CN107158447B - Antibacterial zein dressing with controllable orientation and preparation method thereof - Google Patents
Antibacterial zein dressing with controllable orientation and preparation method thereof Download PDFInfo
- Publication number
- CN107158447B CN107158447B CN201710546579.5A CN201710546579A CN107158447B CN 107158447 B CN107158447 B CN 107158447B CN 201710546579 A CN201710546579 A CN 201710546579A CN 107158447 B CN107158447 B CN 107158447B
- Authority
- CN
- China
- Prior art keywords
- zein
- layer
- fiber
- dressing
- antibacterial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims abstract description 145
- 239000010410 layer Substances 0.000 claims abstract description 140
- 229920002494 Zein Polymers 0.000 claims abstract description 118
- 239000005019 zein Substances 0.000 claims abstract description 118
- 229940093612 zein Drugs 0.000 claims abstract description 118
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 78
- 239000012528 membrane Substances 0.000 claims abstract description 35
- 239000002346 layers by function Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000004744 fabric Substances 0.000 claims abstract description 21
- 230000004888 barrier function Effects 0.000 claims abstract description 20
- -1 polypropylene Polymers 0.000 claims abstract description 19
- 239000004743 Polypropylene Substances 0.000 claims abstract description 18
- 229920001155 polypropylene Polymers 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 53
- 238000001523 electrospinning Methods 0.000 claims description 30
- 239000000284 extract Substances 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 10
- UILPJVPSNHJFIK-UHFFFAOYSA-N Paeonol Chemical compound COC1=CC=C(C(C)=O)C(O)=C1 UILPJVPSNHJFIK-UHFFFAOYSA-N 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 8
- 229960000583 acetic acid Drugs 0.000 claims description 5
- 239000012362 glacial acetic acid Substances 0.000 claims description 5
- 108010039918 Polylysine Proteins 0.000 claims description 4
- 244000269722 Thea sinensis Species 0.000 claims description 4
- 239000010642 eucalyptus oil Substances 0.000 claims description 4
- 229940044949 eucalyptus oil Drugs 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 4
- YLTGFGDODHXMFB-UHFFFAOYSA-N isoacetovanillon Natural products COC1=CC=C(C(C)=O)C=C1O YLTGFGDODHXMFB-UHFFFAOYSA-N 0.000 claims description 4
- MLIBGOFSXXWRIY-UHFFFAOYSA-N paeonol Natural products COC1=CC=C(O)C(C(C)=O)=C1 MLIBGOFSXXWRIY-UHFFFAOYSA-N 0.000 claims description 4
- 229920000656 polylysine Polymers 0.000 claims description 4
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 4
- 235000013824 polyphenols Nutrition 0.000 claims description 4
- 239000000341 volatile oil Substances 0.000 claims description 4
- 235000014104 aloe vera supplement Nutrition 0.000 claims description 3
- 241000205585 Aquilegia canadensis Species 0.000 claims description 2
- 240000004784 Cymbopogon citratus Species 0.000 claims description 2
- 235000017897 Cymbopogon citratus Nutrition 0.000 claims description 2
- 235000011201 Ginkgo Nutrition 0.000 claims description 2
- 244000194101 Ginkgo biloba Species 0.000 claims description 2
- 235000008100 Ginkgo biloba Nutrition 0.000 claims description 2
- IPQKDIRUZHOIOM-UHFFFAOYSA-N Oroxin A Natural products OC1C(O)C(O)C(CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IPQKDIRUZHOIOM-UHFFFAOYSA-N 0.000 claims description 2
- 235000003283 Pachira macrocarpa Nutrition 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 241000220317 Rosa Species 0.000 claims description 2
- 240000001085 Trapa natans Species 0.000 claims description 2
- 235000014364 Trapa natans Nutrition 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- IKIIZLYTISPENI-ZFORQUDYSA-N baicalin Chemical compound O1[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IKIIZLYTISPENI-ZFORQUDYSA-N 0.000 claims description 2
- 229960003321 baicalin Drugs 0.000 claims description 2
- AQHDANHUMGXSJZ-UHFFFAOYSA-N baicalin Natural products OC1C(O)C(C(O)CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 AQHDANHUMGXSJZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 235000009165 saligot Nutrition 0.000 claims description 2
- 230000000845 anti-microbial effect Effects 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 4
- 239000012567 medical material Substances 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 2
- 238000010041 electrostatic spinning Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 239000000419 plant extract Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 239000003242 anti bacterial agent Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002121 nanofiber Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 235000011399 aloe vera Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 244000144927 Aloe barbadensis Species 0.000 description 3
- 235000002961 Aloe barbadensis Nutrition 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241001116389 Aloe Species 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 241000607528 Aeromonas hydrophila Species 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 208000028990 Skin injury Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000006916 nutrient agar Substances 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/32—Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/44—Medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/21—Acids
- A61L2300/214—Amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/216—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/22—Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/30—Compounds of undetermined constitution extracted from natural sources, e.g. Aloe Vera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dispersion Chemistry (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
技术领域Technical field
本发明属于医用材料技术领域,具体涉及一种具有可控取向的抗菌玉米醇溶蛋白敷料及其制备方法。The invention belongs to the technical field of medical materials, and specifically relates to an antibacterial zein dressing with controllable orientation and a preparation method thereof.
背景技术Background technique
玉米醇溶蛋白(zein)是一种天然高分子多聚物,是玉米最主要的储藏蛋白,易获得,经济环保。玉米醇溶蛋白有良好的生物相容性、生物可降解性等,是一种环境友好、绿色、安全的生物材料。Zein (zein) is a natural polymer and the main storage protein of corn. It is easy to obtain, economical and environmentally friendly. Zein has good biocompatibility, biodegradability, etc., and is an environmentally friendly, green, and safe biomaterial.
玉米醇溶蛋白分子中不仅存在着大量的疏水性氨基酸,还含有较多的含硫氨基酸,具有强的疏水性。在极性环境中,玉米醇溶蛋白分子中亲水基团暴露,疏水基团被包埋,能形成稳定的胶束结构。醇溶蛋白可在一定的溶剂中溶解,因此可制备溶液,制备成膜或者纤维状材料,进一步采用醛类进行交联后便可获得不溶性的交联玉米醇溶蛋白膜或者纤维。玉米醇溶蛋白易与其他化合物结合形成复合高聚物,可以根据不同需求构建具有不同特性的载体输送系统。因此玉米醇溶蛋白可以成为制备可控取向的液体传导纳米纤维的良好原料。Zein molecules not only contain a large number of hydrophobic amino acids, but also contain a large number of sulfur-containing amino acids, which are highly hydrophobic. In a polar environment, the hydrophilic groups in the zein molecules are exposed and the hydrophobic groups are buried, forming a stable micelle structure. Zein can be dissolved in a certain solvent, so a solution can be prepared to form a film or fibrous material. After further cross-linking with aldehydes, an insoluble cross-linked zein film or fiber can be obtained. Zein is easily combined with other compounds to form complex polymers, and carrier delivery systems with different characteristics can be constructed according to different needs. Therefore, zein can be a good raw material for preparing liquid-conducting nanofibers with controllable orientation.
植物提取液抗菌剂是植物为了适应环境继而进化生成,且某些植物提取液针对某一种病症或是某些细菌、病毒等具有一定的控制或者抑制、消除作用。例如:复方植物的提取液对于嗜水气单胞菌的抑制效果良好,且提取和分离的方法已知,操作起来简便易行。现如今,对于从植物中提取抗菌剂的研究越来越多,因此,在选择和使用的时候将拥有更大的操作空间。Plant extract antibacterial agents are evolved by plants in order to adapt to the environment, and some plant extracts have certain control, inhibition, and elimination effects on a certain disease or certain bacteria, viruses, etc. For example, the compound plant extract has a good inhibitory effect on Aeromonas hydrophila, and the extraction and separation methods are known and easy to operate. Nowadays, there are more and more studies on antibacterial agents extracted from plants, so there will be more room for operation when selecting and using them.
植物提取液抗菌剂不易产生耐药性,不会诱导细菌病毒等进化成更难以抵抗和消除,解决了当今困扰人们合成抗菌剂抗药性问题。此外,相对于人工合成抗菌剂,植物提取液抗菌剂更加自然环保,符合当今时代人们对于自然健康、环保可持续的追求。Plant extract antibacterial agents are less likely to develop drug resistance and will not induce bacteria and viruses to evolve into more difficult to resist and eliminate. This solves the problem of drug resistance to synthetic antibacterial agents that plagues people today. In addition, compared with synthetic antibacterial agents, plant extract antibacterial agents are more natural and environmentally friendly, in line with people's pursuit of natural health, environmental protection and sustainability in today's era.
静电纺丝技术(electrospinning technology)是一种制备一维纳米材料的新型技术。早在1934年,Formhals便申请了关于利用高压静电场来制备聚合物纤维的实验装置的专利。之后,由于生产效率低等问题导致该技术的发展一直较为缓慢。直到20世纪90年代,因纳米科学的兴起以及在美国阿克隆大学(Universityof Akron)的DarrellH.Reneker教授课题组,麻省理工(Massachusetts Institute ofTechnology)的GregoryC.Rutledge等课题组的推动下,静电纺丝技术才得到快速发展。静电纺丝制造设备结构简单,纺丝成本低,可制备连续有机、无机、有机/无机复合、空心或实心纳米纤维等,受到了研究者的广泛关注。近十几年来,研究者们通过改进针头结构开发出同轴静电纺丝技术用于制备中空纤维/纳米管,或通过改进接收装置,获得了一系列堆积方式不同的图案化纳米纤维结构,如:沿纤维轴向整齐排列的ANFs、轴向与径向垂直排列的纳米纤维等。高度取向和规则排列的纳米纤维由于具有特殊的力学、光学和电学性质,受到了研究者的极大关注。Electrospinning technology is a new technology for preparing one-dimensional nanomaterials. As early as 1934, Formhals applied for a patent for an experimental device that used high-voltage electrostatic fields to prepare polymer fibers. Since then, the development of this technology has been slow due to problems such as low production efficiency. Until the 1990s, due to the rise of nanoscience and the promotion of the research group of Professor Darrell H. Reneker of the University of Akron (University of Akron) and Gregory C. Rutledge of the Massachusetts Institute of Technology (Massachusetts Institute of Technology), electrospinning Silk technology has developed rapidly. Electrospinning manufacturing equipment has a simple structure and low spinning cost. It can prepare continuous organic, inorganic, organic/inorganic composite, hollow or solid nanofibers, etc., and has attracted widespread attention from researchers. In the past decade or so, researchers have developed coaxial electrospinning technology to prepare hollow fibers/nanotubes by improving the needle structure, or by improving the receiving device, they have obtained a series of patterned nanofiber structures with different stacking methods, such as : ANFs neatly arranged along the fiber axis, nanofibers arranged perpendicularly in the axial and radial directions, etc. Highly oriented and regularly arranged nanofibers have received great attention from researchers due to their special mechanical, optical and electrical properties.
静电纺丝可以实现模板赋形设计基本原理是利用电荷集中及承载体的尖端放电效应,其中模板结构设计,材质对特定形貌获得效果有直接的影响。通过改变接收模板的形状、材料性质和接收模板的运动状态,可以得到各种聚集形态的纳米纤维毡状材料。The basic principle of electrospinning to achieve template shaping design is to utilize charge concentration and the tip discharge effect of the carrier. The template structure design and material have a direct impact on the specific morphology obtained. By changing the shape, material properties and motion state of the receiving template, nanofiber mat-like materials in various aggregated forms can be obtained.
发明内容Contents of the invention
基于以上现有技术,本发明的首要目的在于提供一种具有可控取向的抗菌玉米醇溶蛋白敷料的制备方法。Based on the above existing technologies, the primary purpose of the present invention is to provide a method for preparing an antibacterial zein dressing with controllable orientation.
本发明的另一目的在于提供一种通过上述方法制备得到的具有可控取向的抗菌玉米醇溶蛋白敷料。Another object of the present invention is to provide an antibacterial zein dressing with controllable orientation prepared by the above method.
本发明目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种具有可控取向的抗菌玉米醇溶蛋白敷料的制备方法,包括如下制备步骤:A method for preparing an antibacterial zein dressing with controllable orientation, including the following preparation steps:
(1)将玉米醇溶蛋白溶于溶剂中,得到均匀的玉米醇溶蛋白溶液,然后加入抗菌活性成分,搅拌混合均匀后静置脱泡,得到含有抗菌成分的玉米醇溶蛋白溶液;(1) Dissolve zein in a solvent to obtain a uniform zein solution, then add antibacterial active ingredients, stir and mix evenly, and then let stand for defoaming to obtain a zein solution containing antibacterial ingredients;
(2)将含有抗菌成分的玉米醇溶蛋白溶液通过静电纺丝方法,分别以具有规则排列的几何图形的网格模板作为接收器制得纤维敷料层,以表面具有规则排列条纹凸起结构的滚筒接收器接收得到纤维导流层;将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层;(2) The zein solution containing antibacterial ingredients is electrospun, and a grid template with regularly arranged geometric figures is used as a receiver to prepare a fiber dressing layer, and a fiber dressing layer with a regularly arranged stripe convex structure on the surface is used The roller receiver receives the fiber guide layer; the fiber dressing layer and the fiber guide layer are superimposed and compounded to obtain the zein fiber membrane functional layer;
(3)将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚乙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。(3) Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polyethylene film. barrier layer to obtain an antibacterial zein dressing with controllable orientation.
优选地,步骤(1)中所述的溶剂是指质量浓度为40%~98%的乙醇或冰醋酸水溶液。Preferably, the solvent described in step (1) refers to ethanol or glacial acetic acid aqueous solution with a mass concentration of 40% to 98%.
优选地,步骤(1)中所述玉米醇溶蛋白溶液中玉米醇溶蛋白的质量浓度为5%~40%。Preferably, the mass concentration of zein in the zein solution described in step (1) is 5% to 40%.
优选地,所述抗菌活性成分包括但不局限于基于微生物或植物提取的抗菌活性成分;包括但不仅限于聚赖氨酸、丹皮酚、茶多酚、桉树油、玫瑰精油、芦荟提取物、金银花提取物、黄芩甙、银杏抗菌蛋白、柠檬草精油、荸荠皮提取物等天然抗菌提取物。Preferably, the antibacterial active ingredients include but are not limited to antibacterial active ingredients extracted from microorganisms or plants; including but not limited to polylysine, paeonol, tea polyphenols, eucalyptus oil, rose essential oil, aloe vera extract, Honeysuckle extract, baicalin, ginkgo antibacterial protein, lemongrass essential oil, water chestnut bark extract and other natural antibacterial extracts.
优选地,所述抗菌活性成分的加入量为玉米醇溶蛋白质量的0.01%~5%。Preferably, the amount of the antibacterial active ingredient added is 0.01% to 5% of the zein mass.
优选地,所述具有规则排列的几何图形的网格模板为六边形、矩形、菱形、正方形或圆形的网格模板,网格大小为0.1~3mm,密度为2~40个/cm2,厚度为0.1~2.0mm。Preferably, the grid template with regularly arranged geometric figures is a hexagonal, rectangular, rhombus, square or circular grid template, with a grid size of 0.1 to 3 mm and a density of 2 to 40 cells/cm 2 , thickness is 0.1~2.0mm.
优选地,所述表面具有规则排列条纹凸起结构的滚筒接收器为直径为8~50cm,长度为10~90cm的圆柱滚筒;滚筒表面条纹凸起结构的条纹宽度d为0.3~1cm,密度为1~5个/cm(即相邻条纹凸起结构的间隔为0.2~1cm)、突起高度h为0.2~1cm、凸起角度α为100~150°。其结构示意图如图1所示。Preferably, the roller receiver with regularly arranged striped convex structures on the surface is a cylindrical roller with a diameter of 8-50cm and a length of 10-90cm; the stripe width d of the striped convex structures on the surface of the drum is 0.3-1cm, and the density is 0.3-1cm. 1 to 5 pieces/cm (that is, the interval between adjacent striped convex structures is 0.2 to 1cm), the protrusion height h is 0.2 to 1cm, and the protrusion angle α is 100 to 150°. Its structural diagram is shown in Figure 1.
优选地,所述纤维敷料层接收器的材质包括塑料、陶瓷、金属或合金;所述滚筒接收器的材质包括金属或合金。Preferably, the material of the fiber dressing layer receiver includes plastic, ceramic, metal or alloy; the material of the roller receiver includes metal or alloy.
优选地,所述静电纺丝的方法包括针头静电纺丝、狭缝静电纺丝、无针头自由表面线电极静电纺丝、无针头自由表面辊电极静电纺丝、无针头自由表面梭电极静电纺丝、无针头自由表面螺旋线电极静电纺丝或离心静电纺丝等。Preferably, the electrospinning method includes needle electrospinning, slit electrospinning, needleless free surface line electrode electrospinning, needleless free surface roller electrode electrospinning, and needleless free surface shuttle electrode electrospinning. Silk, needleless free surface spiral electrode electrospinning or centrifugal electrospinning, etc.
优选地,所述玉米醇溶蛋白纤维膜功能层中纤维直径为50~2000nm。Preferably, the fiber diameter in the zein fiber membrane functional layer is 50 to 2000 nm.
一种具有可控取向的抗菌玉米醇溶蛋白敷料,通过上述方法制备得到。An antibacterial zein dressing with controllable orientation is prepared by the above method.
本发明原理为:采用表面具有规整排列的几何图形的网格模板作为接收器,图形的排列影响了静电场的空间排布,网格空洞部分电场会减弱,纤维沉积较少,从而使纤维膜的结构与模板的图形相似,布满大量的微孔结构,增加敷料的透气性;采用表面具有规则排列条纹凸起结构的滚筒接收器制备纤维导流层,旋转的滚筒拉扯纤维,使得纤维在圆周或者沿着多边形棱角方向上形成取向结构,滚筒上的突起结构使得玉米醇溶蛋白纤维膜得到互补结构的纤维凹槽,玉米醇溶蛋白纤维亲水性差,液体扩散到导流层后,沿着纤维取向的方向流动,汇集在纤维凹槽内,这使得样品具有一定的临时储液能力,同时汇集的液体在凹槽内流动向外扩散,防止液体重新回流到伤口中,保持伤口干爽。The principle of the invention is as follows: a grid template with regularly arranged geometric figures on the surface is used as a receiver. The arrangement of the figures affects the spatial arrangement of the electrostatic field. The electric field in the hollow parts of the grid will be weakened, resulting in less fiber deposition, thereby making the fiber membrane The structure is similar to the pattern of the template, and is covered with a large number of microporous structures to increase the breathability of the dressing; a roller receiver with a regularly arranged striped convex structure on the surface is used to prepare the fiber diversion layer, and the rotating roller pulls the fibers so that the fibers are Orientation structures are formed on the circumference or along the direction of the polygonal edges and corners. The protruding structure on the roller allows the zein fiber membrane to obtain fiber grooves with a complementary structure. The zein fiber has poor hydrophilicity. After the liquid diffuses into the flow guide layer, it flows along the direction of the guide layer. It flows in the direction of fiber orientation and collects in the fiber groove, which gives the sample a certain temporary liquid storage capacity. At the same time, the collected liquid flows outward and spreads in the groove, preventing the liquid from flowing back into the wound and keeping the wound dry.
本发明的制备方法及所得到的敷料具有如下优点及有益效果:The preparation method and the resulting dressing of the present invention have the following advantages and beneficial effects:
(1)本发明的具有可控取向的抗菌玉米醇溶蛋白敷料加入天然抗菌活性成分,其抗菌效果好且无毒副作用,对革兰氏阳性菌和革兰氏阴性菌的抑菌率达到99%以上。(1) The antibacterial zein dressing with controllable orientation of the present invention is added with natural antibacterial active ingredients. It has good antibacterial effect and no toxic side effects. The antibacterial rate against Gram-positive bacteria and Gram-negative bacteria reaches 99 %above.
(2)本发明的具有可控取向的抗菌玉米醇溶蛋白敷料采用具有良好生物相容性、生物可降解性的玉米醇溶蛋白为主体材料,对环境友好且经济环保。(2) The antibacterial zein dressing with controllable orientation of the present invention uses zein with good biocompatibility and biodegradability as the main material, and is environmentally friendly, economical and environmentally friendly.
(3)本发明采用静电纺丝或离心纺丝技术得到复合膜,所得复合膜具有高孔隙率和大比表面积,且其纤维结构与细胞外基质具有很好的相似性,可用于皮肤损伤或者手术后的皮肤恢复与再生用的敷料。(3) The present invention uses electrospinning or centrifugal spinning technology to obtain a composite membrane. The obtained composite membrane has high porosity and large specific surface area, and its fiber structure has good similarity with the extracellular matrix. It can be used for skin injuries or Dressing for skin recovery and regeneration after surgery.
(4)本发明的制备方法得到的纤维敷料层中微孔结构对空气和水蒸气具有良好的渗透性或透气性,但对液态水的渗透具有较高的耐静水压性,即该种透气结构包含许多能从一个表面到另一个表面的开口或通道,其孔的大小能使空气和水蒸气分子通过薄膜,而对液态水分子具有良好的阻力;而且由于一种或多种抗菌剂的加入使得具有良好的抑菌活性,抗菌剂在一定条件下可以被释放出来,可以用作敷料材料。(4) The microporous structure in the fiber dressing layer obtained by the preparation method of the present invention has good permeability or air permeability to air and water vapor, but has high hydrostatic pressure resistance to the penetration of liquid water, that is, this kind of The breathable structure contains many openings or channels that can pass from one surface to another. The pores are sized to allow air and water vapor molecules to pass through the film while providing good resistance to liquid water molecules; and due to one or more antimicrobial agents The addition of it makes it have good antibacterial activity. The antibacterial agent can be released under certain conditions and can be used as a dressing material.
(5)本发明的敷料从纤维敷料层到水刺布支撑层,敷料的吸湿性能逐渐增强,形成良好的导湿梯度。在差动毛细效应的作用下,实现定向导水。具有良好取向的导流层敷料能够在渗透和扩散之间达到一个稳定的平衡。当伤口渗出液或伤口脓物穿过纤维膜功能层到达导流层时,由于导流层具有一定厚度的蓬松结构及较大的纵向纤维分布,因而渗出液或脓物能快速被捕获并沿着纵向扩散,这样使得液体缓慢而有效地进入导流层,并且暂时将液体保存,避免了液体没有被及时吸收而造成的回渗,保持伤口干爽。(5) In the dressing of the present invention, from the fiber dressing layer to the spunlaced fabric support layer, the hygroscopic performance of the dressing gradually increases, forming a good moisture conductivity gradient. Under the action of differential capillary effect, directional water conduction is achieved. A well-oriented drainage layer dressing can achieve a stable balance between penetration and diffusion. When wound exudate or wound pus passes through the fibrous membrane functional layer and reaches the drainage layer, the exudate or pus can be quickly captured because the drainage layer has a fluffy structure with a certain thickness and large longitudinal fiber distribution. And spread along the longitudinal direction, so that the liquid enters the diversion layer slowly and effectively, and temporarily saves the liquid, avoiding back seepage caused by the liquid not being absorbed in time, and keeping the wound dry.
附图说明Description of the drawings
图1为本发明滚筒表面条纹凸起结构的结构示意图;Figure 1 is a schematic structural diagram of the stripe convex structure on the surface of the drum according to the present invention;
图2为本发明实施例所得敷料的层叠结构示意图;Figure 2 is a schematic diagram of the stacked structure of the dressing obtained according to the embodiment of the present invention;
图3为本发明实施例1所得敷料中纤维敷料层与纤维导流层的结构示意图;Figure 3 is a schematic structural diagram of the fiber dressing layer and fiber diversion layer in the dressing obtained in Example 1 of the present invention;
图4为本发明实施例2所得敷料中纤维敷料层与纤维导流层的结构示意图;Figure 4 is a schematic structural diagram of the fiber dressing layer and the fiber diversion layer in the dressing obtained in Example 2 of the present invention;
图5为本发明实施例3所得敷料中纤维敷料层与纤维导流层的结构示意图;Figure 5 is a schematic structural diagram of the fiber dressing layer and the fiber diversion layer in the dressing obtained in Example 3 of the present invention;
图中编号说明如下:1-聚丙烯薄膜阻隔层,2-水刺布支撑层,3-纤维导流层,4-纤维敷料层。The numbers in the figure are explained as follows: 1-polypropylene film barrier layer, 2-spunlace cloth support layer, 3-fiber diversion layer, 4-fiber dressing layer.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto.
实施例1Example 1
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为40%的乙醇溶液作为溶剂,常温搅拌30min,得到质量浓度为5%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的芦荟抗菌提取物加入玉米醇溶蛋白溶液中,常温搅拌1h,得到芦荟提取物质量百分含量为0.1%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用自由表面线电极静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在65kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液在线电极的转速为10r/min条件下进行电纺,并在距针头约10cm处接收,选用直径为50cm、长度为90cm、转速为1200r/min的,表面具有宽度为1cm、密度为5个/cm、高度为1cm、凸起角度为120°的直线金属凸起滚筒接收器接收可得纤维导流层;选用表面具有大小为0.5mm、密度为40个/cm2、厚度为0.1mm圆形网格模板接收器接收可得纤维敷料层,所得纤维敷料层与纤维导流层的结构示意图如图3所示。将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为900~1200nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, select an ethanol solution with a mass concentration of 40% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 5%; after the zein solution is cooled to room temperature , then weigh a certain amount of aloe vera antibacterial extract and add it to the zein solution, stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with an aloe vera extract mass percentage content of 0.1%, and let it stand for defoaming. 1h. The prepared mixed solution was prepared by using free surface line electrode electrospinning method to prepare the zein-plant extract fiber conductive layer and fiber dressing layer. Under the voltage of 65kV, the zein-plant antibacterial extract solution was electrospun at the speed of the online electrode of 10r/min, and was received at a distance of about 10cm from the needle. The diameter was 50cm, the length was 90cm, and the speed was 1200r/min, with a linear metal convex roller receiver with a surface width of 1cm, a density of 5/cm, a height of 1cm, and a convex angle of 120° to receive the available fiber diversion layer; select a surface with a size of 0.5 mm, with a density of 40 pieces/cm 2 and a thickness of 0.1mm. The circular grid template receiver receives the obtained fiber dressing layer. The structural diagram of the obtained fiber dressing layer and fiber diversion layer is shown in Figure 3. The fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain a zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is 900-1200 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料的抗菌率测试:Antibacterial rate test of the antibacterial zein dressing obtained in this example:
取(10±0.1)ml琼脂于每个无菌培养皿,让琼脂固化。取需量琼脂,水浴加热至(45±1)℃。将菌液浓度为(1-5×108cfu/ml)的细菌接种在150ml琼脂上,用力振荡容器使细菌均匀分散。倒(5±0.1)ml在培养皿上,让琼脂凝固。试验时采用接种时间一小时内的营养琼脂培养皿。按照EN ISO 20645:2004方法操作。用灭菌镊子在培养物中间按压铺平一定面积的抗菌玉米醇溶蛋白敷料,使纤维敷料层和菌有良好接触,在(37±1)℃下培养18h到24h后活菌计数。按照EN ISO 20645:2004方法测定活菌数,得到本实施例抗菌玉米醇溶蛋白敷料的抗菌率为99.67%。Take (10±0.1)ml agar in each sterile petri dish and let the agar solidify. Take the required amount of agar and heat it to (45±1)℃ in a water bath. Inoculate bacteria with a bacterial concentration of (1-5×10 8 cfu/ml) on 150 ml agar, and shake the container vigorously to disperse the bacteria evenly. Pour (5±0.1)ml onto the Petri dish and let the agar solidify. Nutrient agar petri dishes within one hour of inoculation were used in the experiment. Follow the EN ISO 20645:2004 method. Use sterilized forceps to press and spread a certain area of antibacterial zein dressing in the middle of the culture so that the fiber dressing layer has good contact with the bacteria. After culturing for 18h to 24h at (37±1)°C, the viable bacteria are counted. The number of viable bacteria was measured according to the EN ISO 20645:2004 method, and the antibacterial rate of the antibacterial zein dressing in this example was 99.67%.
实施例2Example 2
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为65%的乙醇溶液作为溶剂,常温搅拌30min,得到质量浓度为18%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的丹皮酚加入玉米醇溶蛋白溶液中,常温搅拌1h,得到丹皮酚质量百分含量为0.4%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用针头静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在9kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以0.4ml/h/孔的流速进行电纺,并在距针头约10cm处接收,选用直径为9cm、长度为60cm、转速为1300r/min的,表面具有宽度为0.5cm、密度为5个/cm、高度为0.2cm、凸起角度为120°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为1mm、密度为30个/cm2、厚度为0.5mm正方形网格模板接收器接收可得纤维敷料层,所得纤维敷料层与纤维导流层的结构示意图如图4所示。将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径约为800~1500nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, select an ethanol solution with a mass concentration of 65% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 18%; after the zein solution is cooled to room temperature , then weigh a certain amount of paeonol and add it to the zein solution, stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with a mass percentage of paeonol of 0.4%, and leave it to defoam for 1 hour. . The prepared mixed solution was prepared by needle electrospinning method to prepare the zein-plant extract fiber diversion layer and fiber dressing layer. At a voltage of 9kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 0.4ml/h/hole and received at a distance of about 10cm from the needle. The diameter was 9cm, the length was 60cm, and the rotation speed was 1300r. /min, the surface of the roller receiver has linear metal protrusions with a width of 0.5cm, a density of 5/cm, a height of 0.2cm, and a protrusion angle of 120° to receive the available fiber diversion layer; select a surface with a size The fiber dressing layer can be received by the square grid template receiver with a density of 1mm, a density of 30 pieces/cm 2 and a thickness of 0.5mm. The structural diagram of the obtained fiber dressing layer and fiber diversion layer is shown in Figure 4. The fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain a zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is about 800-1500 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.95%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.95%.
实施例3Example 3
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为90%的冰醋酸溶液作为溶剂,常温搅拌30min,得到质量浓度为19%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的桉树油加入玉米醇溶蛋白溶液中,常温搅拌1h,得到桉树油质量百分含量为0.01%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用无针头自由表面辊电极静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在70kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以0.4ml/h的流速进行电纺,并在距针头约10cm处接收,选用直径为40cm、长度为10cm、转速为1500r/min的,表面具有宽度为0.3cm、密度为1个/cm、高度为0.5cm、凸起角度为150°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为0.5mm、密度为30个/cm2、厚度为10mm正六边形网格模板接收器接收可得纤维敷料层,所得纤维敷料层与纤维导流层的结构示意图如图5所示。将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为1200~2000nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, use glacial acetic acid solution with a mass concentration of 90% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 19%; wait until the zein solution is cooled to room temperature. Then, weigh a certain amount of eucalyptus oil and add it to the zein solution, and stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with a mass percentage of eucalyptus oil of 0.01%. Leave to defoam for 1 hour. The prepared mixed solution was prepared by using needle-free free surface roller electrode electrospinning method to prepare the zein-plant extract fiber diversion layer and fiber dressing layer. At a voltage of 70kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 0.4ml/h and received at a distance of about 10cm from the needle. The diameter was 40cm, the length was 10cm, and the rotation speed was 1500r/min. The roller receiver with a linear metal protrusion with a width of 0.3cm, a density of 1/cm, a height of 0.5cm, and a protrusion angle of 150° is used to receive the available fiber diversion layer; select a surface with a size of 0.5 mm, with a density of 30 pieces/cm 2 and a thickness of 10 mm. The regular hexagonal grid template receiver receives the available fiber dressing layer. The structural diagram of the obtained fiber dressing layer and fiber diversion layer is shown in Figure 5. The fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain a zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is 1200-2000 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.69%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.69%.
实施例4Example 4
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为98%的冰醋酸溶液作为溶剂,常温搅拌30min,得到质量浓度为20%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的茶多酚加入玉米醇溶蛋白溶液中,常温搅拌1h,得到茶多酚质量百分含量为5%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用无针头自由表面螺旋电极静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在60kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以1.2ml/h的流速进行电纺,并在距针头约10cm处接收,选用直径为13cm、长度为60cm、转速为1600r/min的,表面具有宽度为1cm、密度为2个/cm、高度为1cm、凸起角度为100°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为1mm、密度为40个/cm2、厚度为5mm圆形网格模板接收器接收可得纤维敷料层,将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为700~1300nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, use glacial acetic acid solution with a mass concentration of 98% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 20%; wait until the zein solution is cooled to room temperature. Then, weigh a certain amount of tea polyphenols and add it to the zein solution, stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with a tea polyphenols mass percentage content of 5%, and let it stand for defoaming. 1h. The prepared mixed solution was prepared by using needle-free free surface spiral electrode electrospinning method to prepare the zein-plant extract fiber diversion layer and fiber dressing layer. At a voltage of 60kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 1.2ml/h and received at a distance of about 10cm from the needle. The diameter was 13cm, the length was 60cm, and the rotation speed was 1600r/min. The roller receiver has a linear metal protrusion with a width of 1cm, a density of 2/cm, a height of 1cm, and a protrusion angle of 100° to receive the available fiber diversion layer; select a surface with a size of 1mm and a density of 100° A circular grid template receiver with a density of 40 pieces/cm 2 and a thickness of 5 mm receives the fiber dressing layer, and the fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain a zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is 700-1300 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.99%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.99%.
实施例5Example 5
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为98%的乙醇溶液作为溶剂,常温搅拌30min,得到质量浓度为40%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的聚赖氨酸加入玉米醇溶蛋白溶液中,常温搅拌1h,得到聚赖氨酸质量百分含量为3%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用离心静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在35kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以2.5ml/h的流速进行电纺,离心静电纺丝离心盘旋转速度为300r/min,并在距针头约10cm处接收,选用直径为8cm、长度为50cm、转速为1500r/min的,表面具有宽度为0.8cm、密度为1个/cm、高度为1cm、凸起角度为110°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为3mm、密度为2个/cm2、厚度为20mm圆形网格模板接收器接收可得纤维敷料层,将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为1000~1500nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, select an ethanol solution with a mass concentration of 98% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 40%; after the zein solution is cooled to room temperature , then weigh a certain amount of polylysine and add it to the zein solution, stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with a mass percentage of polylysine of 3%, and leave it to remove. Soak for 1 hour. The prepared mixed solution was prepared by centrifugal electrospinning method to prepare the zein-plant extract fiber diversion layer and fiber dressing layer. At a voltage of 35kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 2.5ml/h. The centrifugal electrospinning centrifuge disk rotated at a speed of 300r/min and was received at a distance of about 10cm from the needle. Select A roller receiver with a diameter of 8cm, a length of 50cm, a rotating speed of 1500r/min, and a linear metal protrusion with a width of 0.8cm, a density of 1/cm, a height of 1cm and a protrusion angle of 110° on the surface can receive Obtain the fiber diversion layer; select a circular grid template receiver with a surface size of 3mm, a density of 2/cm 2 and a thickness of 20mm to receive the fiber dressing layer, and superimpose the fiber dressing layer and the fiber diversion layer. A functional layer of zein fiber membrane was obtained. The fiber diameter in the functional layer of the obtained zein fiber membrane is 1000-1500 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.98%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.98%.
实施例6Example 6
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为90%的冰醋酸溶液作为溶剂,常温搅拌30min,得到质量浓度为25%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的芦荟抗菌提取物加入玉米醇溶蛋白溶液中,常温搅拌1h,得到芦荟抗菌提取物质量百分含量为2%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用无针头自由表面梭电极静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在10kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以3.0ml/h的流速进行电纺,并在距针头约10cm处接收,选用直径为12cm、直径为80cm、转速为1400r/min的,表面具有宽度为0.3cm、密度为2个/cm、高度为0.4cm、凸起角度为125°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为2mm、密度为20个/cm2、厚度为8mm菱形网格模板接收器接收可得纤维敷料层,将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为1000~1200nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, use glacial acetic acid solution with a mass concentration of 90% as the solvent, and stir for 30 minutes at room temperature to obtain a uniform zein solution with a mass concentration of 25%; wait until the zein solution is cooled to room temperature. Then, weigh a certain amount of aloe antibacterial extract and add it to the zein solution, stir for 1 hour at room temperature to obtain a zein-plant antibacterial extract solution with a mass percentage of aloe antibacterial extract of 2%, and let it stand. Defoaming for 1 hour. The prepared mixed solution was prepared using needle-free free surface shuttle electrode electrospinning method to prepare the zein-plant extract fiber conductive layer and fiber dressing layer. At a voltage of 10kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 3.0ml/h and received at a distance of about 10cm from the needle. The diameter was 12cm, the diameter was 80cm, and the rotation speed was 1400r/min. The roller receiver with a surface of linear metal protrusions with a width of 0.3cm, a density of 2/cm, a height of 0.4cm, and a protrusion angle of 125° receives the available fiber diversion layer; select a surface with a size of 2mm , with a density of 20 pieces/cm 2 and a thickness of 8mm, the rhombus grid template receiver receives the fiber dressing layer, and the fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain the zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is 1000-1200 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.93%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.93%.
实施例7Example 7
取分析纯玉米醇溶蛋白粉末颗粒,选用质量浓度为95%的乙醇溶液作为溶剂,常温搅拌30min,得到质量浓度为25%均匀的玉米醇溶蛋白溶液;待玉米醇溶蛋白溶液冷却到室温后,再称取一定量的芦荟和按树油(质量比1:2)复合抗菌提取物加入玉米醇溶蛋白溶液中,常温搅拌1h,得到复合抗菌提取物质量百分含量为1.0%的玉米醇溶蛋白-植物抗菌提取物溶液,静置脱泡1h。将配好的混合溶液采用针头静电纺丝方法制备玉米醇溶蛋白-植物提取物纤维导流层以及纤维敷料层。在13kV的电压下,玉米醇溶蛋白-植物抗菌提取物溶液以0.4ml/h/孔的流速进行电纺,并在距针头约10cm处接收,选用直径为20cm、长度为60cm、转速为1800r/min的,表面具有宽度为1cm、密度为1个/cm、高度为0.5cm、凸起角度为135°的直线金属凸起的滚筒接收器接收可得纤维导流层;选用表面具有大小为1mm、密度为30个/cm2、厚度为0.5mm正方形网格模板接收器接收可得纤维敷料层,将纤维敷料层与纤维导流层叠加复合,得到玉米醇溶蛋白纤维膜功能层。所得玉米醇溶蛋白纤维膜功能层中纤维直径为50~1000nm。将玉米醇溶蛋白纤维膜功能层与水刺布支撑层和聚丙烯薄膜阻隔层复合,由上至下依次为纤维敷料层、纤维导流层、水刺布支撑层和聚丙烯薄膜阻隔层,得到具有可控取向的抗菌玉米醇溶蛋白敷料。所得敷料的层叠结构示意图如图2所示。Take analytically pure zein powder particles, select an ethanol solution with a mass concentration of 95% as the solvent, and stir at room temperature for 30 minutes to obtain a uniform zein solution with a mass concentration of 25%; after the zein solution is cooled to room temperature , then weigh a certain amount of aloe vera and aloe vera (mass ratio 1:2) composite antibacterial extract and add it to the zein solution, stir at room temperature for 1 hour, and obtain zein alcohol with a mass percentage of 1.0% of the composite antibacterial extract. Dissolve the protein-plant antibacterial extract solution and let it stand for 1 hour to defoam. The prepared mixed solution was prepared by needle electrospinning method to prepare the zein-plant extract fiber diversion layer and fiber dressing layer. At a voltage of 13kV, the zein-plant antibacterial extract solution was electrospun at a flow rate of 0.4ml/h/hole and received at a distance of about 10cm from the needle. The diameter was 20cm, the length was 60cm, and the rotation speed was 1800r. /min, a roller receiver with a linear metal protrusion with a width of 1cm, a density of 1/cm, a height of 0.5cm, and a protrusion angle of 135° is used to receive the available fiber diversion layer; select a surface with a size of 1mm, with a density of 30 pieces/cm 2 and a thickness of 0.5mm. The square grid template receiver receives the fiber dressing layer, and the fiber dressing layer and the fiber diversion layer are superimposed and compounded to obtain the zein fiber membrane functional layer. The fiber diameter in the functional layer of the obtained zein fiber membrane is 50-1000 nm. Composite the zein fiber membrane functional layer with the spunlace cloth support layer and the polypropylene film barrier layer. From top to bottom, they are the fiber dressing layer, the fiber diversion layer, the spunlace cloth support layer and the polypropylene film barrier layer. Antibacterial zein dressings with controlled orientation were obtained. The schematic diagram of the laminate structure of the obtained dressing is shown in Figure 2.
本实施例所得抗菌玉米醇溶蛋白敷料经测试抗菌率为99.99%。The antibacterial zein dressing obtained in this example was tested to have an antibacterial rate of 99.99%.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710546579.5A CN107158447B (en) | 2017-07-06 | 2017-07-06 | Antibacterial zein dressing with controllable orientation and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710546579.5A CN107158447B (en) | 2017-07-06 | 2017-07-06 | Antibacterial zein dressing with controllable orientation and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107158447A CN107158447A (en) | 2017-09-15 |
| CN107158447B true CN107158447B (en) | 2023-11-17 |
Family
ID=59823077
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710546579.5A Active CN107158447B (en) | 2017-07-06 | 2017-07-06 | Antibacterial zein dressing with controllable orientation and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107158447B (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111068124B (en) * | 2018-10-19 | 2021-04-13 | 中山大学 | Polypropylene/tea polyphenol patch for intraperitoneal repair and preparation method and application thereof |
| CN110101897A (en) * | 2019-04-19 | 2019-08-09 | 青岛大学 | A kind of method that burn and scald skin is nursed in situ |
| CN110025817A (en) * | 2019-04-19 | 2019-07-19 | 青岛大学 | A kind of preparation and application of zein/plants essential oil composite antibacterial fibre dressing |
| CN110124094A (en) * | 2019-04-19 | 2019-08-16 | 青岛大学 | A kind of Chinese herbal medicine based micro-nano fibre antibacterial dressing be prepared in situ and application method |
| CN110306290A (en) * | 2019-07-29 | 2019-10-08 | 广东工业大学 | A preparation method of edible antibacterial and antioxidant loaded nanofiber membrane |
| CN111850837A (en) * | 2020-07-24 | 2020-10-30 | 吉林农业大学 | Zein-based uniaxial electrospinning oriented fiber membrane and preparation method thereof |
| CN112376124A (en) * | 2020-11-20 | 2021-02-19 | 上海市第六人民医院 | Antibacterial dressing |
| CN112647193B (en) * | 2020-12-31 | 2022-11-04 | 上海市第六人民医院 | A preparation method of cross-linked calcium peroxide-carbon quantum dots@zein antibacterial film by electron beam irradiation |
| CN112587710A (en) * | 2021-02-05 | 2021-04-02 | 甘肃省分析测试中心 | Preparation process and application of peach kernel extract core-shell nano-structure film |
| CN113417074A (en) * | 2021-05-24 | 2021-09-21 | 江苏省农业科学院 | Preparation method of antibacterial nanofiber membrane |
| CN114752091A (en) * | 2022-03-25 | 2022-07-15 | 中国科学院兰州化学物理研究所 | Preparation method of zein/honeysuckle extract composite antibacterial preservative film |
| CN115531595B (en) * | 2022-09-28 | 2023-08-15 | 长春工业大学 | Antibacterial healing-promoting electrostatic spinning wound dressing and preparation method thereof |
| CN117822209A (en) * | 2023-12-20 | 2024-04-05 | 陕西科技大学 | A fresh-keeping film containing zein and natamycin and a preparation method thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101002707A (en) * | 2006-01-19 | 2007-07-25 | 周长忠 | Absorbent dressings for slow release solutions |
| KR20100024122A (en) * | 2008-08-25 | 2010-03-05 | 코오롱패션머티리얼 (주) | Wound dressing using nano fiber and manufacturing method |
| CN103768650A (en) * | 2014-01-26 | 2014-05-07 | 深圳市博立生物材料有限公司 | Wound regenerating and repairing bandage and manufacture method thereof |
| CN105561371A (en) * | 2016-02-03 | 2016-05-11 | 华南理工大学 | Grid-structure dressing capable of being broken up by water to be abandoned and preparation process thereof |
| CN105963762A (en) * | 2015-11-19 | 2016-09-28 | 华南理工大学 | Wide-spectrum nontoxic dressing supportive water dispersing and abandoning and preparation method thereof |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009015226A1 (en) * | 2009-04-01 | 2010-10-14 | Kim, Gyeong-Man, Dr. | Template-based patterning process of nanofibers in the electrospinning process and its applications |
-
2017
- 2017-07-06 CN CN201710546579.5A patent/CN107158447B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101002707A (en) * | 2006-01-19 | 2007-07-25 | 周长忠 | Absorbent dressings for slow release solutions |
| KR20100024122A (en) * | 2008-08-25 | 2010-03-05 | 코오롱패션머티리얼 (주) | Wound dressing using nano fiber and manufacturing method |
| CN103768650A (en) * | 2014-01-26 | 2014-05-07 | 深圳市博立生物材料有限公司 | Wound regenerating and repairing bandage and manufacture method thereof |
| CN105963762A (en) * | 2015-11-19 | 2016-09-28 | 华南理工大学 | Wide-spectrum nontoxic dressing supportive water dispersing and abandoning and preparation method thereof |
| CN105561371A (en) * | 2016-02-03 | 2016-05-11 | 华南理工大学 | Grid-structure dressing capable of being broken up by water to be abandoned and preparation process thereof |
Non-Patent Citations (1)
| Title |
|---|
| 静电纺丝制备生物医用敷料研究进展;江创生等;《合成纤维工业》;20120615(第03期);第42-46页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107158447A (en) | 2017-09-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107158447B (en) | Antibacterial zein dressing with controllable orientation and preparation method thereof | |
| Ma et al. | Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications | |
| CN102068339B (en) | Preparation method of biodegradable nanofiber medical dressing loaded with medicine | |
| Gu et al. | Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing | |
| CN103893815B (en) | A kind of scalds and burns dressing utilizing coaxial electrostatic spinning legal system standby and preparation method thereof | |
| CN107137753A (en) | A kind of preparation method of graphene/carbon nanofiber bio-medical external application non-woven fabrics | |
| CN102266582A (en) | Preparation method for drug-loaded nanometer fiber medical dressing | |
| CN104491914A (en) | Porous complex gel-nanofiber oxygen permeation dressing and preparation method thereof | |
| US12252813B2 (en) | Radially cross-aligned nanofiber membrane | |
| CN108283727A (en) | A kind of nanofiber dressing and preparation method thereof | |
| CN101805940A (en) | Polymer electrospun fibers, preparation method thereof and application thereof | |
| CN107753996A (en) | A kind of moisture absorption antibacterial 3D nano-fiber medical dressings and preparation method thereof | |
| CN101775704B (en) | Method for preparing pure hyaluronic acid nanofiber non-woven fabric | |
| CN106012297B (en) | A kind of preparation method of medical composite fibre three-dimensional structure dressing | |
| CN103205863A (en) | Method for manufacturing bacterial cellulose slow-release dressing | |
| CN101831717B (en) | Electrospinning device | |
| CN105561371A (en) | Grid-structure dressing capable of being broken up by water to be abandoned and preparation process thereof | |
| CN115337441A (en) | Preparation method of medlar extract and nano zinc oxide nanofiber membrane | |
| CN105696196A (en) | Method for preparing dandelion phenol activity antibacterial agent and chitosan composite nanofiber felt | |
| CN112251912B (en) | Caper drug-loaded nanofiber membrane and preparation method and application thereof | |
| Dias et al. | Electrospinning Fabrication Strategies: From Conventional to Advanced Approaches | |
| CN105696195A (en) | Preparation method of carnosol and chitosan composite nanometer fiber mat | |
| CN205460046U (en) | But dressing that water -washed is loose and is abandoned with grid structure | |
| Haizhen et al. | Research progress of cellulose electrospinning and its derived nanofibers in biomedicine applications | |
| CN105696194A (en) | Preparation method of carnosol and chitosan self-assembly core sheath composite nanometer fiber mat |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |