟量输出信号经过内部保持器保持,以便在新的输出信号到来之前,能维持已有的输出信号不变,从而使执行机构驱动信号得到保持,保持器的输出信号经过滤波、增益转化和功率放大电路送到执行机构,输出 0~10 V 的电压,控制执行机构按要求的控制规律动作。The hardware of the collaborative controller (101) is divided into a CPU module, a power supply module, a digital I/O input module, a digital I/O output module and an analog I/O module, and each module is connected through a backplane connection module. The power supply module provides various levels of working voltage for each module; the CPU module is the core of the entire cooperative controller system, and constitutes a virtual PLC system with other I/O modules. By transplanting the embedded system in the CPU module, the application program can be executed, and The signal of the input module is collected and processed to control the output of other I/O modules to achieve the purpose of function customization. The CPU of the co-controller. The collaborative controller, preferably, uses an ARM Cortex-A9 microprocessor as the control chip, exceeds 2.0 DMIPS/MHz, and can be configured with a cache memory of up to 2MB, suitable for applications that require high performance, low power consumption, cost-sensitive, and single-core processing The solution of the device; the extended 16MB SDRAM is used to execute the internal embedded operating system to improve the running speed of the whole system; the extended 8MB Flash chip is used as the storage of the embedded operating system and application program; the RS232 communication interface 1 is used as the whole The monitoring interface of the device monitors the startup information of the system through the interface software provided by the host computer. At the same time, it serves as a debugging interface, which can realize functions such as setting the system variables of the device through commands; the Ethernet interface realizes communication with the host computer, and quickly downloads the embedded The system and application programs monitor the changes in the operating status of the system and realize the information interaction between the upper computer and the virtual PLC system; the I2C bus interface communicates with peripheral devices based on this protocol. The interface signal processing module should realize the connection between the device and the external I/O interface. In order to suppress noise signals and prevent sensitive circuits from being damaged due to sudden changes in external voltage, digital I/O circuits need to use optocouplers, and realize signal input through pull-up resistors and optocouplers, and realize signal output through pull-down resistors and optocouplers. The analog I/O circuit uses PCF8591 chip. The circuit preprocessing part mainly completes functions such as signal filtering and level conversion. First, the on-site analog quantity is converted into an applicable voltage signal after A/D conversion, and then the conversion is performed. The voltage input signal passes through the filtering and voltage clamping circuit, and then performs level gain conversion to input to the A/D interface; if it is a 4-20 mA current input, it first performs I/V conversion and then processes it. The analog output signal of PCF8591 is held by the internal keeper, so that the existing output signal can be kept unchanged before the new output signal arrives, so that the driving signal of the actuator is kept, and the output signal of the keeper is filtered and converted by gain And the power amplifier circuit is sent to the actuator, and the output voltage is 0-10 V, and the actuator is controlled to act according to the required control law.
协同控制器(101)的整个软件系统由四部分组成,依次为 Bootloader 引导程序、Linux 操作系统、系统服务程序及用户应用程序。Bootloader 主要完成硬件检测和系统的引导;操作系统主要管理系统硬件设备,屏蔽硬件的具体细节,向上层的应用程序提供标准接口,方便应用程序的编写和移植;系统服务程序向用户提供服务的应用程序,为用户的应用程序提供必要的服务;用户应用程序在本装置中为实现虚拟 PLC功能的程序代码。将 U-Boot 作为引导装载程序,初始化硬件设备并建立内存空间的映射图,从而使系统的软硬件环境达到合适状态,以便为最终调用操作系统内核准备好正确的环境。然后解压内核映像,再跳转到内核映像入口。Linux 操作系统包括 Linux 内核和根文件系统两部分:Linux 内核根据本装置的实际硬件情况,将Linux 系统及各种设备驱动进行移植。Linux 内核针对虚拟 PLC 系统的 CPU 目标板进行内核编译,实现CPU 模块的各种设备驱动,包括网络接口、RS232 串口、I2C 总线驱动、装置 3 种运行状态中断驱动等;根文件系统用于存放各种工具(Linux 命令等)、应用程序、必需的链接库等,装置采用 RAMDISK 作为根文件系统,它将内存 RAM 和磁盘 DISK 联系起来,在内存中开辟一块空间当做磁盘使用。执行用户的init 程序,完成系统初始化、启动相关服务和管理用户登录等工作。系统服务程序主要包括以下几个部分:利用 lrz/lsz 工具包编译生成 rz,sz 工具,实现串口上应用程序的上传与下载;利用 bftpd 工具编译生成 FTP 服务器客户端程序,实现上位机登录服务器并进行应用程序的上传与下载;编写装置状态判断程序,通过读取 3 种不同的状态来实现装置的下载、运行和停止。用户应用程序是将 PLC 的梯形图程序编译生成的可执行文件,由于 RAMDISK 加载在内存 SDRAM中运行,掉电后数据不保存,因此为了保存下载后的装置可执行文件以及一些需要保存的数据,制作Jffs2 文件系统,使其能高效直接地对 flash 芯片进行操作,同时充分考虑意外断电的情况,当 Linux 系统启动后,Jffs2 文件系统自动挂载到 RAMDISK 某个文件夹,用户可以很方便地进行应用程序的创建和保存。The entire software system of the cooperative controller (101) is composed of four parts, which are Bootloader guide program, Linux operating system, system service program and user application program. Bootloader mainly completes hardware detection and system guidance; the operating system mainly manages system hardware devices, shields the specific details of hardware, and provides standard interfaces to upper-layer applications to facilitate the writing and transplantation of applications; system service programs provide services to users The program provides necessary services for the user's application program; the user application program in this device is the program code for realizing the virtual PLC function. U-Boot is used as a boot loader to initialize hardware devices and establish a memory space map, so that the system's hardware and software environment can reach a suitable state, so that the correct environment can be prepared for the final call to the operating system kernel. Then decompress the kernel image, and then jump to the kernel image entry. The Linux operating system includes two parts: the Linux kernel and the root file system: the Linux kernel transplants the Linux system and various device drivers according to the actual hardware conditions of the device. The Linux kernel compiles the kernel for the CPU target board of the virtual PLC system to realize various device drivers for the CPU module, including network interface, RS232 serial port, I2C bus driver, and interrupt driver for the three operating states of the device; the root file system is used to store various tools (Linux commands, etc.), applications, necessary link libraries, etc., the device uses RAMDISK as the root file system, which connects the memory RAM with the disk DISK, and opens up a space in the memory as a disk. Execute the user's init program to complete system initialization, start related services and manage user login. The system service program mainly includes the following parts: use the lrz/lsz toolkit to compile and generate rz, sz tools to realize the upload and download of the application program on the serial port; use the bftpd tool to compile and generate the FTP server client program to realize the host computer login server Upload and download the application program; write the device state judgment program, and realize the download, operation and stop of the device by reading 3 different states. The user application program is an executable file generated by compiling the ladder diagram program of the PLC. Since RAMDISK is loaded and run in the memory SDRAM, the data will not be saved after power failure. Therefore, in order to save the downloaded device executable file and some data that needs to be saved, Make the Jffs2 file system so that it can efficiently and directly operate the flash chip, and fully consider the unexpected power failure. When the Linux system is started, the Jffs2 file system is automatically mounted to a folder in RAMDISK, and the user can easily Create and save the application.
所述传感器模块(102),主要包括视觉感知设备(摄像头)、嗅觉传感器、触觉感知设备。传感器模块是实时检测机器蜜蜂的运动及工作情况,根据需要反馈给协同控制器,与设定信息进行比较后,对执行机构进行调整,以保证机器蜜蜂的动作符合预定的要求。传感器大致可以分为两类:一类是内部信息传感器,用于检测机器人各部分的内部状况,如各肢体的位置、速度、加速度等,并将所测得的信息作为反馈信号送至协同控制器,形成闭环控制。一类是外部信息传感器,用于获取有关机器蜜蜂的作业对象及外界环境等方面的信息,以使机器人的动作能适应外界情况的变化,使之达到更高层次的自动化,甚至使机器人具有某种“感觉”,向智能化发展,例如视觉、嗅觉等外部传感器给出工作对象、工作环境的有关信息,利用这些信息构成一个大的反馈回路,从而将大大提高机器人的工作精度。The sensor module (102) mainly includes a visual perception device (camera), an olfactory sensor, and a tactile perception device. The sensor module detects the movement and working conditions of the robotic bees in real time, and feeds back to the collaborative controller as needed. After comparing with the set information, the actuator is adjusted to ensure that the movements of the robotic bees meet the predetermined requirements. Sensors can be roughly divided into two categories: one is the internal information sensor, which is used to detect the internal conditions of each part of the robot, such as the position, speed, acceleration, etc. of each limb, and send the measured information as a feedback signal to the collaborative control device to form a closed-loop control. One is the external information sensor, which is used to obtain information about the work object of the robot bee and the external environment, so that the robot's actions can adapt to changes in the external situation, so that it can achieve a higher level of automation, and even make the robot have certain functions. A kind of "feeling" is developed towards intelligence. For example, external sensors such as vision and smell provide information about the working object and the working environment, and use this information to form a large feedback loop, which will greatly improve the working accuracy of the robot.
所述视觉传感器,安装于机器蜜蜂蜂眼的位置,用于获取机器蜜蜂在三维空间中的位置、帮助识别花朵,花粉,障碍物或者任务目标等等。优选地,使用品牌: A LINE OFDEFENSE/一号防线,型号: 带云台网络摄像机,可变焦,感光面积: 1/3英寸,有效距离大于30m,镜头大小规格2.8mm。进一步地,所述摄像头由两个以上不同角度摄像头组成阵列,以形成全方位的位置监控;进一步地,所述摄像头与三维定位跟踪设备共同完成用户的跟踪定位,进一步提高位置定位、分析、判断、碰撞计算和运动轨迹分析和演化。The vision sensor is installed at the position of the bee eyes of the robot bee, and is used to obtain the position of the robot bee in three-dimensional space, and help identify flowers, pollen, obstacles or mission targets and the like. Preferably, use brand: A LINE OFDEFENSE/ No. 1 defense line, model: network camera with PTZ, zoom, photosensitive area: 1/3 inch, effective distance greater than 30m, lens size specification 2.8mm. Further, the camera is composed of two or more cameras with different angles to form an array to form a full range of position monitoring; further, the camera and the three-dimensional positioning and tracking device jointly complete the tracking and positioning of the user, further improving position positioning, analysis, and judgment. , collision calculation and motion trajectory analysis and evolution.
所述嗅觉传感器,安装于机器蜜蜂蜂眼下的位置, 主要部件是气敏传感器,用于查找味源(比如查找盛开的花朵,识别花粉)。气味分子被机器嗅觉系统中的传感器阵列吸附,产生电信号;生成的信号经各种方法加工处理与传输;将处理后的信号经计算机模式识别系统做出判断。The olfactory sensor is installed under the eyes of the robotic bee, and its main component is a gas sensor, which is used to find the source of smell (such as finding blooming flowers and identifying pollen). Odor molecules are adsorbed by the sensor array in the machine olfactory system to generate electrical signals; the generated signals are processed and transmitted by various methods; the processed signals are judged by the computer pattern recognition system.
所述触觉感知设备是力反馈所产生的感知信息,安装于机器蜜蜂的肢体上,包括接触觉、压觉、力觉和滑觉。接触觉,检测与对象是否接触,接触的位置,确定对象位置,识别对象形态,控制速度,安全保障,异常停止,寻径;传感器件包括光电传感器、微动开关、薄膜特点、压敏高分子材料。压觉,检测对物体的压力、握力、压力分布,控制握力,识别握持物,测量物体弹性;传感器件包括压电元件、导电橡胶、压敏高分子材料。力觉,检测机器蜜蜂有关部件(如足)所受外力及转矩,控制足的移动,伺服控制,正解完成作业;传感器件包括应变片、导电橡胶。滑觉,检测垂直握持面方向物体的位移,重力引起的变形,修正握力,防止打滑,判断物体重量及表面状态;传感器件包括球形接点式、光电旋转传感器、角编码器、振动检测器。The tactile sensing device is the sensing information generated by force feedback, which is installed on the limbs of the robot bee, including touch sense, pressure sense, force sense and slip sense. Touch sense, detecting whether to contact with the object, the position of contact, determining the position of the object, recognizing the shape of the object, controlling the speed, ensuring safety, stopping abnormally, and finding the path; sensor components include photoelectric sensors, micro switches, film characteristics, pressure-sensitive polymers Material. Pressure sense, detect the pressure on the object, grip force, pressure distribution, control the grip force, identify the grip object, and measure the elasticity of the object; sensor devices include piezoelectric elements, conductive rubber, and pressure-sensitive polymer materials. Force sense, detecting the external force and torque on the relevant parts of the robot bee (such as feet), controlling the movement of the feet, servo control, and completing the work in a positive way; sensor devices include strain gauges and conductive rubber. Slip sense, detecting the displacement of the object in the vertical direction of the grip surface, the deformation caused by gravity, correcting the grip force, preventing slipping, judging the weight and surface state of the object; sensor devices include spherical contact type, photoelectric rotation sensor, angle encoder, and vibration detector.
执行机构(104)安装于机器蜜蜂体内,包括飞行机构、爬行机构、采蜜机构等,每个机构都包括驱动电路和机械装置。驱动电路是驱使执行机构运动的电路,按照协同控制器发出的指令信号,借助于机械装置使机器蜜蜂进行动作(比如飞行、加速、减速、降落、肢体动作等)。它输入的是电信号,输出的是线、角位移量。优选地,使用电力驱动装置,如步进电机、伺服电机等,以便减小体积。The executive mechanism (104) is installed in the body of the robotic bee, including a flying mechanism, a crawling mechanism, a honey collecting mechanism, etc., and each mechanism includes a driving circuit and a mechanical device. The drive circuit is the circuit that drives the actuator to move. According to the command signal sent by the cooperative controller, the mechanical device makes the robot bee perform actions (such as flight, acceleration, deceleration, landing, body movements, etc.). Its input is electrical signal, and its output is line and angular displacement. Preferably, an electric drive device such as a stepping motor, a servo motor, etc. is used in order to reduce the volume.
定位系统(103)安装于机器蜜蜂体内,包括测量自身位置和与周围事物的距离。测量自身位置时,采用GPS定位。位置觉,负责检测物体的位置、角度、距离,检测物体空间位置、判断物体移动;传感器件为光敏阵列、CCD等。检测与对象是否接触,接触的位置,确定对象位置,识别对象形态,控制速度,安全保障,异常停止,寻径,传感器件为光电传感器、微动开关、薄膜特点、压敏高分子材料。优选地,当测量自身与周围的距离时,传感器采用红外传感器,红外传感器定位具有灵敏度高、结构简单、成本低等优点,它们角度分辨率高,而距离分辨率低,因此在移动的机器蜜蜂中,用作接近觉传感器,探测临近或突发运动障碍,便于机器蜜蜂紧急停障和躲避。The positioning system (103) is installed in the body of the robot bee, including measuring its own position and the distance from surrounding objects. When measuring your own position, use GPS positioning. Position sense is responsible for detecting the position, angle and distance of the object, detecting the spatial position of the object, and judging the movement of the object; the sensor device is a photosensitive array, CCD, etc. Detect whether the object is in contact, the position of the contact, determine the position of the object, identify the shape of the object, control the speed, ensure safety, stop abnormally, and find the path. The sensor components are photoelectric sensors, micro switches, film characteristics, and pressure-sensitive polymer materials. Preferably, when measuring the distance between itself and the surroundings, the sensor uses an infrared sensor. The positioning of the infrared sensor has the advantages of high sensitivity, simple structure, and low cost. They have high angular resolution and low distance resolution. Among them, it is used as a proximity sensor to detect approaching or sudden movement obstacles, which is convenient for the robot bee to stop and avoid obstacles in an emergency.
通信模块(105)安装于机器蜜蜂体内。通信模块(107)安装于集群系统中。利用多个ZigBee模块通过无线通信的方式组成的一个多级中继的自组织的网络系统,且ZigBee之间可以相互协作地感知、采集和处理区域中的ZigBee设备。优选地,使用ZigBee无线模块和WIFI模块,ZigBee无线模块节点采用TI公司的CC2530作为主控制器芯片。该芯片是用于2.4GHz IEEE 802.15.4、ZigBee和RF4CE应用的一个真正的片上系统解决方案。它结合了领先的RF收发器的优良性能,基于51内核,系统内可编程闪存,8KB RAM和许多其它强大的功能。具有低复杂度、低功耗、低速率、低成本、自组网、高可靠、超视距的特点,是一种基于自组网、多点中继,可实现网状拓扑的组网协议。并且,ZigBee有单播方式和广播方式,方面总部的控制器向机器蜜蜂发出任务信息,也能让机器蜜蜂之间进行交流。单播方式是数据由一个源设备,发送至一个目标设备;在单播方式下,数据由源设备发出,直接或者经过几级中转后,发送至目的地址。加入Zigbee网络的所有设备之间都可以进行单播传输。具体路由关系由协调节点/路由节点进行维护、查询。广播方式是数据由一个源设备,发送给整个网络中的所有设备;在广播方式下,数据由一个设备发送信息直接或者经过路由中转,发送到整个Zigbee网络的所有设备,其目标地址使用16进账的FFFF。在为那的设备中只有协调器才支持广播方式。WIFI是一种允许电子设备连接到一个无线局域网(WLAN)的技术,优选地,使用2.4G UHF或5G SHF ISM 射频频段;传输速度非常快,可以达到54Mbps,符合所述集群系统向机器蜜蜂发出任务信息的要求。The communication module (105) is installed in the body of the robotic bee. The communication module (107) is installed in the cluster system. A multi-level relay self-organizing network system composed of multiple ZigBee modules through wireless communication, and ZigBee can sense, collect and process ZigBee devices in the area in cooperation with each other. Preferably, the ZigBee wireless module and the WIFI module are used, and the ZigBee wireless module node adopts CC2530 of TI Company as the main controller chip. The chip is a true system-on-chip solution for 2.4GHz IEEE 802.15.4, ZigBee and RF4CE applications. It combines the excellent performance of a leading RF transceiver based on 51 cores, in-system programmable flash memory, 8KB RAM and many other powerful features. It has the characteristics of low complexity, low power consumption, low speed, low cost, self-organizing network, high reliability, and beyond line-of-sight. It is a networking protocol based on self-organizing network and multi-point relay, which can realize mesh topology . Moreover, ZigBee has a unicast mode and a broadcast mode. On the one hand, the controller at the headquarters sends task information to the robot bees, and also allows the robot bees to communicate with each other. In the unicast mode, the data is sent from a source device to a target device; in the unicast mode, the data is sent by the source device, and then sent to the destination address directly or after several stages of transfer. Unicast transmissions are available between all devices joining the Zigbee network. The specific routing relationship is maintained and queried by the coordinating node/routing node. In the broadcast mode, the data is sent from a source device to all devices in the entire network; in the broadcast mode, the data is sent by a device to all devices in the entire Zigbee network directly or through routing, and its destination address uses 16. FFFF. In that device only the coordinator supports broadcasting. WIFI is a technology that allows electronic devices to connect to a wireless local area network (WLAN), preferably, using 2.4G UHF or 5G SHF ISM radio frequency band; the transmission speed is very fast, can reach 54Mbps, in line with the swarm system issued to the machine bee Request for task information.
控制器(106)安装于集群系统中,主要用于发射任务信息。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个集群系统的操作。推荐用研华UNO-2171-P12E。设备类型:工业控制器。功能概述:板上集成Celeron M 1.0GHz,512MB DDR DRAM 提供512KB电池备份SRAM 支持LM传感器,可获取CPU和板卡温度,用于监测 2个RS-232和2个RS-232/422/485端口,带自动数据流控制 2个10/100Base-T RJ-45端口 2个USB和1个Type I/II PC卡 2个可选PC/104扩展Windows CE.5.0和Windows XP Embedded解决方案 支持Windows 2000/XP和Linux驱动程序。产品特性1:P-M 1.4 G,1 GB RAM UNO-2171。The controller (106) is installed in the cluster system and is mainly used for transmitting mission information. Composed of program counters, instruction registers, instruction decoders, timing generators, and operation controllers, it is the "decision-making body" that issues commands, that is, completes the coordination and command of the entire cluster system operation. Advantech UNO-2171-P12E is recommended. Device Type: Industrial Controller. Function overview: On-board integrated Celeron M 1.0GHz, 512MB DDR DRAM provides 512KB battery backup SRAM, supports LM sensor, can obtain CPU and board temperature, and is used to monitor 2 RS-232 and 2 RS-232/422/485 ports , with automatic data flow control 2 10/100Base-T RJ-45 ports 2 USB and 1 Type I/II PC card 2 optional PC/104 expansion Windows CE.5.0 and Windows XP Embedded solutions support Windows 2000 /XP and Linux drivers. Product Feature 1: P-M 1.4 G, 1 GB RAM UNO-2171.
同步模块(108)安装于集群系统中,包括显示屏和服务器。一方面通过通信模块接收到机器蜜蜂发回的信息,经控制器处理可视化到显示屏上,二来调控机器蜜蜂的时间等信息,保持他们的时间等标准的统一。同步显示可用:led全彩屏 led显示屏同步控制发射盒T13E或者led 全彩高清 显示屏 led全彩屏 usb专利同步控制卡发射卡。显示屏可用:鑫彩晨PH4表贴三合一室内全彩LED显示屏,参数:一般规格:产品规格PH4,像素直径4mm,点中心距4mm,象素密度62500点/㎡,单元板尺寸256×128mm。显示规格:屏体分辨率128×128,显示基色全彩,象素组成1R1G1B,可视角度水平:140° 垂直:100°,可视距离3-25m,白平衡亮度≧2000cd/㎡,显示模式同步显示。电气规格:最大功率2600W/㎡ 纠错,平均功率1800W/㎡,工作电压AC 220V±15% 50HZ。其他规格:刷新频率180HZ,驱动方式1/16扫描(动态),传输距离100m(无中继),工作环境存贮温度:-40-85℃ 工作温度:-10-50℃,使用寿命7500-10000小时,产品重量18Kg/m2,其他性能亮度调节方式:亮度感应自动调节:16级可调,计算机操作系统:WIN98、WINXP、WIN2000,etc,软件手动调节:100级可调100,视屏信号:RF、S-Video、RGB、RGBHV、YUV、YC、COMPOSITION等,控制系统:PCTV卡(可选optional)+DVI显卡+主控卡+光纤传输(可选optional)。The synchronization module (108) is installed in the cluster system, including a display screen and a server. On the one hand, the information sent back by the robot bees is received through the communication module, processed by the controller and visualized on the display screen, and secondly, the information such as the time of the robot bees is adjusted to maintain the unity of their time and other standards. Synchronous display is available: led full-color screen led display synchronous control launch box T13E or led full-color high-definition display led full-color screen usb patented synchronous control card launch card. The display screen is available: Xincaichen PH4 surface-mounted three-in-one indoor full-color LED display, parameters: general specifications: product specification PH4, pixel diameter 4mm, point center distance 4mm, pixel density 62500 dots/㎡, unit board size 256 ×128mm. Display specifications: screen resolution 128×128, display primary color full color, pixel composition 1R1G1B, viewing angle horizontal: 140° vertical: 100°, viewing distance 3-25m, white balance brightness ≧ 2000cd/㎡, display mode displayed synchronously. Electrical specifications: maximum power 2600W/㎡, average power 1800W/㎡, working voltage AC 220V±15% 50HZ. Other specifications: Refresh frequency 180HZ, drive mode 1/16 scan (dynamic), transmission distance 100m (no relay), working environment storage temperature: -40-85°C working temperature: -10-50°C, service life 7500- 10000 hours, product weight 18Kg/m2, other performance Brightness adjustment method: Brightness sensor automatic adjustment: 16 levels adjustable, computer operating system: WIN98, WINXP, WIN2000, etc, software manual adjustment: 100 levels adjustable 100, video signal: RF, S-Video, RGB, RGBHV, YUV, YC, COMPOSITION, etc. Control system: PCTV card (optional) + DVI graphics card + main control card + optical fiber transmission (optional).
如图2所示,为本发明所述一种机器蜜蜂的集群控制方法与系统的内部实施例,当机器蜜蜂的通信模块经选频 ,解调接收并处理到来自集群系统发出的信号后,将处理后的信息交至协同控制器,协同控制器器在结合输入模块中包含的定位模块,经GPS(主要是GPS)定位,传感器模块经视觉,嗅觉,触觉系统搜集到的信息资料对任务进行分解计算。其中,协同控制器对的硬件中的CPU负责计算,通过数字I/O输入模块输入数据,模拟I/O模块用于平衡信号进行电路预处理,主要完成信号滤波、电平转换等功能,先将现场的模拟量转变为A/D转换后适用的电压信号后再进行转换,必要时存储器会对数据信息进行存储。通过数字I/O输出模块输出信息,得出最适合目前机器蜜蜂操作的一套方案,然后交由执行机构去执行,执行机构得到来自协同控制器的方案后,按照指令通过控制机器蜜蜂的肢体(翅膀,足,触角,嘴,吸管等)来完成相应的动作,进而完成任务。必要时,机器蜜蜂还会通过它的通信模块向外(其他机器蜜蜂或者集群系统)经调制,发射模块发射信号。整个期间,电源模块会给整个机器蜜蜂的内部所有结构供电。As shown in Figure 2, it is an internal embodiment of the cluster control method and system of a robotic bee according to the present invention. After the communication module of the robotic honeybee is frequency-selected, demodulated, received and processed from the signal sent by the cluster system, Hand over the processed information to the cooperative controller. The cooperative controller combines the positioning module contained in the input module with GPS (mainly GPS) positioning. Do split calculations. Among them, the CPU in the hardware of the cooperative controller is responsible for calculation, input data through the digital I/O input module, and the analog I/O module is used to balance the signal for circuit preprocessing, mainly to complete functions such as signal filtering and level conversion. The on-site analog quantity is converted into an applicable voltage signal after A/D conversion and then converted, and the memory will store the data information if necessary. Through the output information of the digital I/O output module, a set of plans most suitable for the current operation of the robot bee is obtained, and then handed over to the executive agency for execution. After the executive agency obtains the plan from the collaborative controller, it controls the limbs of the robot bee according to the instructions. (wings, feet, tentacles, mouth, straw, etc.) to complete the corresponding actions, and then complete the task. When necessary, the robot bee will also modulate outwards (other robot bees or cluster systems) through its communication module, and the transmitting module will transmit signals. During the whole period, the power module will supply power to all internal structures of the entire robotic bee.
如图3所示,为本发明实例提供的机器蜜蜂系统的工作流程示意图,用户打开集群系统的终端后,系统启动,初始化信息,用户通过集群系统的控制器发出任务信息。机器蜜蜂接收收任务,进行初步大概的任务划分(比如功能划分,区域划分等等),划分好后,首先由若干只侦查蜜蜂外出探路,进行地形探测,探测好后,机器蜜蜂群进行路径规划,选择安全,道路近的路径方案,然后起飞。飞行时,机器蜜蜂遇到障碍物实时躲避,并且与邻近机器蜜蜂保持安全距离,在安全距离内的要调整路线。飞到目的地后,根据第一个到达的机器蜜蜂,以他为中心,集群开始分散任务,机器蜜蜂根据邻近的机器蜜蜂的行为,通过算法,确定下自己具体的职责范围和要领,开始执行任务。当自己目前的任务完时,检测整体任务是否完成,若果整体任务未完成,则去填补,再次根据邻近蜜蜂的行为,划分自己的工作范围,和调节自己的行为,与其他机器蜜蜂共同协作完成任务;如果中途有机器蜜蜂故障、报废、长时间失联(时间可以根据不同任务设定),则该蜜蜂正在完成的任务视为未完成;若整体任务已经完成,则此任务结束。As shown in Figure 3, it is a schematic diagram of the workflow of the robot bee system provided by the example of the present invention. After the user opens the terminal of the cluster system, the system starts and initializes information, and the user sends task information through the controller of the cluster system. Robotic bees receive tasks and perform preliminary task division (such as functional division, area division, etc.). Plan, choose a safe, road-close path option, and take off. When flying, the robot bees avoid obstacles in real time, and keep a safe distance from neighboring robot bees, and adjust the route within the safe distance. After flying to the destination, according to the first arriving robot bee, with him as the center, the cluster begins to disperse tasks. According to the behavior of neighboring robot bees, the robot bees determine their specific scope of duties and essentials through algorithms, and start to execute Task. When the current task is completed, check whether the overall task is completed. If the overall task is not completed, then fill it up. Then divide the scope of work according to the behavior of neighboring bees, and adjust their behavior to cooperate with other robot bees. Complete the task; if a robot bee fails, is scrapped, or loses contact for a long time (the time can be set according to different tasks), the task that the bee is completing is considered unfinished; if the overall task has been completed, the task ends.
通过上述的说明内容,本领域技术人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改都在本发明的保护范围之内。本发明的未尽事宜,属于本领域技术人员的公知常识。Through the above description, those skilled in the art can make various changes and modifications without departing from the technical idea of the present invention, all of which are within the protection scope of the present invention. Matters not covered in the present invention belong to the common knowledge of those skilled in the art.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710402156.6A CN107247460B (en) | 2017-06-01 | 2017-06-01 | A method and system for swarm control of robotic bees |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710402156.6A CN107247460B (en) | 2017-06-01 | 2017-06-01 | A method and system for swarm control of robotic bees |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107247460A true CN107247460A (en) | 2017-10-13 |
| CN107247460B CN107247460B (en) | 2020-08-18 |
Family
ID=60017752
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710402156.6A Active CN107247460B (en) | 2017-06-01 | 2017-06-01 | A method and system for swarm control of robotic bees |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107247460B (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108227598A (en) * | 2018-03-27 | 2018-06-29 | 济南大学 | A kind of clearance removal of mines robot control system moved in parallel |
| CN108459616A (en) * | 2018-03-07 | 2018-08-28 | 西安电子科技大学 | Unmanned aerial vehicle group collaboration covering Route planner based on artificial bee colony algorithm |
| CN108762122A (en) * | 2018-06-22 | 2018-11-06 | 上海际链网络科技有限公司 | A kind of intelligent control box and its control method |
| CN109189100A (en) * | 2018-11-16 | 2019-01-11 | 北京遥感设备研究所 | A kind of the quadrotor drone group control system and method for view-based access control model positioning |
| CN109460060A (en) * | 2018-12-05 | 2019-03-12 | 四川航天系统工程研究所 | It is unmanned to equip intelligent coordinated control assembly and control method |
| CN110087220A (en) * | 2019-05-29 | 2019-08-02 | 上海驰盈机电自动化技术有限公司 | A kind of Communication of Muti-robot System and tele-control system |
| CN110180113A (en) * | 2019-06-05 | 2019-08-30 | 山东国兴智能科技股份有限公司 | A kind of concentrating type fire-fighting robot cooperation scouting extinguishing method |
| WO2020015682A1 (en) * | 2018-07-18 | 2020-01-23 | 华为技术有限公司 | System and method for controlling unmanned aerial vehicle |
| CN111638728A (en) * | 2020-06-17 | 2020-09-08 | 南京邮电大学 | Rapid large-range crowd gathering condition monitoring method based on vehicle-mounted unmanned aerial vehicle |
| CN111752228A (en) * | 2019-03-27 | 2020-10-09 | 杭州海康机器人技术有限公司 | Control system and control method for AGV cooperative transportation |
| CN112269392A (en) * | 2020-09-16 | 2021-01-26 | 广西电网有限责任公司电力科学研究院 | Ground workstation system controlled by unmanned aerial vehicle cluster and control method thereof |
| CN113448272A (en) * | 2021-06-28 | 2021-09-28 | 江西省智能产业技术创新研究院 | Cluster control system and method |
| CN114585484A (en) * | 2019-10-04 | 2022-06-03 | 国立大学法人香川大学 | Holding tool, holding system, slip detection device, slip detection program and slip detection method |
| CN115220441A (en) * | 2022-03-24 | 2022-10-21 | 华东师范大学 | Unmanned trolley cluster task coordination method based on biological visual perception |
| CN118605578A (en) * | 2024-08-08 | 2024-09-06 | 中国兵器装备集团自动化研究所有限公司 | A search system based on micro-UAV swarm |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102033536A (en) * | 2010-12-22 | 2011-04-27 | 大连理工大学 | A scheduling organization collaboration system and method for a multi-robot system |
| CN105204509A (en) * | 2015-10-09 | 2015-12-30 | 南京采薇且歌信息科技有限公司 | Tracked mobile robot system achieving garden polling and field reconnaissance through remote control |
| CN106477043A (en) * | 2016-11-04 | 2017-03-08 | 宁波大学 | A kind of bionical Apiss |
| WO2017043996A1 (en) * | 2015-09-11 | 2017-03-16 | Motorola Solutions, Inc | Method, system, and apparatus for controlling a plurality of mobile-radio equipped robots in a talkgroup |
| CN106529776A (en) * | 2016-10-31 | 2017-03-22 | 合肥工业大学 | Autonomous cooperative task distribution method of a plurality of intelligent agents |
| CN106654987A (en) * | 2016-11-18 | 2017-05-10 | 华北电力大学(保定) | Power line multi-robot collaborative inspection method |
-
2017
- 2017-06-01 CN CN201710402156.6A patent/CN107247460B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102033536A (en) * | 2010-12-22 | 2011-04-27 | 大连理工大学 | A scheduling organization collaboration system and method for a multi-robot system |
| WO2017043996A1 (en) * | 2015-09-11 | 2017-03-16 | Motorola Solutions, Inc | Method, system, and apparatus for controlling a plurality of mobile-radio equipped robots in a talkgroup |
| CN105204509A (en) * | 2015-10-09 | 2015-12-30 | 南京采薇且歌信息科技有限公司 | Tracked mobile robot system achieving garden polling and field reconnaissance through remote control |
| CN106529776A (en) * | 2016-10-31 | 2017-03-22 | 合肥工业大学 | Autonomous cooperative task distribution method of a plurality of intelligent agents |
| CN106477043A (en) * | 2016-11-04 | 2017-03-08 | 宁波大学 | A kind of bionical Apiss |
| CN106654987A (en) * | 2016-11-18 | 2017-05-10 | 华北电力大学(保定) | Power line multi-robot collaborative inspection method |
Non-Patent Citations (3)
| Title |
|---|
| 刘鑫: "基于无线自组网的多移动机器人协作控制研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
| 孙银霞 等: "《无处不在的碳纤维》", 31 March 2012, 甘肃科学技术出版社 * |
| 高晗: "面向地形勘察使命的AUV群体协同使命控制方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108459616A (en) * | 2018-03-07 | 2018-08-28 | 西安电子科技大学 | Unmanned aerial vehicle group collaboration covering Route planner based on artificial bee colony algorithm |
| CN108459616B (en) * | 2018-03-07 | 2021-08-03 | 西安电子科技大学 | A route planning method for UAV swarm cooperative coverage based on artificial bee colony algorithm |
| CN108227598A (en) * | 2018-03-27 | 2018-06-29 | 济南大学 | A kind of clearance removal of mines robot control system moved in parallel |
| CN108762122B (en) * | 2018-06-22 | 2020-10-30 | 上海际链网络科技有限公司 | Intelligent control box and control method thereof |
| CN108762122A (en) * | 2018-06-22 | 2018-11-06 | 上海际链网络科技有限公司 | A kind of intelligent control box and its control method |
| WO2020015682A1 (en) * | 2018-07-18 | 2020-01-23 | 华为技术有限公司 | System and method for controlling unmanned aerial vehicle |
| CN109189100A (en) * | 2018-11-16 | 2019-01-11 | 北京遥感设备研究所 | A kind of the quadrotor drone group control system and method for view-based access control model positioning |
| CN109460060A (en) * | 2018-12-05 | 2019-03-12 | 四川航天系统工程研究所 | It is unmanned to equip intelligent coordinated control assembly and control method |
| CN111752228B (en) * | 2019-03-27 | 2024-06-04 | 杭州海康机器人股份有限公司 | Control system and control method for AGV cooperative transportation |
| CN111752228A (en) * | 2019-03-27 | 2020-10-09 | 杭州海康机器人技术有限公司 | Control system and control method for AGV cooperative transportation |
| CN110087220A (en) * | 2019-05-29 | 2019-08-02 | 上海驰盈机电自动化技术有限公司 | A kind of Communication of Muti-robot System and tele-control system |
| CN110180113A (en) * | 2019-06-05 | 2019-08-30 | 山东国兴智能科技股份有限公司 | A kind of concentrating type fire-fighting robot cooperation scouting extinguishing method |
| CN114585484A (en) * | 2019-10-04 | 2022-06-03 | 国立大学法人香川大学 | Holding tool, holding system, slip detection device, slip detection program and slip detection method |
| US12426981B2 (en) | 2019-10-04 | 2025-09-30 | National University Corporation Kagawa University | Grip tool, grip system, slip detection device, slip detection program, and slip detection method |
| CN111638728A (en) * | 2020-06-17 | 2020-09-08 | 南京邮电大学 | Rapid large-range crowd gathering condition monitoring method based on vehicle-mounted unmanned aerial vehicle |
| CN112269392A (en) * | 2020-09-16 | 2021-01-26 | 广西电网有限责任公司电力科学研究院 | Ground workstation system controlled by unmanned aerial vehicle cluster and control method thereof |
| CN112269392B (en) * | 2020-09-16 | 2023-08-22 | 广西电网有限责任公司电力科学研究院 | Unmanned aerial vehicle cluster control ground workstation system and control method thereof |
| CN113448272A (en) * | 2021-06-28 | 2021-09-28 | 江西省智能产业技术创新研究院 | Cluster control system and method |
| CN115220441A (en) * | 2022-03-24 | 2022-10-21 | 华东师范大学 | Unmanned trolley cluster task coordination method based on biological visual perception |
| CN118605578A (en) * | 2024-08-08 | 2024-09-06 | 中国兵器装备集团自动化研究所有限公司 | A search system based on micro-UAV swarm |
| CN118605578B (en) * | 2024-08-08 | 2024-11-12 | 中国兵器装备集团自动化研究所有限公司 | A search system based on micro-UAV swarm |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107247460B (en) | 2020-08-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107247460B (en) | A method and system for swarm control of robotic bees | |
| CN206709853U (en) | Drawing system is synchronously positioned and builds in a kind of multi-rotor unmanned aerial vehicle room | |
| CN110174891A (en) | A kind of AGV cluster control system and method based on WIFI wireless communication | |
| CN110347159B (en) | Mobile robot multi-machine cooperation method and system | |
| CN108196582A (en) | A kind of indoor Visual Navigation unmanned plane cluster flight control system and method | |
| CN106444423A (en) | Indoor multi unmanned aerial vehicle formation flight simulation verification platform and achieving method thereof | |
| CN208110387U (en) | An Indoor Visual Navigation UAV Swarm Flight Control System | |
| CN106506062B (en) | Distributed rapid communication system and communication method for cluster unmanned aerial vehicle | |
| CN107943067B (en) | A method, device and system for unmanned aerial vehicle formation based on swarm control | |
| CN103389699A (en) | Robot monitoring and automatic mobile system operation method based on distributed intelligent monitoring controlling nodes | |
| CN208126205U (en) | A kind of unmanned flight's device of automatic obstacle-avoiding | |
| CN111496774A (en) | Robot distributed control system and method thereof | |
| CN106774365A (en) | A kind of unmanned plane debugging system based on external view positioning | |
| CN117369512A (en) | Unmanned aerial vehicle cooperated intelligent control and optimization system | |
| CN114707304A (en) | A multi-UAV perception avoidance verification system and method combining virtual and real | |
| US11620913B2 (en) | Movable object application framework | |
| WO2022027337A1 (en) | Movable platform control system, control method, device, and storage medium | |
| Olou et al. | Autonomous navigation of unmanned aerial vehicle: Investigating architectures and techniques for a flexible platform | |
| CN114442604A (en) | Mobile Robot Control System Based on ROS2 | |
| Kekec et al. | A modular software architecture for UAVs | |
| CN118650608A (en) | Collaborative methods and systems for industrial robots under multi-sensory fusion | |
| CN220518585U (en) | Ultra-low altitude approaching reconnaissance unmanned aerial vehicle equipment capable of automatically avoiding obstacle | |
| del Cerro et al. | Aerial fleet in rhea project: A high vantage point contributions to robot 2013 | |
| CN216697069U (en) | Mobile Robot Control System Based on ROS2 | |
| Ma et al. | Omnibot: A Scalable Vision-Based Robot Swarm Platform |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20240806 Address after: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province Patentee after: Yami Technology (Guangzhou) Co.,Ltd. Country or region after: China Address before: 443002 No. 8, University Road, Yichang, Hubei Patentee before: CHINA THREE GORGES University Country or region before: China |
|
| TR01 | Transfer of patent right |