+

CN107148013A - A source location privacy protection method based on multi-phantom node strategy - Google Patents

A source location privacy protection method based on multi-phantom node strategy Download PDF

Info

Publication number
CN107148013A
CN107148013A CN201710270299.6A CN201710270299A CN107148013A CN 107148013 A CN107148013 A CN 107148013A CN 201710270299 A CN201710270299 A CN 201710270299A CN 107148013 A CN107148013 A CN 107148013A
Authority
CN
China
Prior art keywords
node
phantom
mrow
msub
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710270299.6A
Other languages
Chinese (zh)
Other versions
CN107148013B (en
Inventor
薛善良
朱世照
蒋丽
韦春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710270299.6A priority Critical patent/CN107148013B/en
Publication of CN107148013A publication Critical patent/CN107148013A/en
Application granted granted Critical
Publication of CN107148013B publication Critical patent/CN107148013B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A kind of source position method for secret protection based on many phantom facility strategies, it includes, and netinit, node ternary set constructor, phantom node are alternately chosen, source node phantom node is based on sector region division forwarding and phantom Node base station avoids visible area forwarding.The present invention is that source node produces two phantom nodes simultaneously using many phantom node thoughts, and constitutes node triple, and cause any two node in triple can as the 3rd node alternative phantom node;In addition source data packet forwarding is carried out in route working stage combination sector region division methods and visible area avoidance strategy, not only can be effectively increased source node security by avoiding source node visible area, while extending to route energy consumption during preferable controlling transmission.

Description

一种多幻影节点策略的源位置隐私保护方法A source location privacy protection method based on multi-phantom node strategy

技术领域technical field

本发明涉及一种网络技术,尤其是一种网络与通信技术,具体地说是一种多幻影节点策略的源位置隐私保护方法。The invention relates to a network technology, in particular to a network and communication technology, in particular to a source location privacy protection method of a multi-phantom node strategy.

背景技术Background technique

无线传感器网络(Wireless Sensor Network,WSN)由于具有通过大面积部署的传感器节点实时、精确地采集目标监测环境相关数据的特点,目前已广泛应用于智能家居、军事国防、交通管理、环境监测、医疗卫生、紧急救援、工业制造等领域。由于无线传感器网络节点常常部署在较为偏远而无人看守的环境中,并且无线多跳通信方式容易受到攻击者的攻击,因此网络安全一直是一个不容忽视的问题。因此,已有大量研究关注无线传感器网络的安全研究。Wireless Sensor Network (WSN) has been widely used in smart home, military defense, traffic management, environmental monitoring, medical Health, emergency rescue, industrial manufacturing and other fields. Because wireless sensor network nodes are often deployed in relatively remote and unattended environments, and wireless multi-hop communication methods are vulnerable to attackers, network security has always been a problem that cannot be ignored. Therefore, a lot of research has focused on the security research of wireless sensor networks.

目前,无线传感器网络的安全研究方向众多,主要可分为数据加密方法、身份认证、密钥管理、攻击检测与抵御、安全路由协议和隐私问题等诸多研究方向。其中,无线传感器网络的隐私又包括位置隐私、时间隐私和数据隐私。其中,节点位置隐私,包括源节点位置隐私和基站节点位置隐私两大类,是当前无线传感器网络隐私的重要关注对象之一。例如,部署在野生动物监测环境中的传感器网络中,监测对象(即环境中可能出现的野生动物)的位置信息极其重要,一旦泄露给威胁对象(如捕猎者),监测对象的安全将会存在巨大威胁。因此,研究无线传感器网络的源位置隐私保护技术对于传感器网络的大规模部署和应用具有重要意义。At present, there are many security research directions in wireless sensor networks, which can be mainly divided into data encryption methods, identity authentication, key management, attack detection and defense, security routing protocols, and privacy issues. Among them, the privacy of wireless sensor networks includes location privacy, time privacy and data privacy. Among them, node location privacy, including source node location privacy and base station node location privacy, is one of the important concerns of wireless sensor network privacy. For example, in a sensor network deployed in a wildlife monitoring environment, the location information of the monitoring object (that is, the wild animals that may appear in the environment) is extremely important. Once it is leaked to a threat object (such as a predator), the safety of the monitoring object will exist. Great threat. Therefore, it is of great significance to study the source location privacy protection technology of wireless sensor networks for the large-scale deployment and application of sensor networks.

Ozturk等人首先提出了“熊猫-猎人”模型,该模型成为研究源节点位置隐私保护问题的基本模型。在此模型中,无线传感器网络节点部署在熊猫生活的环境中用于监测熊猫的生活习性。监测数据通过监测到目标的节点通过节点间逐跳转发数据包的方式发送至网络中的基站。针对此模型,设计源位置隐私保护协议的目标是,改变原有最短路径路由转发数据包方式,增加网络中存在的攻击者(即猎人)追踪到源节点位置的时间,即源节点安全时间。此外,考虑到网络性能的因素,相关隐私保护协议也应当考虑保证隐私保护强度的同时,优化数据包传输时延以及网络能耗,提高协议的性能。Ozturk et al. first proposed the "Panda-Hunter" model, which became the basic model for studying the privacy protection of source node locations. In this model, wireless sensor network nodes are deployed in the environment where pandas live to monitor the living habits of pandas. The monitoring data is sent to the base station in the network by forwarding data packets hop by hop between nodes through the node that has detected the target. According to this model, the goal of designing the source location privacy protection protocol is to change the original shortest path routing and forwarding data packets, and increase the time for attackers (ie hunters) in the network to track the location of the source node, that is, the security time of the source node. In addition, considering the factors of network performance, relevant privacy protection protocols should also consider ensuring the strength of privacy protection while optimizing data packet transmission delay and network energy consumption to improve the performance of the protocol.

当前已有的研究工作将存在于WSN中的攻击者分为两大类:攻击能力较为局限的局部流量攻击者和具有较强攻击能力的全局流量攻击者。针对较为普遍的局部流量攻击者,Ozturk等人首次提出幻影路由策略思想,并分别提出幻影路由协议PR(Phantomrouting)以及幻影单路径路由协议PSPR(Phantom Single-path routing)。两种路由策略的方法均是通过源节点的源数据包随机游走指定跳数(如自定义的h跳)的方式产生一个虚假的源节点,称为幻影源节点。然后幻影节点将源数据包发送至基站完成源节点监听事件数据的传送。Wang等人首次提出源节点可视区的概念,可视区的定义为:源节点位于攻击者一定监听范围内即源节点位置暴露,而以源节点为中心并指定半径为R的圆的范围即称作“可视区”。基于此定义,又将幻影单路径阶段经过可视区范围的路由路径称为失效路径,针对这种具有可视能力局部攻击者,普通基于幻影路由策略的源位置隐私保护方案效果较差,因此研究一种具有可视区避免能力的源位置隐私保护方案尤为重要。The existing research work divides the attackers in WSN into two categories: local traffic attackers with relatively limited attack capabilities and global traffic attackers with strong attack capabilities. For the more common local traffic attackers, Ozturk et al. proposed the idea of phantom routing strategy for the first time, and proposed the phantom routing protocol PR (Phantomrouting) and the phantom single-path routing protocol PSPR (Phantom Single-path routing). The methods of the two routing strategies are to generate a false source node by randomly walking the specified number of hops (such as custom h hops) through the source data packet of the source node, which is called a phantom source node. Then the phantom node sends the source data packet to the base station to complete the transmission of the source node monitoring event data. Wang et al. first proposed the concept of the source node's visible area, which is defined as: the source node is located within a certain monitoring range of the attacker, that is, the position of the source node is exposed, and the range of a circle with the source node as the center and a specified radius R This is called the "viewable area". Based on this definition, the routing path passing through the visible area in the phantom single-path stage is also called the failure path. For this kind of local attacker with visibility ability, the general source location privacy protection scheme based on phantom routing strategy is not effective, so It is particularly important to study a source location privacy protection scheme with the ability to avoid visible regions.

发明内容Contents of the invention

本发明目的是针对现有的基于幻影路由策略的源位置隐私保护方案效果较差的问题,发明一种解决基于“熊猫-猎人”模型的多幻影节点策略的源位置隐私保护方法。The purpose of the present invention is to solve the problem of poor effect of the existing source location privacy protection scheme based on phantom routing strategy, and to invent a source location privacy protection method that solves the multi-phantom node strategy based on the "Panda-Hunter" model.

本发明的技术方案是:Technical scheme of the present invention is:

一种基于多幻影节点策略的源位置隐私保护方法,其特征在于:它包括以下步骤:A source location privacy protection method based on a multi-phantom node strategy, characterized in that it comprises the following steps:

步骤1:网络进行初始化;基站向全网普通节点洪泛数据包的进行初始化,完成后每个节点通过消息数据包向基站Sink报告自己的相关信息;初始化阶段完成后,网络中所有节点获得到基站的最小跳数值,基站Sink持有每个节点的地理位置信息,每个节点与基站的最短跳数值;Step 1: The network is initialized; the base station initializes flooding data packets to common nodes in the entire network, and each node reports its own relevant information to the base station Sink through a message packet after completion; after the initialization phase is completed, all nodes in the network get The minimum hop value of the base station, the base station Sink holds the geographical location information of each node, and the shortest hop value between each node and the base station;

步骤2:节点三元组构造;根据初始化阶段结束后基站获得的网络节点与基站的跳数值,基站创建一个跳数距离值表,根据表中跳数值将节点排序,依次创建节点三元组;路由工作阶段,每个三元组中的任意两个节点均可作为另一个节点的幻影源节点;Step 2: Node triplet construction; according to the hop value between the network node and the base station obtained by the base station after the initialization phase, the base station creates a hop distance value table, sorts the nodes according to the hop value in the table, and creates node triplets in turn; In the routing working stage, any two nodes in each triplet can be used as the phantom source node of another node;

步骤3:路由工作阶段在任意节点监测到目标事件后开始,首先将监测事件信息、源节点ID、源节点坐标、目标节点ID和目标节点坐标存储于数据包,并进入路由工作阶段;首先进行幻影节点交替选取过程,每一轮交替选取两个备选幻影节点中的一个转发源数据包;Step 3: The routing work stage starts after any node monitors the target event. First, store the monitoring event information, source node ID, source node coordinates, target node ID and target node coordinates in the data packet, and enter the routing work stage; Phantom node alternate selection process, each round alternately selects one of the two candidate phantom nodes to forward the source data packet;

步骤4:在步骤3完成后,进行源节点-幻影节点基于扇形区域划分转发;限定源数据包的转发路径范围,同时保证路径的随机性,以应对攻击者回溯攻击;Step 4: After step 3 is completed, perform source node-phantom node forwarding based on fan-shaped area division; limit the forwarding path range of source data packets, and ensure the randomness of the path at the same time, so as to deal with the attacker's backtracking attack;

步骤5:步骤4完成后,源数据包进行幻影节点-基站避开可视区转发;通过计算中继节点与源节点间距离选取下一跳节点避开可视区范围。Step 5: After step 4 is completed, the source data packet is forwarded by the phantom node-base station avoiding the visible area; the next-hop node is selected to avoid the visible area by calculating the distance between the relay node and the source node.

步骤2中基站节点三元组构造过程中,通过计算确保备选幻影节点对均位于源节点可视区范围外;假设源节点S的地理位置坐标为(xs,ys),候选幻影节点坐标为(xp,yp),为使幻影节点不落在可视区范围内,应满足条件:In step 2, in the process of constructing base station node triplets, it is calculated to ensure that the candidate phantom node pairs are located outside the visible range of the source node; assuming that the geographic location coordinates of the source node S are (x s , y s ), the candidate phantom node The coordinates are (x p , y p ), so that the phantom node does not fall within the range of the visible area, the conditions should be met:

为了确保两个幻影节点间的距离足够大,分别避开对方的可视区范围,候选幻影节点间应满足条件:In order to ensure that the distance between two phantom nodes is large enough to avoid each other's visible area, the candidate phantom nodes should meet the following conditions:

公式(1)、(2)中,dp_min为网络初始化设定的节点三元组种任意两个节点间的距离最小极限值,ds_p为:幻影节点与源节点间距离dp_p为:两个幻影节点间距离;RV为源节点可视区范围半径;通过以上计算以确保节点三元组中任意两个节点互为幻影节点时,幻影节点距离源节点足够远,且完全避开可视区范围。In the formulas (1) and (2), d p_min is the minimum limit value of the distance between any two nodes in the node triplet set by the network initialization, d s_p is: the distance between the phantom node and the source node d p_p is: two The distance between phantom nodes; R V is the radius of the visible area of the source node; through the above calculations to ensure that when any two nodes in the node triplet are phantom nodes, the phantom node is far enough away from the source node and completely avoids the possible Viewport extent.

步骤3中的幻影节点交替选取策略方法为:The alternate selection strategy of phantom nodes in step 3 is:

网络节点内部存储一个选择标志位SelectFlag,在初始化时设为FLASE,源节点开始发送源数据包前,对选择标志位进行判断,如果标志位为FALSE,则选择源节点的幻影节点1选定为本轮发送数据的幻影节点,并将幻影节点1的ID即IDP1以及位置坐标即(xP1,yP1)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将选择标志位值设置为TRUE;如果标志位为TRUE,则选择源节点的幻影节点2选定为本轮发送数据的幻影节点,并将幻影节点2的ID即IDP2以及位置坐标即(xP2,yP2)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将标志位的值设置为FALSE;通过以上标志位交替选取机制可以保证相邻时序的数据包发送目标幻影节点不同,有效防止了幻影节点重复而导致路径易重复的几率。The network node internally stores a selection flag SelectFlag, which is set to FLASE during initialization. Before the source node starts sending source data packets, it judges the selection flag. If the flag is FALSE, the phantom node 1 of the source node is selected as The phantom node that sends data in this round, and the ID P1 of phantom node 1 and the position coordinates (x P1 , y P1 ) are added to the data packet, set as the phantom node ID and coordinates of the target phantom node to send in this round, and the selection flag The bit value is set to TRUE; if the flag bit is TRUE, the phantom node 2 of the source node is selected as the phantom node sending data in this round, and the ID of phantom node 2 is ID P2 and the position coordinates are (x P2 , y P2 ) add the data packet, set it as the target phantom node ID and coordinates of the current round, and set the value of the flag bit to FALSE; through the above alternate selection mechanism of the flag bit, it can be ensured that the data packets of adjacent timings are sent to different target phantom nodes, It effectively prevents the chance that the path is easy to repeat due to the duplication of phantom nodes.

步骤4中的各中继节点采用的源节点-幻影节点基于扇形区域划分转发步骤为:The forwarding steps of the source node-phantom node adopted by each relay node in step 4 based on fan-shaped area division are as follows:

步骤4.1:设定参数扇形划分角度β、划分子扇形个数L以及通信半径RtStep 4.1: Set the parameter sector division angle β, the number of divided sub-sectors L and the communication radius R t ;

步骤4.2:从源数据包获取本轮选定幻影节点坐标(xP,yP);Step 4.2: Obtain the coordinates (x P , y P ) of the phantom node selected in this round from the source data packet;

步骤4.3:从当前节点内部存储获取本节点坐标(xC,yC);Step 4.3: Obtain the coordinates (x C , y C ) of this node from the internal storage of the current node;

步骤4.4:计算当前节点C与幻影节点P间距离dC_PStep 4.4: Calculate the distance d C_P between the current node C and the phantom node P;

步骤4.5:判断dC_P是否小于等于通信半径Rt,若小于等于,则直接转发给幻影节点P,本阶段结束,进入避开可视区转发阶段;否则转步骤4.6;Step 4.5: Judging whether d C_P is less than or equal to the communication radius R t , if it is less than or equal to, it will be forwarded directly to the phantom node P, and this stage is over, entering the stage of forwarding avoiding the visible area; otherwise, go to step 4.6;

步骤4.6:利用参数L产生整数随机数V;L为划分的子扇形区域个数,V为自然数;Step 4.6: Use the parameter L to generate an integer random number V; L is the number of divided sub-fan areas, and V is a natural number;

步骤4.7:以当前节点C与目标幻影节点P产生(-β,β)范围的扇形角,并利用随机数以及扇形角度划分参数产生随机子扇形区域角度范围θ,作为当前选中的随机子扇形区域vector;Step 4.7: Use the current node C and the target phantom node P to generate a fan angle in the range of (-β, β), and use random numbers and fan angles to divide the parameters to generate a random sub-fan area angle range θ as the currently selected random sub-fan area vector;

步骤4.8:依次计算邻居节点集中节点Ni与当前节点C所成直线与C、P节点所成直线之间夹角;Step 4.8: Sequentially calculate the angle between the straight line formed by the node N i in the set of neighbor nodes and the current node C, and the straight line formed by the nodes C and P;

步骤4.9:若存在节点Ni坐落于子扇形区域vector,则交付源数据包给Ni节点;若不存在,转步骤4.6,重新产生随机数V以选取随机子扇形区域;Step 4.9: If there is a node N i located in the sub-sector area vector, deliver the source data packet to the N i node; if not, go to step 4.6 and regenerate the random number V to select a random sub-sector area;

步骤4.10:重复以上步骤,直至交付源数据包至幻影节点P。Step 4.10: Repeat the above steps until the source data packet is delivered to the phantom node P.

步骤5幻影节点-基站避开可视区转发中,假设下一跳坐标为(xn,yn),根据可视区范围定义,下一跳节点应满足公式:Step 5: In the phantom node-base station avoiding the visible area forwarding, assuming that the next hop coordinates are (x n , y n ), according to the definition of the visible area range, the next hop node should satisfy the formula:

式中:xs,ys为源节点S的地理位置坐标,ds_n为源节点S与下一跳坐标点n之间的距离;In the formula: x s , y s are the geographic location coordinates of the source node S, and d s_n is the distance between the source node S and the next hop coordinate point n;

每一个中继节点将邻居节点划分为远节点集以及近节点集两个集合,近节点集中的节点距离基站的跳数值比当前节点要小,即距离基站更近,而远节点集中的节点距离基站的跳数值比当前节点要大;为了控制传输时延,尽快将数据包发送到基站,将选取位于当前中继节点的近节点集中的节点转发。Each relay node divides the neighboring nodes into two sets: the far node set and the near node set. The hop value of the base station is larger than that of the current node; in order to control the transmission delay, the data packet will be sent to the base station as soon as possible, and the node located in the near node set of the current relay node will be selected for forwarding.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明提出的源位置隐私保护方法,针对具有可视能力的攻击者,不仅可以通过节点三元组构造等操作使得转发路径避开源节点可视区,从而有效增加源节点安全性,同时通过基于扇形区域划分的方法较好优化传输时延及路由能耗,增强了隐私保护方法的实用性。The source location privacy protection method proposed by the present invention, for attackers with visibility, can not only make the forwarding path avoid the visible area of the source node through operations such as node triplet construction, thereby effectively increasing the security of the source node, but also through The method based on fan-shaped area division can better optimize the transmission delay and routing energy consumption, and enhance the practicability of the privacy protection method.

附图说明Description of drawings

图1是多幻影节点方法EMPRP原理示意图。Figure 1 is a schematic diagram of the principle of the multi-phantom node method EMPRP.

图2是基于多幻影节点策略的源位置隐私保护协议EMPRP整体框架图。Figure 2 is the overall framework of the source location privacy protection protocol EMPRP based on the multi-phantom node strategy.

图3是源节点-幻影节点基于扇形区域划分转发方法流程图。FIG. 3 is a flow chart of a source node-phantom node forwarding method based on fan-shaped area division.

具体实施方式detailed description

下面结合附图和具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

如图1-3所示。As shown in Figure 1-3.

一种多幻影节点策略的源位置隐私保护方法,它包括以下步骤:A source location privacy protection method of a multi-phantom node strategy, which comprises the following steps:

步骤一:网络进行初始化。基站向普通节点洪泛数据包的进行初始化,完成后每个节点通过数据包向基站报告自己的相关信息。初始化阶段完成后,网络中所有节点获得与基站的最小跳数值,基站持有每个节点的地理位置信息,每个节点与基站的最短跳数值。这一步骤为节点三元组构造过程提供足够数据。Step 1: The network is initialized. The base station initializes by flooding data packets to common nodes, and each node reports its own relevant information to the base station through data packets after completion. After the initialization phase is completed, all nodes in the network obtain the minimum hop value with the base station, the base station holds the geographic location information of each node, and the shortest hop value between each node and the base station. This step provides enough data for the node triplet construction process.

步骤二:节点三元组构造。根据初始化阶段结束后,基站获得的网络节点与基站的跳数值,基站创建一个跳数距离值表,根据表中跳数值将节点排序,依次创建节点三元组。路由工作阶段,每个三元组中的任意两个节点均可作为另一个节点的幻影源节点。Step 2: Node triplet construction. According to the hop value obtained by the base station after the initialization phase, the base station creates a hop distance value table, sorts the nodes according to the hop value in the table, and creates node triplets in turn. In the routing working stage, any two nodes in each triple can be used as the phantom source node of another node.

步骤三:幻影节点交替选取。路由工作阶段在任意节点监测到目标事件后开始,首先将监测事件信息,源节点ID,源节点坐标,目标节点ID,目标节点坐标存储于数据包,并进入路由工作阶段。首先进行幻影节点交替选取过程,每一轮交替选取两个备选幻影节点中的一个转发源数据包。交替选取过程保证相邻时序的数据包发送往不同的幻影节点从而增加攻击者回溯的难度以保证源位置隐私。Step 3: Phantom nodes are selected alternately. The routing work stage starts after any node monitors the target event. First, the monitoring event information, source node ID, source node coordinates, target node ID, and target node coordinates are stored in the data packet, and enter the routing work stage. Firstly, the alternate selection process of phantom nodes is carried out, and one of the two candidate phantom nodes is alternately selected in each round to forward the source data packet. The alternate selection process ensures that data packets in adjacent timings are sent to different phantom nodes, which increases the difficulty of backtracking for the attacker to ensure the privacy of the source location.

步骤四:源节点-幻影节点基于扇形区域划分转发。这一步骤确保了源数据包将沿着源节点和幻影节点间的一个扇形区域进行转发从而避免了源数据包的无限制随机游走,从而有效控制了传输时延及能耗。多个子扇形区域的划分和随机选取转发保证了路由路径的随机性和多样性,从而增加了攻击者回溯的难度。Step 4: The source node-phantom node divides and forwards based on the fan-shaped area. This step ensures that the source data packet will be forwarded along a fan-shaped area between the source node and the phantom node, thereby avoiding the unlimited random walk of the source data packet, thereby effectively controlling the transmission delay and energy consumption. The division of multiple sub-sector areas and random selection and forwarding ensure the randomness and diversity of routing paths, thus increasing the difficulty of backtracking for attackers.

步骤5:幻影节点-基站避开可视区转发。这一步骤通过中继节点与源节点间的距离计算确保中继节点位于可视区范围之外,从而有效避免了失效路径,增加源位置隐私保护强度。Step 5: Phantom node-base station avoids visible zone forwarding. In this step, the distance between the relay node and the source node is calculated to ensure that the relay node is located outside the scope of the visible area, thereby effectively avoiding failure paths and increasing the privacy protection strength of the source location.

详述如下:The details are as follows:

如图1所示为本发明的原理示意图,源节点S同时设定两个幻影节点,分别为P1、P2,P1、P2与源节点两两节点间距离均大于可视区半径,从而使得幻影节点有效避开可视区范围;源数据包转发至基站过程分为两个阶段:幻影路由阶段和避开可视区转发阶段。幻影路由阶段随机选取两个幻影节点中的一个,并利用源节点-幻影节点间基于扇形区域转发方法转发数据包,候选下一跳节点局限在大小为2β的扇形区域范围内,并随机选取子扇形区域选取下一跳节点;避开可视区转发阶段通过候选节点距离计算,确保避开可视区,避免失效路径产生,从而增加源节点安全时间。As shown in Figure 1, it is a schematic diagram of the principle of the present invention. The source node S sets two phantom nodes at the same time, namely P 1 and P 2 , and the distance between P 1 and P 2 and the source node is greater than the radius of the visible area. , so that the phantom node effectively avoids the scope of the visible zone; the process of forwarding the source data packet to the base station is divided into two stages: the phantom routing stage and the forwarding stage avoiding the visible zone. In the phantom routing stage, one of the two phantom nodes is randomly selected, and the data packet is forwarded based on the fan-shaped area forwarding method between the source node and the phantom node. The candidate next-hop nodes are limited to the fan-shaped area of size 2β, and the child The fan-shaped area selects the next hop node; avoids the visible area and calculates the distance of the candidate node in the forwarding stage to ensure that the visible area is avoided and the failure path is avoided, thereby increasing the security time of the source node.

如图2所示,本发明整体分为网络配置和路由工作两个阶段。网络配置分为网络初始化、节点三元组构造两个步骤。路由工作阶段分为幻影节点交替选取、源节点-幻影节点基于扇形区域划分转发、幻影节点-基站避开可视区转发三个步骤。As shown in FIG. 2 , the present invention is divided into two stages of network configuration and routing work as a whole. Network configuration is divided into two steps: network initialization and node triplet construction. The routing work stage is divided into three steps: alternate selection of phantom nodes, source node-phantom node forwarding based on fan-shaped area division, and phantom node-base station forwarding avoiding the visible area.

1.网络初始化采用基站向普通节点洪泛数据包进行初始化,完成后每个节点通过数据包向基站报告自己的相关信息。初始化阶段完成后,网络中所有节点获得与基站的最小跳数值,基站持有每个节点的地理位置信息,每个节点与基站的最短跳数值。1. Network initialization uses the base station to flood data packets to common nodes for initialization, and each node reports its own relevant information to the base station through data packets after completion. After the initialization phase is completed, all nodes in the network obtain the minimum hop value with the base station, the base station holds the geographic location information of each node, and the shortest hop value between each node and the base station.

2.基站进行网络节点三元组构造过程为源节点构造均位于可视区范围之外的幻影节点对。该步骤为网络中每个节点选取两个幻影节点构成节点三元组Triple(N1,N2,N3),其中Ni(i=1,2,3)均表示传感器节点,且三元组中任意两个节点均可互为幻影节点,路由工作阶段通过随机数产生随机选取其中一个幻影节点转发数据包。基站节点三元组具体实施方式为:2. The base station constructs network node triplets to construct phantom node pairs that are located outside the visible range for the source node. This step selects two phantom nodes for each node in the network to form a node triplet Triple(N 1 ,N 2 ,N 3 ), where N i (i=1,2,3) all represent sensor nodes, and triple Any two nodes in the group can be phantom nodes for each other, and the routing work stage randomly selects one of the phantom nodes to forward data packets through random number generation. The specific implementation of the base station node triplet is as follows:

步骤2.1:初始化参数dp_min和RV。dp_min为网络初始化设定的节点三元组种任意两个节点间的距离最小极限值,RV为可视区半径,以确保节点三元组中任意两个节点互为幻影节点时,幻影节点距离源节点足够远,且完全避开可视区范围。Step 2.1: Initialize parameters d p_min and R V . d p_min is the minimum limit value of the distance between any two nodes in the node triplet set by network initialization, and R V is the radius of the visible area to ensure that when any two nodes in the node triplet are phantom nodes, the phantom The node is far enough away from the source node and completely avoids the scope of the viewport.

步骤2.2:假设源节点S的地理位置坐标为(xs,ys),候选幻影节点坐标为(xp,yp),为使幻影节点不落在可视区范围内,根据二维平面内节点间物理距离计算,应满足条件:Step 2.2: Assume that the geographic coordinates of the source node S are (x s , y s ), and the coordinates of the candidate phantom nodes are (x p , y p ), in order to prevent the phantom nodes from falling within the visible area, according to the two-dimensional plane The calculation of the physical distance between internal nodes should meet the following conditions:

为了确保两个幻影节点间的距离足够大,分别避开对方的可视区范围,候选幻影节点间应满足条件:In order to ensure that the distance between two phantom nodes is large enough to avoid each other's visible area, the candidate phantom nodes should meet the following conditions:

通过公式(1)(2)选取合适的幻影节点对,组成节点三元组。Select appropriate phantom node pairs by formulas (1) (2) to form node triplets.

步骤2.3:基站发送数据包通知节点三元组中节点其他两个节点的ID以及坐标,节点收到后,将幻影节点对的ID以及坐标分别存储于节点内部,并作为该节点的备选幻影节点对。设两个幻影节点ID分别为IDP1、IDP2,相应坐标分别为(xP1,yP1)、(xP2,yP2)。路由工作阶段中,每一轮数据包的发送将分别选取这两个节点中的一个作为幻影节点并将相应ID以及坐标信息加入数据包。Step 2.3: The base station sends a data packet to inform the node of the ID and coordinates of the other two nodes in the node triplet. After the node receives it, the ID and coordinates of the phantom node pair are stored in the node respectively, and are used as the candidate phantom of the node node pair. Let the IDs of two phantom nodes be ID P1 and ID P2 respectively, and the corresponding coordinates are (x P1 , y P1 ), (x P2 , y P2 ) respectively. In the routing work phase, each round of data packet transmission will select one of these two nodes as a phantom node and add the corresponding ID and coordinate information to the data packet.

3.源节点向幻影节点发送源数据包进行幻影节点交替选取过程,确保相邻时序的数据包发送往不同的幻影节点,以增加攻击者攻击的难度。具体实施方式为:3. The source node sends the source data packet to the phantom node to carry out the alternate selection process of the phantom node to ensure that the data packets of adjacent timing are sent to different phantom nodes, so as to increase the difficulty of the attacker's attack. The specific implementation method is:

步骤3.1:网络节点内部存储一个布尔型变量SelectFlag作为选择标志位,在初始化时设为FLASE。Step 3.1: The network node internally stores a Boolean variable SelectFlag as a selection flag, which is set to FLASE during initialization.

步骤3.2:源节点开始发送源数据包前,对选择标志位进行判断,如果标志位为FALSE,则选择源节点的幻影节点1选定为本轮发送数据的幻影节点,并将幻影节点1的ID即IDP1以及位置坐标即(xP1,yP1)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将选择标志位值设置为TRUE;如果标志位为TRUE,则选择源节点的幻影节点2选定为本轮发送数据的幻影节点,并将幻影节点2的ID即IDP2以及位置坐标即(xP2,yP2)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将标志位的值设置为FALSE。Step 3.2: Before the source node starts to send the source data packet, judge the selection flag bit, if the flag bit is FALSE, select the phantom node 1 of the source node as the phantom node sending data in this round, and set the phantom node 1 The ID is ID P1 and the position coordinates (x P1 , y P1 ) are added to the data packet, set as the target phantom node ID and coordinates sent in this round, and the value of the selection flag is set to TRUE; if the flag is TRUE, select The phantom node 2 of the source node is selected as the phantom node sending data in this round, and the ID P2 of phantom node 2 and the position coordinates (x P2 , y P2 ) are added to the data packet, and set as the phantom sending target in this round Node ID and coordinates, and set the value of the flag to FALSE.

4.如图3所示,源节点以及中继节点采用的源节点-幻影节点基于扇形区域划分具体实施方式为:4. As shown in Figure 3, the source node-phantom node used by the source node and the relay node is based on the fan-shaped area division. The specific implementation method is as follows:

步骤4.1:设定参数扇形划分角度β、划分子扇形个数L以及通信半径RtStep 4.1: Set the parameter sector division angle β, the number of divided sub-sectors L and the communication radius R t .

步骤4.2:从源数据包获取本轮选定幻影节点坐标(xP,yP)。Step 4.2: Obtain the coordinates (x P , y P ) of the phantom node selected in this round from the source data packet.

步骤4.3:从当前节点内部存储获取本节点坐标(xC,yC)。Step 4.3: Obtain the coordinates (x C , y C ) of the current node from the internal storage of the current node.

步骤4.4:计算当前节点C与幻影节点P间距离dC_P。计算方法为:Step 4.4: Calculate the distance d C_P between the current node C and the phantom node P. The calculation method is:

步骤4.5:判断dC_P是否小于等于通信半径Rt,若小于等于,则直接转发给幻影节点P,本阶段结束,进入避开可视区转发阶段;否则转步骤4.6。Step 4.5: Determine whether d C_P is less than or equal to the communication radius R t , if it is less than or equal to, forward it directly to the phantom node P, this stage is over, and enter the forwarding stage avoiding the visible area; otherwise, go to step 4.6.

步骤4.6:利用参数L产生整数随机数V,产生方法为:Step 4.6: Use the parameter L to generate an integer random number V, and the generation method is:

步骤4.7:以当前节点C与目标幻影节点P产生(-β,β)范围的扇形角,并利用随机数V以及扇形角度划分参数产生随机子扇形区域角度范围θ,作为当前选中的随机子扇形区域vector,范围为:Step 4.7: Use the current node C and the target phantom node P to generate a fan angle in the range of (-β, β), and use the random number V and the fan angle to divide the parameters to generate a random sub-fan area angle range θ, as the currently selected random sub-fan A vector of regions, the range of which is:

步骤4.8:依次计算邻居节点集中节点Ni与当前节点C所成直线与C、P节点所成直线之间夹角。计算方法为:Step 4.8: Calculate in turn the angle between the straight line formed by the node N i in the set of neighbor nodes and the current node C, and the straight line formed by nodes C and P. The calculation method is:

步骤4.9:若存在节点Ni坐落于子扇形区域vector,则交付源数据包给Ni节点;若不存在,转步骤4.6,重新产生随机数V以选取随机子扇形区域。Step 4.9: If there is a node N i located in the sub-sector area vector, deliver the source data packet to the N i node; if not, go to step 4.6, and regenerate the random number V to select a random sub-sector area.

步骤4.10:重复以上步骤,直至交付源数据包至幻影节点P。Step 4.10: Repeat the above steps until the source data packet is delivered to the phantom node P.

5.幻影节点-基站避开可视区转发中,假设下一跳坐标为(xn,yn),下一跳节点选取具体实施方式为:5. In the phantom node-base station avoiding the visible zone forwarding, assuming that the next hop coordinates are (x n , y n ), the specific implementation method for selecting the next hop node is as follows:

步骤5.1:每一个中继节点将邻居节点划分为远节点集以及近节点集两个集合,近节点集中的节点距离基站的跳数值比当前节点要小,即距离基站更近,而远节点集中的节点距离基站的跳数值比当前节点要大。为了控制传输时延,尽快将数据包发送到基站,将选取位于当前中继节点的近节点集中的节点转发。首先判断候选节点是否属于近节点集;如果是,则转步骤5.2。Step 5.1: Each relay node divides the neighbor nodes into two sets: the far node set and the near node set. The hop value of the node from the base station is larger than the current node. In order to control the transmission delay, the data packet is sent to the base station as soon as possible, and the node located in the near node set of the current relay node is selected for forwarding. First judge whether the candidate node belongs to the near node set; if yes, go to step 5.2.

步骤5.2:根据可视区范围定义,下一跳节点应满足公式:Step 5.2: According to the definition of the scope of the visible area, the next hop node should satisfy the formula:

如果节点满足公式(3),则为下一跳转发节点。If the node satisfies formula (3), it is the next hop forwarding node.

本发明未涉及部分与现有技术相同或可采用现有技术加以解决。The parts not involved in the present invention are the same as the prior art or can be solved by using the prior art.

Claims (5)

1.一种基于多幻影节点策略的源位置隐私保护方法,其特征在于:它包括以下步骤:1. a source location privacy protection method based on many phantom node strategies, is characterized in that: it comprises the following steps: 步骤1:网络进行初始化;基站向全网普通节点洪泛数据包的进行初始化,完成后每个节点通过消息数据包向基站Sink报告自己的相关信息;初始化阶段完成后,网络中所有节点获得到基站的最小跳数值,基站Sink持有每个节点的地理位置信息,每个节点与基站的最短跳数值;Step 1: The network is initialized; the base station initializes flooding data packets to common nodes in the entire network, and each node reports its own relevant information to the base station Sink through a message packet after completion; after the initialization phase is completed, all nodes in the network get The minimum hop value of the base station, the base station Sink holds the geographic location information of each node, and the shortest hop value between each node and the base station; 步骤2:节点三元组构造;根据初始化阶段结束后基站获得的网络节点与基站的跳数值,基站创建一个跳数距离值表,根据表中跳数值将节点排序,依次创建节点三元组;路由工作阶段,每个三元组中的任意两个节点均可作为另一个节点的幻影源节点;Step 2: Node triplet construction; according to the hop value between the network node and the base station obtained by the base station after the initialization phase, the base station creates a hop distance value table, sorts the nodes according to the hop value in the table, and creates node triplets in turn; In the routing working stage, any two nodes in each triplet can be used as the phantom source node of another node; 步骤3:路由工作阶段在任意节点监测到目标事件后开始,首先将监测事件信息、源节点ID、源节点坐标、目标节点ID和目标节点坐标存储于数据包,并进入路由工作阶段;首先进行幻影节点交替选取过程,每一轮交替选取两个备选幻影节点中的一个转发源数据包;Step 3: The routing work stage starts after any node monitors the target event. First, store the monitoring event information, source node ID, source node coordinates, target node ID and target node coordinates in the data packet, and enter the routing work stage; Phantom node alternate selection process, each round alternately selects one of the two candidate phantom nodes to forward the source data packet; 步骤4:在步骤3完成后,进行源节点-幻影节点基于扇形区域划分转发;限定源数据包的转发路径范围,同时保证路径的随机性,以应对攻击者回溯攻击;Step 4: After step 3 is completed, perform source node-phantom node forwarding based on fan-shaped area division; limit the forwarding path range of source data packets, and ensure the randomness of the path at the same time, so as to deal with the attacker's backtracking attack; 步骤5:步骤4完成后,源数据包进行幻影节点-基站避开可视区转发;通过计算中继节点与源节点间距离选取下一跳节点避开可视区范围。Step 5: After step 4 is completed, the source data packet is forwarded by the phantom node-base station avoiding the visible area; the next-hop node is selected to avoid the visible area by calculating the distance between the relay node and the source node. 2.根据权利要求1所述的基于多幻影节点策略的源位置隐私保护方法,其特征在于:步骤2中基站节点三元组构造过程中,通过计算确保备选幻影节点对均位于源节点可视区范围外;假设源节点S的地理位置坐标为(xs,ys),候选幻影节点坐标为(xp,yp),为使幻影节点不落在可视区范围内,应满足条件:2. The source location privacy protection method based on the multi-phantom node strategy according to claim 1, characterized in that: in step 2, during the construction of the base station node triplet, it is ensured by calculation that the candidate phantom node pairs are all located at the source node. Outside the scope of the viewing area; assuming that the geographic location coordinates of the source node S are (x s , y s ), and the coordinates of the candidate phantom nodes are (x p , y p ), in order to prevent the phantom nodes from falling within the scope of the viewing area, it should satisfy condition: <mrow> <msub> <mi>d</mi> <mrow> <mi>S</mi> <mo>_</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;GreaterEqual;</mo> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>d</mi> <mrow> <mi>S</mi> <mo>_</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;GreaterEqual;</mo> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 为了确保两个幻影节点间的距离足够大,分别避开对方的可视区范围,候选幻影节点间应满足条件:In order to ensure that the distance between two phantom nodes is large enough to avoid each other's visible area, the candidate phantom nodes should meet the following conditions: <mrow> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;GreaterEqual;</mo> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;GreaterEqual;</mo> <msub> <mi>d</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> 公式(1)、(2)中,dp_min为网络初始化设定的节点三元组种任意两个节点间的距离最小极限值,ds_p为:幻影节点与源节点间距离dp_p为:两个幻影节点间距离;RV为源节点可视区范围半径;通过以上计算以确保节点三元组中任意两个节点互为幻影节点时,幻影节点距离源节点足够远,且完全避开可视区范围。In the formulas (1) and (2), d p_min is the minimum limit value of the distance between any two nodes in the node triplet set by the network initialization, d s_p is: the distance between the phantom node and the source node d p_p is: two The distance between phantom nodes; R V is the radius of the visible area of the source node; through the above calculation to ensure that when any two nodes in the node triplet are phantom nodes, the phantom node is far enough away from the source node and completely avoids the possible Viewport extent. 3.根据权利要求1所述的基于多幻影节点策略的源位置隐私保护方法,其特征在于:步骤3中的幻影节点交替选取策略方法为:3. The source location privacy protection method based on multi-phantom node strategy according to claim 1, characterized in that: the alternate selection strategy method of phantom nodes in step 3 is: 网络节点内部存储一个选择标志位SelectFlag,在初始化时设为FLASE,源节点开始发送源数据包前,对选择标志位进行判断,如果标志位为FALSE,则选择源节点的幻影节点1选定为本轮发送数据的幻影节点,并将幻影节点1的ID即IDP1以及位置坐标即(xP1,yP1)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将选择标志位值设置为TRUE;如果标志位为TRUE,则选择源节点的幻影节点2选定为本轮发送数据的幻影节点,并将幻影节点2的ID即IDP2以及位置坐标即(xP2,yP2)加入数据包,设定为本轮发送目标幻影节点ID及坐标,并将标志位的值设置为FALSE;通过以上标志位交替选取机制可以保证相邻时序的数据包发送目标幻影节点不同,有效防止了幻影节点重复而导致路径易重复的几率。The network node internally stores a selection flag SelectFlag, which is set to FLASE during initialization. Before the source node starts sending source data packets, it judges the selection flag. If the flag is FALSE, the phantom node 1 of the source node is selected as The phantom node that sends data in this round, and the ID P1 of phantom node 1 and the position coordinates (x P1 , y P1 ) are added to the data packet, set as the phantom node ID and coordinates of the target phantom node to send in this round, and the selection flag The bit value is set to TRUE; if the flag bit is TRUE, the phantom node 2 of the source node is selected as the phantom node sending data in this round, and the ID of phantom node 2 is ID P2 and the position coordinates are (x P2 , y P2 ) Add data packets, set as the current round sending target phantom node ID and coordinates, and set the value of the flag bit to FALSE; through the above flag bit alternate selection mechanism, it can ensure that the data packets of adjacent timings are sent to different target phantom nodes, It effectively prevents the probability that the path is easy to repeat due to the duplication of phantom nodes. 4.根据权利要求1所述的基于多幻影节点策略的源位置隐私保护方法,其特征在于:步骤4中的各中继节点采用的源节点-幻影节点基于扇形区域划分转发步骤为:4. The source location privacy protection method based on the multi-phantom node strategy according to claim 1, characterized in that: the source node-phantom node adopted by each relay node in step 4 is divided into forwarding steps based on fan-shaped areas: 步骤4.1:设定参数扇形划分角度β、划分子扇形个数L以及通信半径RtStep 4.1: Set the parameter sector division angle β, the number of divided sub-sectors L and the communication radius R t ; 步骤4.2:从源数据包获取本轮选定幻影节点坐标(xP,yP);Step 4.2: Obtain the coordinates (x P , y P ) of the phantom node selected in this round from the source data packet; 步骤4.3:从当前节点内部存储获取本节点坐标(xC,yC);Step 4.3: Obtain the coordinates (x C , y C ) of this node from the internal storage of the current node; 步骤4.4:计算当前节点C与幻影节点P间距离dC_PStep 4.4: Calculate the distance d C_P between the current node C and the phantom node P; 步骤4.5:判断dC_P是否小于等于通信半径Rt,若小于等于,则直接转发给幻影节点P,本阶段结束,进入避开可视区转发阶段;否则转步骤4.6;Step 4.5: Judging whether d C_P is less than or equal to the communication radius R t , if it is less than or equal to, it will be forwarded directly to the phantom node P, and this stage is over, entering the stage of forwarding avoiding the visible area; otherwise, go to step 4.6; 步骤4.6:利用参数L产生整数随机数V,L为划分的子扇形区域个数,V为自然数;Step 4.6: Use the parameter L to generate an integer random number V, where L is the number of divided sub-fan areas, and V is a natural number; 步骤4.7:以当前节点C与目标幻影节点P产生(-β,β)范围的扇形角,并利用随机数V以及扇形角度划分参数产生随机子扇形区域角度范围θ,作为当前选中的随机子扇形区域vector,;Step 4.7: Use the current node C and the target phantom node P to generate a fan angle in the range of (-β, β), and use the random number V and the fan angle to divide the parameters to generate a random sub-fan area angle range θ, as the currently selected random sub-fan region vector,; 步骤4.8:依次计算邻居节点集中节点Ni与当前节点C所成直线与C、P节点所成直线之间夹角;Step 4.8: Sequentially calculate the angle between the straight line formed by the node N i in the set of neighbor nodes and the current node C, and the straight line formed by the nodes C and P; 步骤4.9:若存在节点Ni坐落于子扇形区域vector,则交付源数据包给Ni节点;若不存在,转步骤4.6,重新产生随机数V以选取随机子扇形区域;Step 4.9: If there is a node N i located in the sub-sector area vector, deliver the source data packet to the N i node; if not, go to step 4.6 and regenerate the random number V to select a random sub-sector area; 步骤4.10:重复以上步骤,直至交付源数据包至幻影节点P。Step 4.10: Repeat the above steps until the source data packet is delivered to the phantom node P. 5.根据权利要求1所述的基于多幻影节点策略的源位置隐私保护方法,其特征在于:步骤5幻影节点-基站避开可视区转发中,假设下一跳坐标为(xn,yn),根据可视区范围定义,下一跳节点应满足公式:5. The source location privacy protection method based on the multi-phantom node strategy according to claim 1, characterized in that: in step 5 phantom node-base station avoiding the visible zone forwarding, it is assumed that the next hop coordinates are (x n , y n ), according to the scope definition of the visible area, the next hop node should satisfy the formula: <mrow> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mo>_</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mo>_</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&gt;</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> 式中:xs,ys为源节点S的地理位置坐标,ds_n为源节点S与下一跳坐标点n之间的距离;In the formula: x s , y s are the geographic location coordinates of the source node S, and d s_n is the distance between the source node S and the next hop coordinate point n; 每一个中继节点将邻居节点划分为远节点集以及近节点集两个集合,近节点集中的节点距离基站的跳数值比当前节点要小,即距离基站更近,而远节点集中的节点距离基站的跳数值比当前节点要大;为了控制传输时延,尽快将数据包发送到基站,将选取位于当前中继节点的近节点集中的节点转发。Each relay node divides the neighboring nodes into two sets: the far node set and the near node set. The hop value of the base station is larger than that of the current node; in order to control the transmission delay, the data packet will be sent to the base station as soon as possible, and the node located in the near node set of the current relay node will be selected for forwarding.
CN201710270299.6A 2017-04-24 2017-04-24 A source location privacy protection method for multi-phantom node strategy Active CN107148013B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710270299.6A CN107148013B (en) 2017-04-24 2017-04-24 A source location privacy protection method for multi-phantom node strategy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710270299.6A CN107148013B (en) 2017-04-24 2017-04-24 A source location privacy protection method for multi-phantom node strategy

Publications (2)

Publication Number Publication Date
CN107148013A true CN107148013A (en) 2017-09-08
CN107148013B CN107148013B (en) 2020-08-25

Family

ID=59773665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710270299.6A Active CN107148013B (en) 2017-04-24 2017-04-24 A source location privacy protection method for multi-phantom node strategy

Country Status (1)

Country Link
CN (1) CN107148013B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900977A (en) * 2018-07-11 2018-11-27 浙江工商大学 A kind of location privacy protection method of the vehicle-mounted social networks based on good friend's forwarding
CN109660945A (en) * 2019-02-18 2019-04-19 河海大学常州校区 Dynamic multipath based on more sink in WSN is by source node location method for secret protection
CN111431630A (en) * 2020-05-25 2020-07-17 河海大学常州校区 AUV (autonomous underwater vehicle) cooperation source node position privacy protection method based on anonymous cluster in UASNs (Universal asynchronous receiver network)
CN113259932A (en) * 2021-05-19 2021-08-13 贵州大学 Source node position privacy protection strategy in WSNs
CN113453143A (en) * 2021-05-14 2021-09-28 浙江工业大学 Source position privacy protection method of dynamic phantom node strategy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072999B1 (en) * 2007-05-08 2011-12-06 Motion Engineering Inc. Method and system for removing and returning nodes in a synchronous network
CN104735650A (en) * 2015-03-30 2015-06-24 重庆邮电大学 Source position privacy protection method of fan-shaped domain phantom routing
CN105916118A (en) * 2016-07-08 2016-08-31 河海大学常州校区 Source node privacy protection method based on position tracking in wireless sensor network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072999B1 (en) * 2007-05-08 2011-12-06 Motion Engineering Inc. Method and system for removing and returning nodes in a synchronous network
CN104735650A (en) * 2015-03-30 2015-06-24 重庆邮电大学 Source position privacy protection method of fan-shaped domain phantom routing
CN105916118A (en) * 2016-07-08 2016-08-31 河海大学常州校区 Source node privacy protection method based on position tracking in wireless sensor network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘学军,李江,李斌: "于最小能耗路由的源节点位置隐私保护协议", 《传感技术学报》 *
朱世照 薛善良: "一种WSN中多幻影节点源位置隐私保护协议", 《计算机与现代化》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900977A (en) * 2018-07-11 2018-11-27 浙江工商大学 A kind of location privacy protection method of the vehicle-mounted social networks based on good friend's forwarding
CN108900977B (en) * 2018-07-11 2020-06-19 浙江工商大学 Position privacy protection method of vehicle-mounted social network based on friend forwarding
CN109660945A (en) * 2019-02-18 2019-04-19 河海大学常州校区 Dynamic multipath based on more sink in WSN is by source node location method for secret protection
CN111431630A (en) * 2020-05-25 2020-07-17 河海大学常州校区 AUV (autonomous underwater vehicle) cooperation source node position privacy protection method based on anonymous cluster in UASNs (Universal asynchronous receiver network)
CN111431630B (en) * 2020-05-25 2021-05-11 河海大学常州校区 Anonymous cluster-based source node location privacy protection method for AUV collaboration in UASNs
CN113453143A (en) * 2021-05-14 2021-09-28 浙江工业大学 Source position privacy protection method of dynamic phantom node strategy
CN113453143B (en) * 2021-05-14 2022-07-26 浙江工业大学 A source location privacy protection method based on dynamic phantom node strategy
CN113259932A (en) * 2021-05-19 2021-08-13 贵州大学 Source node position privacy protection strategy in WSNs

Also Published As

Publication number Publication date
CN107148013B (en) 2020-08-25

Similar Documents

Publication Publication Date Title
CN107148013B (en) A source location privacy protection method for multi-phantom node strategy
Han et al. CASLP: A confused arc-based source location privacy protection scheme in WSNs for IoT
Dong et al. Preserving source-location privacy through redundant fog loop for wireless sensor networks
CN105979508A (en) Node privacy protection method based on directional random routing in wireless sensor network
CN105916118A (en) Source node privacy protection method based on position tracking in wireless sensor network
CN103747440A (en) Enhanced source position privacy protection method based on phantom single-path routing
Kaur et al. Review of black hole and grey hole attack
CN104822144A (en) Source position privacy protection method for resisting backward tracing of attacker
Fasunlade et al. Comprehensive review of collaborative network attacks in MANET
Ahmed et al. A security scheme against wormhole attack in MAC layer for delay sensitive wireless sensor networks
Agrawal et al. RTT based wormhole detection using NS-3
Desai et al. Performance evaluation of OLSR protocol in MANET under the influence of routing attack
Moon et al. An energy-efficient routing method with intrusion detection and prevention for wireless sensor networks
Sahu et al. Intruder detection mechanism against DoS attack on OLSR
Rana et al. Wireless ad hoc network: detection of malicious node by using neighbour-based authentication approach
Varshney et al. Performance analysis of malicious nodes in IEEE 802.15. 4 based wireless sensor network
Mohebi et al. Simulation and analysis of AODV and DSR routing protocol under black hole attack
Oakley Solutions to Black Hole Attacks in MANETs
Manjula et al. Application of the Chinese remainder theorem for source location privacy in wireless sensor networks
Yassein et al. Improved AODV Protocol to Detect and Avoid Black Hole Nodes in MANETs
Garcia et al. Preventing layer-3 wormhole attacks in ad-hoc networks with multipath DSR
Ichaba Examining Possible Supplementary Nature of Routing Protocols in Mobile Ad-hoc Networks (MANETs): A Discussion
Pahal et al. A Cryptographic Handshaking Approach to Prevent Wormhole Attack in MANET
Schweitzer et al. Detecting bottlenecks on-the-fly in OLSR based MANETs
Hu et al. A robust fixed path-based routing scheme for protecting the source location privacy in WSNs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载