+

CN107067121A - A kind of improvement grey wolf optimized algorithm based on multiple target - Google Patents

A kind of improvement grey wolf optimized algorithm based on multiple target Download PDF

Info

Publication number
CN107067121A
CN107067121A CN201710443537.9A CN201710443537A CN107067121A CN 107067121 A CN107067121 A CN 107067121A CN 201710443537 A CN201710443537 A CN 201710443537A CN 107067121 A CN107067121 A CN 107067121A
Authority
CN
China
Prior art keywords
wolf
mrow
pack
wolves
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710443537.9A
Other languages
Chinese (zh)
Inventor
孟安波
林艺城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710443537.9A priority Critical patent/CN107067121A/en
Publication of CN107067121A publication Critical patent/CN107067121A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Computational Linguistics (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Stored Programmes (AREA)

Abstract

本发明实施例公开了一种基于多目标的改进灰狼优化算法,用于解决现有技术中的标准灰狼算法在处理多目标优化问题时存在着收敛速度慢、容易陷入局部最优值等缺陷的技术问题。本发明实施例方法包括:S1、设置狼群初始化参数及方向修正概率,随机初始化狼个体的位置;S2、根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体;S3、优化狼群狼个体的位置,产生中庸狼,并更新狼群位置;S4、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,获得修正后的狼群位置;S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。

The embodiment of the present invention discloses an improved gray wolf optimization algorithm based on multi-objective, which is used to solve the problems of slow convergence speed and easy to fall into local optimal value in the standard gray wolf algorithm in the prior art when dealing with multi-objective optimization problems. Defective technical issues. The method of the embodiment of the present invention includes: S1, setting the wolf group initialization parameters and direction correction probability, and randomly initializing the position of the wolf individual; S2, calculating the fitness value of each wolf individual according to the solution target, and selecting the top three wolves Individual; S3. Optimizing the position of wolves in the wolf pack, generating moderate wolves, and updating the position of the wolf pack; S4. Performing the direction correction operation on the updated wolf pack and controlling the scale of the updated wolf pack participating in the correction dimension according to the direction correction probability , to obtain the corrected wolf pack position; S5, determine whether the number of iterations reaches the preset maximum number of iterations, if so, output the corrected wolf pack position as the final optimization result, otherwise, go to S3 to continue iterative search.

Description

一种基于多目标的改进灰狼优化算法An Improved Gray Wolf Optimization Algorithm Based on Multi-objective

技术领域technical field

本发明涉及多目标优化算法技术领域,尤其涉及一种基于多目标的改进灰狼优化算法。The invention relates to the technical field of multi-objective optimization algorithms, in particular to an improved gray wolf optimization algorithm based on multi-objectives.

背景技术Background technique

随着系统工程理论研究的日趋成熟和现代计算机技术在多目标优化领域的不断发展与应用,各种新方法和新技术也层出不穷。常见的方法主要分为两大类:一类是将多目标转化为单目标方法,主要有权重系数法,隶属度函数法等。然而,权系数设置的合理性和有效性是权重系数法面临的难题,并且无法有效处理具有非凸前沿的目标;隶属度函数法则具有构造合理性的缺陷。另一类是利用启发式算法直接对多目标问题进行求解,如快速非支配排序遗传算法(non-dominated sorting genetic algorithm,NSGAⅡ)、增强帕累托进化算法(strength pareto evolutionary algorithm 2,SPEA2)等。With the development and application of modern computer technology in the field of multi-objective optimization, various new methods and technologies emerge in an endless stream as the research on system engineering theory matures day by day. Common methods are mainly divided into two categories: one is to transform multi-objective into single-objective methods, mainly including weight coefficient method and membership function method. However, the rationality and effectiveness of the weight coefficient setting is a difficult problem for the weight coefficient method, and it cannot effectively deal with the target with a non-convex frontier; the membership function method has the defect of constructing rationality. The other is to use heuristic algorithms to directly solve multi-objective problems, such as fast non-dominated sorting genetic algorithm (NSGAⅡ), enhanced Pareto evolutionary algorithm (strength pareto evolutionary algorithm 2, SPEA2), etc. .

权系数设置的合理性和有效性是权重系数法面临的难题,并且无法有效处理具有非凸前沿的目标;隶属度函数法则具有构造合理性的缺陷。另一类是利用启发式算法直接对多目标问题进行求解,如快速非支配排序遗传算法(non-dominated sorting geneticalgorithm,NSGAⅡ)、增强帕累托进化算法(strength pareto evolutionary algorithm2,SPEA2)等。NSGAⅡ基于快速非支配排序、外部存档和根据拥挤距离选择父本等策略,在一定程度上保证了种群的多样性和提高计算效率,然而以遗传算法为核心的NSGAⅡ算法难免继承了遗传算法容易出现早熟收敛的缺陷。SPEA2算法在单次运行中便有机会找到多个Pareto最优解,因而被广泛地应用于各种多目标优化问题,然而该算法过于注重全局搜索能力,却忽视了局部搜索能力,导致该算法存在收敛速度较慢、解集精度偏低等不足。特别是当面临存在大量局部最优点的多峰优化问题时,收敛不到全局最优值的问题尤为突出。The rationality and effectiveness of the weight coefficient setting is a difficult problem for the weight coefficient method, and it cannot effectively deal with the target with non-convex frontier; the membership function rule has the defect of constructing rationality. The other is to use heuristic algorithms to directly solve multi-objective problems, such as fast non-dominated sorting genetic algorithm (NSGA II), enhanced Pareto evolution algorithm (strength pareto evolutionary algorithm2, SPEA2) and so on. Based on strategies such as fast non-dominated sorting, external archiving, and selection of male parents based on crowding distance, NSGA II ensures the diversity of the population and improves computational efficiency to a certain extent. The defect of premature convergence. The SPEA2 algorithm has the opportunity to find multiple Pareto optimal solutions in a single run, so it is widely used in various multi-objective optimization problems. It has the disadvantages of slow convergence speed and low accuracy of solution set. Especially when faced with a multimodal optimization problem with a large number of local optimum points, the problem of not converging to the global optimum is particularly prominent.

灰狼算法(Grey Wolf Optimizer,GWO)是由Mirjalili等人于2014年所提出的新型群体智能优化算法,该算法具有结构简单、控制参数少、易于操作、有较强的搜索能力等特点,在优化领域,已被证明在计算效率和求解精度上均优于粒子群算法,然而该算法在寻优过程中仍存在容易陷入局部最优的缺陷。此外,当前国内外针对灰狼算法解决多目标优化问题的研究依然尚未深入展开。仅有毛森茂等人采用多目标灰狼算法解决电网碳—能复合流优化调度问题,并获得相对较好的Pareto前沿,然而该算法并没有针对在实际迭代过程中外部存档内的占优狼其部分维容易陷入局部最优问题进行改进。Gray Wolf Optimizer (GWO) is a new swarm intelligence optimization algorithm proposed by Mirjalili et al. in 2014. This algorithm has the characteristics of simple structure, few control parameters, easy operation, and strong search ability. In the field of optimization, it has been proved that it is superior to the particle swarm optimization algorithm in terms of computational efficiency and solution accuracy. However, the algorithm still has the defect that it is easy to fall into local optimum in the optimization process. In addition, the current domestic and foreign research on the gray wolf algorithm for solving multi-objective optimization problems is still not in-depth. Only Mao Senmao et al. used the multi-objective gray wolf algorithm to solve the optimal scheduling problem of carbon-energy composite flow in the power grid, and obtained a relatively good Pareto front. However, this algorithm did not target the dominant wolf in the external archive during the actual iteration process. Some of its dimensions are easy to fall into local optimal problems for improvement.

现有技术中,标准灰狼算法在处理多目标优化问题自身仍存在固有的收敛速度慢、容易陷入局部最优值等缺陷。In the existing technology, the standard gray wolf algorithm still has inherent defects such as slow convergence speed and easy to fall into local optimum when dealing with multi-objective optimization problems.

发明内容Contents of the invention

本发明实施例提供了一种基于多目标的改进灰狼优化算法,解决了现有技术中的标准灰狼算法在处理多目标优化问题时存在着收敛速度慢、容易陷入局部最优值等缺陷的技术问题。The embodiment of the present invention provides an improved gray wolf optimization algorithm based on multi-objective, which solves the shortcomings of the standard gray wolf algorithm in the prior art, such as slow convergence speed and easy to fall into local optimum when dealing with multi-objective optimization problems. technical problems.

本发明实施例提供的一种基于多目标的改进灰狼优化算法,包括:A kind of improved gray wolf optimization algorithm based on multi-objective that the embodiment of the present invention provides, comprises:

S1、设置狼群的初始化参数及方向修正概率,在解空间中随机初始化每个狼个体的位置;S1. Set the initialization parameters and direction correction probability of the wolf group, and randomly initialize the position of each wolf individual in the solution space;

S2、根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδS2. Calculate the fitness value of each wolf individual according to the solution goal, and select the top three wolf individuals to assign X α , X β , and X δ in turn;

S3、根据Xα、Xβ、Xδ优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和更新狼群位置;S3. According to X α , X β , and X δ , optimize the position of each individual wolf in the wolf pack, generate moderate wolves, and calculate the fitness value of moderate wolves and update the position of the wolf pack;

S4、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,获得修正后的狼群位置;S4. Perform the direction correction operation on the updated wolves and control the size of the updated wolves participating in the correction dimension according to the direction correction probability, generate new moderate wolves, and calculate the fitness value of the new moderate wolves to obtain the corrected pack position;

S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。S5. Determine whether the number of iterations reaches the preset maximum number of iterations. If yes, output the corrected wolf pack position as the final optimization result; otherwise, go to S3 to continue the iterative search.

可选地,S1具体包括:Optionally, S1 specifically includes:

设置狼群的大小M、最大迭代次数max gen及方向修正概率pv,在解空间中随机初始化每个狼个体的位置。Set the size M of the wolf pack, the maximum number of iterations max gen and the direction correction probability p v , and randomly initialize the position of each wolf individual in the solution space.

可选地,S2具体包括:Optionally, S2 specifically includes:

根据求解目标计算每个狼个体的适应度值,并依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδCalculate the fitness value of each wolf individual according to the solution goal, and select the top three wolf individuals according to the fast non-inferior solution sorting operation, crowding distance calculation, and elite retention strategy to assign X α , X β , and X δ in turn.

可选地,快速非劣解排序操作具体包括:Optionally, the fast non-inferior solution sorting operation specifically includes:

找到狼群中的非支配解集,将非支配解集标记为第一非支配层F1并将非支配解集中的所有狼个体赋予第一非支配序值,并将所有狼个体剔除;Find the non-dominated solution set in the wolf pack, mark the non-dominated solution set as the first non-dominated layer F1 and assign the first non-dominated sequence value to all wolves in the non-dominated solution set, and remove all wolves;

在剔除后的狼群中找出下一层非支配解集并进行标记、非支配序值赋予操作及剔除操作;Find the next layer of non-dominated solution sets in the eliminated wolves and perform marking, non-dominated sequence value assignment operations and elimination operations;

依次持续进行对狼群进行非支配解集分层、标记、非支配序值赋予操作及剔除操作,直至整个狼群被完全分层并使得同一非支配层内的狼个体具有相同的非支配序值。Continue to perform non-dominated disassembly stratification, marking, non-dominated sequence value assignment and elimination operations on the wolf pack in sequence until the entire wolf pack is completely stratified and the wolves in the same non-dominated layer have the same non-dominated sequence. value.

可选地,拥挤距离计算具体包括:Optionally, the calculation of the crowding distance specifically includes:

初始化同一非支配层内的狼个体的距离,令狼个体i的拥挤距离L[i]d为0;Initialize the distance of wolf individuals in the same non-dominated layer, so that the crowding distance L[i] d of wolf individual i is 0;

同一非支配层内的狼个体按第m个目标值进行递增排序;Wolf individuals in the same non-dominant layer are sorted incrementally according to the mth target value;

给定边缘上的两只狼个体赋予一个大数Inf,使两只狼个体具有绝对选择优势;A large number Inf is given to the two wolves on the given edge, so that the two wolves have an absolute selection advantage;

对排序中间的狼个体根据公式八求排序中间的狼个体的拥挤距离,公式八具体为:For the wolf individuals in the middle of the sorting, the crowding distance of the wolf individuals in the middle of the sorting is calculated according to formula 8. Formula 8 is specifically:

其中,Nobj为目标数,分别为第i+1和第i-1只狼个体的第m个适应度值,分别为非劣解集中第m个适应度值的最大值和最小值。Among them, N obj is the target number, are the mth fitness value of the i+1th and i-1th wolf individuals respectively, are the maximum and minimum values of the mth fitness value in the non-inferior solution set, respectively.

可选地,S3具体包括:Optionally, S3 specifically includes:

根据Xα、Xβ、Xδ通过狼群包围和狼群猎捕的步骤优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择性更新狼群位置。According to X α , X β , X δ , the position of each wolf individual in the wolf pack is optimized through the steps of wolf pack encirclement and wolf pack hunting, and a moderate wolf is generated, and the fitness value of the moderate wolf is calculated and sorted according to the fast non-inferior solution , Calculation of crowding distance, selective updating of wolves' positions by elite retention strategy.

可选地,S3与S4之间还包括:Optionally, between S3 and S4 also includes:

对更新后的狼群的所有狼个体的每一维通过公式九执行归一化操作,公式九具体为:Perform a normalization operation on each dimension of all wolf individuals in the updated wolf pack through Formula 9, and Formula 9 is specifically:

其中,D为维数,为狼的第d维变量,归一化后所对应的标量,max(d)、min(d)分别为狼群中第d维变量的上下限。Among them, D is the dimension, for the wolf The d-th dimension variable of , for The corresponding scalars after normalization, max(d) and min(d) are respectively the upper and lower limits of the d-th dimension variable in the wolf pack.

可选地,S4具体包括:Optionally, S4 specifically includes:

对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,根据快速非劣解排序操作、拥挤距离计算、精英保留策略择优保留狼个体位置,并根据狼群中的狼个体排名,将狼群划分为Xα、Xβ、Xδ、Xω,获得修正后的狼群位置。Perform the direction correction operation on the updated wolves and control the size of the updated wolves participating in the correction dimension according to the direction correction probability, generate new moderate wolves, and calculate the fitness value of the new moderate wolves, sort according to the fast non-inferior solution Operation, crowding distance calculation, and elite retention strategy select the optimal position of wolf individuals, and divide the wolf pack into X α , X β , X δ , X ω according to the ranking of wolf individuals in the wolf pack, and obtain the corrected wolf pack positions.

可选地,对更新后的狼群执行方向修正操作具体包括:Optionally, performing a direction correction operation on the updated wolf pack specifically includes:

通过公式十对更新后的狼群执行方向修正操作,公式十具体为:Perform the direction correction operation on the updated wolves through Formula 10. Formula 10 is specifically:

其中,d1,d2∈(1,D),r为0到1的随机数,为中庸狼个体标量的第d1维;Among them, d 1 , d 2 ∈ (1, D), r is a random number from 0 to 1, is the mean wolf individual scalar The d1th dimension of ;

对产生的中庸狼个体标量的每一维通过公式十一进行反归一化操作,公式十一具体为:For each dimension of the generated moderate wolf individual scalar, the denormalization operation is performed through formula 11. Formula 11 is specifically:

其中,为中庸狼的第d维。in, mean wolf The d-th dimension of .

可选地,S5具体包括:Optionally, S5 specifically includes:

判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,并结合模糊决策方法选择最优折中解,否则,转至S3继续进行迭代搜索。Judging whether the number of iterations reaches the preset maximum number of iterations, if so, output the corrected wolf pack position as the final optimization result, and combine the fuzzy decision-making method to select the optimal compromise solution, otherwise, go to S3 to continue iterative search.

从以上技术方案可以看出,本发明实施例具有以下优点:It can be seen from the above technical solutions that the embodiments of the present invention have the following advantages:

本发明实施例提供了一种基于多目标的改进灰狼优化算法,包括:S1、设置狼群的初始化参数及方向修正概率,在解空间中随机初始化每个狼个体的位置;S2、根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、Xδ;S3、根据Xα、Xβ、Xδ优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和更新狼群位置;S4、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,获得修正后的狼群位置;S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。本发明实施例中通过利用纵横交叉算法中纵向交叉操作处理部分维容易陷入局部最优问题的独有优势,在标准灰狼算法基础上,融入方向修正操作(纵向交叉操作),提供一种新的狼群位置更新方法,以帮助部分陷入局部最优的维摆脱当前困局,修正狼群的前进方向,增强算法的全局收敛性,解决了现有技术中的标准灰狼算法在处理多目标优化问题时存在着收敛速度慢、容易陷入局部最优值等缺陷的技术问题。The embodiment of the present invention provides an improved gray wolf optimization algorithm based on multi-objective, including: S1, setting the initialization parameters and direction correction probability of wolves, and randomly initializing the position of each wolf individual in the solution space; S2, according to the solution The goal is to calculate the fitness value of each wolf individual, and select the top three wolf individuals to assign X α , X β , X δ in turn; S3, optimize each wolf individual in the wolf pack according to X α , X β , X δ , generate moderate wolves, and calculate the fitness value of moderate wolves and update the position of wolves; S4, perform direction correction operation on the updated wolves and control the scale of the updated wolves participating in the correction dimension according to the direction correction probability, Generate a new moderate wolf, and calculate the fitness value of the new moderate wolf, and obtain the corrected wolf pack position; S5, judge whether the number of iterations reaches the preset maximum number of iterations, if so, output the corrected wolf pack position as the final Optimize the result, otherwise, go to S3 to continue the iterative search. In the embodiment of the present invention, by using the unique advantage of the vertical cross operation in the vertical cross algorithm to deal with some dimensions that are easy to fall into the local optimum problem, on the basis of the standard gray wolf algorithm, the direction correction operation (vertical cross operation) is integrated to provide a new The method for updating the position of wolves in order to help some of the dimensions trapped in the local optimum get rid of the current predicament, correct the direction of the wolves, enhance the global convergence of the algorithm, and solve the problem of the standard gray wolf algorithm in the prior art when dealing with multi-objectives. There are technical problems such as slow convergence speed and easy to fall into local optimum when optimizing problems.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative efforts.

图1为本发明实施例提供的灰狼算法中具体狼群社会等级及主要职责示意图;Fig. 1 is a schematic diagram of the social level and main responsibilities of specific wolves in the gray wolf algorithm provided by the embodiment of the present invention;

图2为本发明实施例提供的灰狼算法的狼群位置更新过程示意图;Fig. 2 is a schematic diagram of the wolf group position update process of the gray wolf algorithm provided by the embodiment of the present invention;

图3为本发明实施例提供的一种基于多目标的改进灰狼优化算法的一个实施例的流程示意图;Fig. 3 is a schematic flow chart of an embodiment of an improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention;

图4为本发明实施例提供的一种基于多目标的改进灰狼优化算法的另一个实施例的流程示意图;Fig. 4 is a schematic flow chart of another embodiment of a multi-objective-based improved gray wolf optimization algorithm provided by an embodiment of the present invention;

图5为本发明实施例提供的一种计及与忽略阀点效应的火电厂耗量特性曲线对比图;Fig. 5 is a comparison diagram of a thermal power plant consumption characteristic curve considering and ignoring the valve point effect provided by the embodiment of the present invention;

图6为本发明实施例提供的热电联产机组的热电耦合关系示意图;Fig. 6 is a schematic diagram of the thermoelectric coupling relationship of the cogeneration unit provided by the embodiment of the present invention;

图7为本发明实施例提供的各种算法最佳Pareto最优前沿对比示意图。Fig. 7 is a schematic diagram of comparison of optimal Pareto optimal frontiers of various algorithms provided by the embodiment of the present invention.

具体实施方式detailed description

本发明实施例提供了一种基于多目标的改进灰狼优化算法,用于解决现有技术中的标准灰狼算法在处理多目标优化问题时存在着收敛速度慢、容易陷入局部最优值等缺陷的技术问题。The embodiment of the present invention provides an improved gray wolf optimization algorithm based on multi-objective, which is used to solve the problems of slow convergence speed and easy to fall into local optimal value in the standard gray wolf algorithm in the prior art when dealing with multi-objective optimization problems. Defective technical issues.

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the following The described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

为了便于理解,以下将简单介绍灰狼算法的基本原理。For ease of understanding, the basic principles of the gray wolf algorithm will be briefly introduced below.

作为犬科类动物,灰狼在自然界中位于食物链的顶端,常被视为顶级猎食者。其生活方式大多喜欢群居,且每个狼群通常平均有5~12头狼,在日常生活中,尤其是外出捕猎,它们遵循着极其严格的社会等级和任务分工制度,如在灰狼算法中,等级最高的称为头狼并记为α,主要负责领导整个狼群,并在狩猎过程制定决策,β狼处于狼群的第二阶层,其作用为协助α做出决策,δ狼则为狼群的第三阶层,主要负责侦查、警戒、打围、看守等任务,剩余狼群为ω,位于整个狼群最底层,服从于其它高阶层狼的命令,并根据指示开展相关的群体狩猎行动。具体狼群社会等级及主要职责如图1所示。As a canine animal, the gray wolf is at the top of the food chain in nature and is often regarded as the top predator. Most of their lifestyles like to live in groups, and each wolf pack usually has an average of 5 to 12 wolves. In daily life, especially when they go hunting, they follow an extremely strict social hierarchy and task division system, such as in the gray wolf algorithm. , the highest level is called the alpha wolf and is recorded as α, which is mainly responsible for leading the entire wolf pack and making decisions during the hunting process. The third level of the wolf pack is mainly responsible for tasks such as investigation, vigilance, besieging, and guarding. The remaining wolf pack is ω, which is located at the bottom of the entire wolf pack. It obeys the orders of other high-level wolves and carries out related group hunting operations according to the instructions. . The specific social levels and main responsibilities of the wolves are shown in Figure 1.

在每次迭代中,适应度最优的个体被赋予Xα,次优个体被赋予Xβ,第三名个体被定义为Xδ,其余个体设为Xω。GWO算法仿生狼群狩猎过程主要分为三个步骤,即包围、猎捕和攻击,其具体步骤如下。In each iteration, the individual with the best fitness is assigned to X α , the second-best individual is assigned to X β , the third individual is defined as X δ , and the rest of the individuals are assigned to X ω . The GWO algorithm bionic wolf pack hunting process is mainly divided into three steps, namely encirclement, hunting and attack, and the specific steps are as follows.

1、包围1. Surrounded

狼群在执行狩猎任务时,首先对猎物进行包围,该过程的数学模型可表示为:When wolves perform hunting tasks, they first surround the prey. The mathematical model of this process can be expressed as:

式中,t为当前狼群代数,为狼与猎物之间的距离向量;为摆动因子向量,为猎物当前位置(全局最优解向量),为狼所在位置(潜在解向量)。的值由公式(3)、(4)计算得到:In the formula, t is the current wolf group algebra, is the distance vector between the wolf and the prey; with is the swing factor vector, is the current position of the prey (the global optimal solution vector), is the position of the wolf (potential solution vector). with The value of is calculated by formulas (3) and (4):

式中,表征取值范围为[0,1]的随机向量,向量的值a随迭代次数由2线性递减到0。In the formula, Characterizes a random vector with a value range of [0,1], The value a of the vector decreases linearly from 2 to 0 with the number of iterations.

2、猎捕2. Hunting

在包围猎物后,狼群将执行猎捕行动,为更有方向性地搜寻到猎物的位置,该行动通常是由α、β、δ来引导,其它ω狼则依据α、β、δ的指示来更新它们各自的位置。具体更新表达式为:After encircling the prey, the wolves will execute the hunting action. In order to search for the location of the prey in a more directional way, this action is usually guided by α, β, δ, and other ω wolves follow the instructions of α, β, δ to update their respective positions. The specific update expression is:

式中,分别为ω狼与α、β、δ之间的距离向量,为更新后的狼位置,位置更新过程如图2所示。In the formula, are the distance vectors between ω wolf and α, β, δ respectively, For the updated wolf position, the position update process is shown in Figure 2.

3、攻击3. Attack

狼群狩猎的最后将进入攻击阶段,该阶段狼群的主要任务是完成抓捕猎物这一目标,即灰狼算法获取全局最优解。该过程的实现方式主要为:随着式(3)中的值从2线性递减到0,相应地,的值也将取得介于[-2a,2a]内的任意数。当时,狼群处于集中攻击猎物的状态,而当时,狼群将会从猎物所在的位置逐渐分散开去,导致灰狼算法失去最优解位置,进而转入到寻找其它局部最优解的过程中去,这也是灰狼算法容易陷入局部最优解,且收敛时间冗长的问题所在。At the end of the wolf pack hunting, it will enter the attack stage. The main task of the wolf pack at this stage is to complete the goal of catching prey, that is, the gray wolf algorithm obtains the global optimal solution. The implementation of this process is mainly as follows: with the formula (3) The value of is linearly decreased from 2 to 0, correspondingly, The value of will also take any number between [-2a,2a]. when When , the wolves are in the state of concentrating on attacking prey, and when At this time, the wolf pack will gradually disperse from the location of the prey, causing the gray wolf algorithm to lose the optimal solution position, and then turn to the process of finding other local optimal solutions, which is why the gray wolf algorithm is easy to fall into the local optimal solution. The problem is that the solution is optimal and the convergence time is long.

以上为对灰狼算法的基本原理的简要描述,以下将对本发明实施例提供的一种基于多目标的改进灰狼优化算法的一个实施例进行详细描述。The above is a brief description of the basic principle of the gray wolf algorithm, and an embodiment of an improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention will be described in detail below.

请参阅图3,本发明实施例提供的一种基于多目标的改进灰狼优化算法,包括:Please refer to Fig. 3, a kind of improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention, comprises:

S1、设置狼群的初始化参数及方向修正概率,在解空间中随机初始化每个狼个体的位置;S1. Set the initialization parameters and direction correction probability of the wolf group, and randomly initialize the position of each wolf individual in the solution space;

首先,设置狼群的初始化参数(如狼群的大小、以及算法的最大迭代次数等)及方向修正概率,并在求解目标的解空间中随机初始化每个狼个体的位置。First, set the initialization parameters of the wolf pack (such as the size of the wolf pack, the maximum number of iterations of the algorithm, etc.) and the direction correction probability, and randomly initialize the position of each wolf individual in the solution space of the solution target.

S2、根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδS2. Calculate the fitness value of each wolf individual according to the solution goal, and select the top three wolf individuals to assign X α , X β , and X δ in turn;

在设置狼群的初始化参数及方向修正概率,以及在解空间中随机初始化完毕每个狼个体的位置之后,根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδAfter setting the initialization parameters and direction correction probability of the wolf group, and randomly initializing the position of each wolf individual in the solution space, calculate the fitness value of each wolf individual according to the solution goal, and select the top three wolves Individuals assign X α , X β , and X δ sequentially.

S3、根据Xα、Xβ、Xδ优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和更新狼群位置;S3. According to X α , X β , and X δ , optimize the position of each individual wolf in the wolf pack, generate moderate wolves, and calculate the fitness value of moderate wolves and update the position of the wolf pack;

在获得了排名靠前的三只狼后,根据Xα、Xβ、Xδ通过上述的式(1-7)优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和更新狼群位置,即执行狼群的包围和猎捕行为。After obtaining the top three wolves, according to X α , X β , and X δ , optimize the position of each wolf individual in the wolf pack through the above formula (1-7), generate a moderate wolf, and calculate the fitness of the moderate wolf The degree value and update the position of the wolves, that is, to execute the siege and hunting behavior of the wolves.

S4、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,获得修正后的狼群位置;S4. Perform the direction correction operation on the updated wolves and control the size of the updated wolves participating in the correction dimension according to the direction correction probability, generate new moderate wolves, and calculate the fitness value of the new moderate wolves to obtain the corrected pack position;

在产生了中庸狼以及更新狼群位置后,对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,获得修正后的狼群位置。After generating the moderate wolves and updating the position of the wolves, perform the direction correction operation on the updated wolves and control the scale of the updated wolves participating in the correction dimension according to the direction correction probability, generate new moderate wolves, and calculate the new moderate The fitness value of wolves to obtain the corrected wolf pack position.

S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。S5. Determine whether the number of iterations reaches the preset maximum number of iterations. If yes, output the corrected wolf pack position as the final optimization result; otherwise, go to S3 to continue the iterative search.

最后,判断改进灰狼算法的迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。Finally, it is judged whether the number of iterations of the improved gray wolf algorithm reaches the preset maximum number of iterations, and if so, output the corrected wolf pack position as the final optimization result, otherwise, go to S3 to continue iterative search.

本发明实施例提供了一种基于多目标的改进灰狼优化算法,包括:S1、设置狼群的初始化参数及方向修正概率,在解空间中随机初始化每个狼个体的位置;S2、根据求解目标计算每个狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、Xδ;S3、根据Xα、Xβ、Xδ优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和更新狼群位置;S4、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,获得修正后的狼群位置;S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。本发明实施例中通过利用纵横交叉算法中纵向交叉操作处理部分维容易陷入局部最优问题的独有优势,在标准灰狼算法基础上,融入方向修正操作(纵向交叉操作),提供一种新的狼群位置更新方法,以帮助部分陷入局部最优的维摆脱当前困局,修正狼群的前进方向,增强算法的全局收敛性,解决了现有技术中的标准灰狼算法在处理多目标优化问题时存在着收敛速度慢、容易陷入局部最优值等缺陷的技术问题。The embodiment of the present invention provides an improved gray wolf optimization algorithm based on multi-objective, including: S1, setting the initialization parameters and direction correction probability of wolves, and randomly initializing the position of each wolf individual in the solution space; S2, according to the solution The goal is to calculate the fitness value of each wolf individual, and select the top three wolf individuals to assign X α , X β , X δ in turn; S3, optimize each wolf individual in the wolf pack according to X α , X β , X δ , generate moderate wolves, and calculate the fitness value of moderate wolves and update the position of wolves; S4, perform direction correction operation on the updated wolves and control the scale of the updated wolves participating in the correction dimension according to the direction correction probability, Generate a new moderate wolf, and calculate the fitness value of the new moderate wolf, and obtain the corrected wolf pack position; S5, judge whether the number of iterations reaches the preset maximum number of iterations, if so, output the corrected wolf pack position as the final Optimize the result, otherwise, go to S3 to continue the iterative search. In the embodiment of the present invention, by using the unique advantage of the vertical cross operation in the vertical cross algorithm to deal with some dimensions that are easy to fall into the local optimum problem, on the basis of the standard gray wolf algorithm, the direction correction operation (vertical cross operation) is integrated to provide a new The method for updating the position of wolves in order to help some of the dimensions trapped in the local optimum get rid of the current predicament, correct the direction of the wolves, enhance the global convergence of the algorithm, and solve the problem of the standard gray wolf algorithm in the prior art when dealing with multi-objectives. There are technical problems such as slow convergence speed and easy to fall into local optimum when optimizing problems.

以上为对本发明实施例提供的一种基于多目标的改进灰狼优化算法的一个实施例的详细描述,以下将对本发明实施例提供的一种基于多目标的改进灰狼优化算法的另一个实施例进行详细的描述。The above is a detailed description of an embodiment of an improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention, and another implementation of the improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention will be described below Examples are described in detail.

请参阅图4,本发明实施例提供的一种基于多目标的改进灰狼优化算法的另一个实施例,包括:Referring to Fig. 4, another embodiment of a multi-objective-based improved gray wolf optimization algorithm provided by an embodiment of the present invention includes:

201、设置狼群的大小M、最大迭代次数max gen及方向修正概率pv,在解空间中随机初始化每个狼个体的位置;201. Set the size M of the wolf pack, the maximum number of iterations max gen and the direction correction probability p v , and randomly initialize the position of each wolf individual in the solution space;

首先,设置狼群的初始化参数(如狼群的大小M、以及算法的最大迭代次数max gen等)及方向修正概率pv,并在求解目标的解空间中随机初始化每个狼个体的位置。First, set the initialization parameters of the wolf pack (such as the size M of the wolf pack, and the maximum number of iterations max gen of the algorithm, etc.) and the direction correction probability p v , and randomly initialize the position of each wolf individual in the solution space of the solution target.

202、根据求解目标计算每个狼个体的适应度值,并依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择排名靠前的三只狼个体依次赋予Xα、Xβ、Xδ202. Calculate the fitness value of each wolf individual according to the solution goal, and select the top three wolf individuals according to the fast non-inferior solution sorting operation, crowding distance calculation, and elite retention strategy to assign X α , X β , and X δ in turn ;

在设置狼群的初始化参数及方向修正概率,以及在解空间中随机初始化完毕每个狼个体的位置之后,根据求解目标计算每个狼个体的适应度值,并依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδAfter setting the initialization parameters and direction correction probability of the wolf group, and randomly initializing the position of each wolf individual in the solution space, the fitness value of each wolf individual is calculated according to the solution target, and the sorting operation is performed according to the fast non-inferior solution, Crowding distance calculation, elite retention strategy selection of the top three wolf individuals are given X α , X β , X δ in turn.

具体的,以下将对快速非劣解排序操作、拥挤距离计算、精英保留策略进行详细的阐述。Specifically, the fast non-inferior solution sorting operation, congestion distance calculation, and elite retention strategy will be described in detail below.

快速非支配排序操作:为引导狼群位置更新朝Pareto最优解集方向前进,须对狼群进行快速非支配排序操作,该操作是一个循环的适应度分层过程。具体为:首先找出狼群中的非支配解集,记为第一非支配层F1,其次,将该解集中所有狼个体赋予非支配序(式中,irank表征个体i的非支配序值),并从整个狼群中剔除;随后继续从余下狼群中找出下一层非支配解集,同理记为第二非支配层F2,狼个体被赋予非支配序irank=2,并从狼群除去;依次类推,直到整个狼群被分层,同层内的狼个体具有相同的非支配序irank。即可分以下步骤进行:找到狼群中的非支配解集,将非支配解集标记为第一非支配层F1并将非支配解集中的所有狼个体赋予第一非支配序值,并将所有狼个体剔除;在剔除后的狼群中找出下一层非支配解集并进行标记、非支配序值赋予操作及剔除操作;依次持续进行对狼群进行非支配解集分层、标记、非支配序值赋予操作及剔除操作,直至整个狼群被完全分层并使得同一非支配层内的狼个体具有相同的非支配序值。Fast non-dominated sorting operation: In order to guide the position update of the wolves towards the Pareto optimal solution set, a fast non-dominated sorting operation must be performed on the wolves. This operation is a cyclic fitness stratification process. Specifically: first find out the non-dominated solution set in the wolf group, which is recorded as the first non-dominated layer F1, and secondly, assign non-dominated ranks to all wolf individuals in the solution set (where i rank represents the non-dominated rank of individual i Value), and removed from the entire wolf group; then continue to find the next level of non-dominated solution set from the remaining wolves, similarly recorded as the second non-dominated layer F2, wolf individuals are given non-dominated rank i rank =2 , and removed from the wolf group; and so on, until the whole wolf group is stratified, and the wolf individuals in the same layer have the same non-dominant rank i rank . It can be divided into the following steps: find the non-dominated solution set in the wolf group, mark the non-dominated solution set as the first non-dominated layer F1 and assign the first non-dominated sequence value to all wolves in the non-dominated solution set, and set Eliminate all wolves; find the next level of non-dominated disassembly in the eliminated wolf group and perform marking, non-dominated order value assignment and elimination operations; continue to carry out non-dominated disassembly layering and marking on the wolf group in sequence , Non-dominated order value assignment operation and elimination operation, until the whole wolf group is completely stratified and the wolves in the same non-dominated layer have the same non-dominated order value.

个体拥挤距离计算:针对快速非支配排序操作对同层非支配解集无法进行选择性排序问题,引入个体拥挤距离计算操作。狼个体拥挤距离指的是目标空间上与个体i相邻的两个狼个体i-1和i+1之间的距离,具体步骤如下:Calculation of individual crowding distance: Aiming at the problem that the fast non-dominated sorting operation cannot perform selective sorting on non-dominated solution sets of the same layer, an individual crowded distance calculation operation is introduced. The wolf individual crowding distance refers to the distance between two wolf individuals i-1 and i+1 adjacent to individual i in the target space, and the specific steps are as follows:

①初始化同层狼个体的距离,即令狼个体i的拥挤距离L[i]d为0;①Initialize the distance of wolf individuals in the same layer, that is, the crowding distance L[i] d of wolf individual i is 0;

②同层狼个体按第m个目标值进行递增排序;②Wolf individuals in the same layer are sorted incrementally according to the m-th target value;

③给定边缘上的两只狼个体赋予一个大数Inf,使其具有绝对选择优势;③The two wolf individuals on the given edge are given a large number Inf, so that they have an absolute selection advantage;

④对排序中间的狼个体根据式(8)求其拥挤距离:④ Calculate the crowding distance of wolf individuals in the middle according to formula (8):

式中:Nobj为目标数,分别为第i+1和第i-1只狼个体的第m个适应度值,分别为该非劣解集中第m个适应度值的最大和最小值。In the formula: N obj is the target number, are the mth fitness value of the i+1th and i-1th wolf individuals respectively, are the maximum and minimum values of the mth fitness value in the non-inferior solution set, respectively.

⑤同理,对不同目标函数,重复步骤②~④,即可得到该非劣解集中狼个体i的拥挤距离。⑤Similarly, for different objective functions, repeat steps ②~④ to get the crowding distance of wolf individual i in the non-inferior solution set.

精英保留策略:在捕猎阶段,为赋予狼个体一定程度的自主性,在狼群位置更新时,将根据“适者生存,优胜劣汰”的进化法则,只有位置更好的狼,即排前M名的狼个体能保留下来,成为占优狼DS,并参与下一次迭代。Elite retention strategy: In the hunting stage, in order to give individual wolves a certain degree of autonomy, when the position of wolves is updated, according to the evolution law of "survival of the fittest, survival of the fittest", only wolves with better positions, that is, the top M The wolf individuals can be retained, become the dominant wolf DS, and participate in the next iteration.

由此可见,ω狼的位置除了要根据α、β、δ狼的指引外,还将保留一部分的狼自身的贪婪性,进行有选择性的更新自己的位置,因此,在整个狼群朝猎物逼近的同时,将始终保持整个狼群位置最优,这进一步加快了狼群的搜索速度。It can be seen that the position of the ω wolf is not only based on the guidance of the α, β, and δ wolves, but also retains a part of the wolf's own greed and selectively updates its own position. While approaching, the position of the entire wolf pack will always be kept optimal, which further speeds up the search speed of the wolf pack.

203、根据Xα、Xβ、Xδ通过狼群包围和狼群猎捕的步骤优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择性更新狼群位置;203. According to X α , X β , and X δ , optimize the position of each individual wolf in the wolf pack through the steps of wolf pack encirclement and wolf pack hunting, generate moderate wolves, and calculate the fitness value of moderate wolves and based on the fast non-inferior solution Sorting operation, calculation of crowding distance, selective updating of wolves' position by elite retention strategy;

在获得了排名靠前的三只狼后,根据Xα、Xβ、Xδ通过狼群包围和狼群猎捕的步骤优化狼群每个狼个体的位置,产生中庸狼,并计算中庸狼的适应度值和依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择性更新狼群位置。After obtaining the top three wolves, according to X α , X β , and X δ , optimize the position of each individual wolf in the wolf pack through the steps of wolf pack encirclement and wolf pack hunting, generate a mean wolf, and calculate the mean wolf The fitness value of , and the location of wolves are selectively updated according to the fast non-inferior solution sorting operation, crowding distance calculation, and elite retention strategy.

204、对更新后的狼群的所有狼个体的每一维通过公式九执行归一化操作;204. Perform a normalization operation on each dimension of all wolf individuals in the updated wolf pack through Formula 9;

为针对不同量纲和不同上下限的不同维变量直接进行算术交叉无法直接进行算术交叉的问题,在执行方向修正操作前需要统一对更新后的狼群中所有狼个体的每一维执行归一化操作:In order to solve the problem that direct arithmetic crossover cannot be directly performed on different dimension variables with different dimensions and different upper and lower limits, it is necessary to uniformly perform normalization on each dimension of all wolf individuals in the updated wolf pack before performing the direction correction operation. Operation:

其中,D为维数,为狼的第d维变量,归一化后所对应的标量,max(d)、min(d)分别为狼群中第d维变量的上下限。Among them, D is the dimension, for the wolf The d-th dimension variable of , for The corresponding scalars after normalization, max(d) and min(d) are respectively the upper and lower limits of the d-th dimension variable in the wolf pack.

205、对更新后的狼群执行方向修正操作并根据方向修正概率控制更新后的狼群参与修正维的规模,产生新的中庸狼,并计算新的中庸狼的适应度值,根据快速非劣解排序操作、拥挤距离计算、精英保留策略择优保留狼个体位置,并根据狼群中的狼个体排名,将狼群划分为Xα、Xβ、Xδ、Xω,获得修正后的狼群位置;205. Perform the direction correction operation on the updated wolf pack and control the scale of the updated wolf pack participating in the correction dimension according to the direction correction probability, generate new moderate wolves, and calculate the fitness value of the new moderate wolf, according to the fast non-inferiority Solve the sorting operation, calculation of crowding distance, and elite retention strategy to select and retain the wolf individual position, and divide the wolf pack into X α , X β , X δ , X ω according to the ranking of wolf individuals in the wolf pack, and obtain the corrected wolf pack Location;

针对狼群中可能出现部分维陷入局部最优的现象,方向修正操作采用一个方向修正概率pv来控制当前狼群中参与修正维的规模,并且每次修正仅产生一维子代,这有利于协助部分维摆脱维局部最优的同时避免破坏正常维,有效地修正狼群的方向。该过程的模型构建具体为:In view of the phenomenon that some dimensions may fall into local optimum in the wolf pack, the direction correction operation adopts a direction correction probability p v to control the size of the modified dimension in the current wolf pack, and each correction only produces one-dimensional offspring, which has It is beneficial to assist some dimensions to get rid of the local optimum of the dimension while avoiding destroying the normal dimension, and effectively correct the direction of the wolf pack. The model construction of this process is as follows:

假定狼群中狼个体标量的d1,d2维分别为则对它们执行方向修正操作产生中庸狼的d1维可表示为:A scalar of wolves in a hypothetical wolf pack The d 1 , d 2 dimensions are respectively with Then perform the direction correction operation on them to produce the d 1 dimension of the mean wolf can be expressed as:

式中:d1,d2∈(1,D),r为0到1的随机数,为中庸狼个体标量的第d1维。In the formula: d 1 , d 2 ∈ (1, D), r is a random number from 0 to 1, is the mean wolf individual scalar The d1th dimension of .

在执行完方向修正操作后,须对所产生中庸狼个体标量的每一维进行反归一化操作:After performing the direction correction operation, the denormalization operation must be performed on each dimension of the generated mean wolf individual scalar:

式中,为中庸狼的第d维。In the formula, mean wolf The d-th dimension of .

此外,为方便对占优狼群DS和所产生的中庸狼群Xt+1/MS进行有效排序,须对其进行合并,生成个体数为2M的合并狼群CM。In addition, in order to facilitate effective sorting of the dominant wolf pack DS and the generated moderate wolf pack X t+1 /MS, they must be merged to generate a merged wolf pack CM with 2M individuals.

206、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,并结合模糊决策方法选择最优折中解,否则,转至203继续进行迭代搜索。206. Determine whether the number of iterations reaches the preset maximum number of iterations. If yes, output the corrected wolf pack position as the final optimization result, and select the optimal compromise solution in combination with the fuzzy decision-making method; otherwise, go to 203 to continue iterative search.

最后,判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,并结合模糊决策方法选择最优折中解,否则,转至S3继续进行迭代搜索。Finally, it is judged whether the number of iterations reaches the preset maximum number of iterations. If so, the corrected wolf pack position is output as the final optimization result, and the optimal compromise solution is selected in combination with the fuzzy decision-making method. Otherwise, go to S3 to continue the iterative search.

在实际运行中,一般最终实施方案仅有一个。因此,为协助决策者从Pareto最优前沿中选取一个最优折中解,可根据模糊集理论进行确定。其中,每个Pareto解各目标值对应的满意度可由模糊隶属度函数来表示,具体定义如下:In actual operation, generally there is only one final implementation scheme. Therefore, in order to assist decision makers to select an optimal compromise solution from the Pareto optimal frontier, it can be determined according to fuzzy set theory. Among them, the degree of satisfaction corresponding to each target value of each Pareto solution can be expressed by a fuzzy membership function, which is specifically defined as follows:

式中:m∈(1,Nobj),i∈(1,M)fm(xi)为非劣解i的第m个目标函数值。In the formula: m∈(1,N obj ), i∈(1,M)f m ( xi ) is the mth objective function value of the non-inferior solution i.

因此,可由式(13)求得Pareto前沿中各非劣解的标准化满意度为:Therefore, the standardized satisfaction degree of each non-inferior solution in the Pareto front can be obtained by formula (13):

最终通过比较,选择Pareto前沿中满意度最大的解作为最优折中解。Finally, through comparison, the solution with the greatest satisfaction in the Pareto front is selected as the optimal compromise solution.

以上为对本发明实施例提供的一种基于多目标的改进灰狼优化算法的另一个实施例的详细描述,以下将结合一具体的例子验证改进灰狼算法在处理具有多约束、非线性、不可微及包含大量局部最优点的多目标优化问题时的有效性。The above is a detailed description of another embodiment of a multi-objective-based improved gray wolf optimization algorithm provided by the embodiment of the present invention. The following will combine a specific example to verify that the improved gray wolf algorithm has multiple constraints, nonlinearity, and impossible Effectiveness in micro and multi-objective optimization problems involving a large number of local optima.

为验证改进灰狼算法在处理具有多约束、非线性、不可微及包含大量局部最优点的多目标优化问题的有效性,将改进灰狼算法与灰狼算法分别应用于含有4台纯发电火电机组、2台热电联产机组和1台纯发热机组的热电联产电力系统进行仿真分析,该系统考虑了火电纯发电机组的阀点效应、网络损耗、电和热平衡及发热发电约束等,电、热负荷需求分别为700MW和150MWth。算例使用MATLAB R2010b进行程序语言编写;计算机运行环境为Inter(R)CPU G5400、2.49GHz、内存为3.40GB,操作系统为Windows XP Professional。同时,为确保测试结果的合理性并有效验证方向修正操作对标准灰狼算法的影响,因此,除改进灰狼算法独有修正概率pv设为0.4外,改进灰狼算法和灰狼算法均采用相同种群大小50、最大迭代次数500、在100次试验中采用相同初始化种群,并选择各自最优解作为最终Pareto最优前沿。In order to verify the effectiveness of the improved gray wolf algorithm in dealing with multi-objective optimization problems with multi-constraints, nonlinearity, non-differentiability and a large number of local optimum points, the improved gray wolf algorithm and the gray wolf algorithm were respectively applied to The simulation analysis is carried out on the combined heat and power power system of the unit, two cogeneration units and one pure heating unit. , heat load demand are 700MW and 150MWth respectively. The calculation example uses MATLAB R2010b for programming language; the computer operating environment is Inter(R) CPU G5400, 2.49GHz, the memory is 3.40GB, and the operating system is Windows XP Professional. At the same time, in order to ensure the rationality of the test results and effectively verify the influence of the direction correction operation on the standard gray wolf algorithm, therefore, except that the unique correction probability p v of the improved gray wolf algorithm is set to 0.4, both the improved gray wolf algorithm and the gray wolf algorithm are The same population size of 50, the maximum number of iterations of 500, and the same initialization population were used in 100 trials, and the respective optimal solutions were selected as the final Pareto optimal frontier.

为了便于理解,以下将对热电联产经济环保调度优化问题模型进行详细的解释。For ease of understanding, the following will explain the optimization problem model of cogeneration economic and environmental protection in detail.

热电联产经济环保调度优化问题的核心是在满足热电产量负荷平衡和各种约束条件下,对燃料费用和环保这两个目标同时进行优化,以获取较为满意的最优折中调度方案。其数学模型可表述如下。The core of the economic and environmental scheduling optimization problem of combined heat and power generation is to simultaneously optimize the two objectives of fuel cost and environmental protection under the satisfaction of heat and power production load balance and various constraints, so as to obtain a more satisfactory optimal compromise scheduling scheme. Its mathematical model can be expressed as follows.

目标函数:Objective function:

(1)燃料费用函数(1) Fuel cost function

本系统包含普通火电纯发电机组、热电联产机组以及纯发热机组。因此,其总燃料费用如式(14)This system includes ordinary thermal power pure generating units, cogeneration units and pure heating units. Therefore, its total fuel cost is expressed as formula (14)

式中:Ctotal为总燃料费用;Np、Nc、Nh分别为火电纯发电机组、热电联产机组、纯发热机组的台数;Cpi(Pi)为第i台火电纯发电机组燃料费用;Cci(Oi,Hi)为第i台热电联产机组燃料费用;Chi(Ti)为第i台纯发热机组燃料费用;Pi为第i台火电纯发电机组的出力、Oi、Hi分别为第i台热电联产机组的发电量和发热量;Ti为第i台纯发热机组的发热量;In the formula: C total is the total fuel cost; N p , N c , and N h are the numbers of thermal power pure generating units, combined heat and power units, and pure heating units respectively; C pi (P i ) is the i-th thermal power pure generating set Fuel cost; C ci (O i ,H i ) is the fuel cost of the i-th cogeneration unit; C hi (T i ) is the fuel cost of the i-th pure heat generation unit; P i is the fuel cost of the i-th thermal power pure generator set Output, O i , H i are the power generation and calorific value of the i-th cogeneration unit respectively; T i is the calorific value of the i-th pure heating unit;

在实际热电联产经济环保调度问题中,通常需要考虑到如图5(计及与忽略阀点效应的火电厂耗量特性曲线对比图)所示的火电纯发电机组中汽轮机进气阀突然开启时所出现的拔丝现象——阀点效应,该现象使得原来火电纯发电机组的二次耗量特性曲线上叠加一个正弦脉动函数,因此在更精确的进行问题求解的同时,也使得该问题骤增了大量局部最优点,增加了问题的解决难度。其具体表述如式(15)。In the actual cogeneration economic and environmental protection scheduling problem, it is usually necessary to consider the sudden opening of the steam turbine inlet valve in the thermal power pure generating set as shown in Figure 5 (comparison of the consumption characteristic curve of the thermal power plant with and without the valve point effect) The wire-drawing phenomenon that occurs when the valve point effect occurs, this phenomenon superimposes a sinusoidal pulsation function on the secondary consumption characteristic curve of the original thermal power pure generator set, so while solving the problem more accurately, it also makes the problem suddenly A large number of local optimal points have been added, which increases the difficulty of solving the problem. Its specific expression is as formula (15).

式中:ai、bi、ci分别为第i台火电纯发电机组的燃料费用系数;ei、fi为火电纯发电机组i的阀点效应系数;为火电纯发电机组i的最小技术出力。其次,热电联产和纯发热机组燃料费用函数分别如式(16)和式(17)所示。In the formula: a i , b i , and c i are the fuel cost coefficients of the i-th pure thermal power generator set; e i , f i are the valve point effect coefficients of the thermal power pure generator set i; Contribute to the minimum technology of thermal power pure generator set i. Secondly, the fuel cost functions of combined heat and power and pure heating units are shown in equation (16) and equation (17) respectively.

式中:αi、βi、γi、δi、εi、ξi为热电联产机组i的燃料费用系数;ψi、ηi、λi为纯发热机组i的燃料费用系数。In the formula: α i , β i , γ i , δ i , ε i , ξ i are the fuel cost coefficients of cogeneration unit i; ψ i , η i , λ i are the fuel cost coefficients of pure heating unit i.

(2)污染气体排放函数(2) Pollutant gas emission function

火电纯发电机组、热电联产机组及纯发热机组在运行时所产生的污染气体主要为SO2、NOx和CO2等,其排放量主要取决于机组发电和发热量,具体数学模型为:The pollutant gases produced by pure thermal power generating units, combined heat and power units and pure heating units during operation are mainly SO2, NOx and CO2, etc., and their emissions mainly depend on the power generation and calorific value of the units. The specific mathematical model is:

式中:Etotal为总污染物排放;Epi(Pi)为火电纯发电机组i的排放量;Eci(Oi)为热电联产机组i的排放量;In the formula: E total is the total pollutant emission; E pi (P i ) is the emission of pure thermal power generating unit i; E ci (O i ) is the emission of cogeneration unit i;

Ehi(Ti)为纯发热机组i的排放量;μi、ki、πi、σi、θi为纯发电机组i的排放系数;τi为热电联产机组i的排放系数;ρi为纯发热机组i的排放系数;E hi (T i ) is the emission of pure heating unit i; μ i , ki , π i , σ i , θ i are the emission coefficients of pure generating unit i; τ i is the emission coefficient of cogeneration unit i; ρi is the emission coefficient of pure heat generation unit i ;

约束条件:Restrictions:

(1)系统热、电负荷平衡约束条件(1) System thermal and electrical load balance constraints

电能和热能不易大规模存储要求系统中的热、电生产与消费具备同时性,因此须保证系统中的热、电产量满足负荷需求平衡,具体如下所示。Large-scale storage of electric energy and heat energy is not easy, requiring simultaneous heat and electricity production and consumption in the system, so it is necessary to ensure that the heat and electricity production in the system meets the load demand balance, as shown below.

式中:PD、PL分别为系统的电负荷需求和网络损耗;HD为系统的热负荷需求。In the formula: P D , PL are the electrical load demand and network loss of the system respectively; HD is the heat load demand of the system.

纯发电机组出力约束条件Pure generating unit output constraints

式中:为纯发电机组出力上限。In the formula: It is the upper limit of output of pure generating set.

热电联产机组运行约束Cogeneration Unit Operational Constraints

图6表示了热电联产机组的热电耦合关系,由定点ABCDEF所围成的封闭区域为热电联产机组所允许的机组安全运行区域。沿着区域的边界线段BC,机组出力随着发热量递增而逐渐减小,而沿着线段CD机组发热量则递减。Figure 6 shows the thermoelectric coupling relationship of the cogeneration unit. The closed area surrounded by the fixed point ABCDEF is the safe operation area of the cogeneration unit. Along the boundary line segment BC of the region, the output of the unit gradually decreases with the increase of the calorific value, while along the line segment CD, the calorific value of the unit decreases gradually.

式中:分别为热电联产机组i的发电出力上下限;分别为热电联产机组i的发热量上、下限。In the formula: Respectively, the upper and lower limits of the power generation output of cogeneration unit i; are the upper and lower limits of the calorific value of cogeneration unit i, respectively.

纯发热机组约束Pure Heater Constraint

式中:分别为纯发热机组的发热量上、下限。In the formula: are the upper and lower limits of the calorific value of the pure heating unit, respectively.

以上为对热电联产经济环保调度优化问题模型所进行的详细介绍,以下将对两种算法的优化结果进行分析。The above is a detailed introduction to the optimization problem model of cogeneration economic and environmental protection scheduling. The optimization results of the two algorithms will be analyzed below.

优化结果分析:Analysis of optimization results:

图7展示出了NSGAⅡ算法、SPEA2算法、灰狼算法和本发明中所提的改进灰狼算法100次独立运行所获得的最佳Pareto最优前沿。表1列出了RCGA算法单目标优化最小燃料费用和排放,并列出灰狼算法和改进灰狼算法的Pareto最优前沿端点处目标函数值。为验证解的有效性,表2给出各算法的最优折中解及其对应的调度方案。Fig. 7 shows the best Pareto optimal front obtained by NSGAII algorithm, SPEA2 algorithm, gray wolf algorithm and improved gray wolf algorithm proposed in the present invention for 100 independent runs. Table 1 lists the minimum fuel cost and emission for single-objective optimization of the RCGA algorithm, and lists the objective function values at the Pareto optimal frontier endpoints of the gray wolf algorithm and the improved gray wolf algorithm. In order to verify the validity of the solution, Table 2 gives the optimal compromise solution of each algorithm and its corresponding scheduling scheme.

由表1-2各算法单目标极端值、折中解对比得知,各调度方案无论是火电纯发电机组出力、热电联产机组发电量及发热量还是纯发热机组发热量均严格满足各种复杂的约束条件,并且热、电也较好地满足负荷平衡需求,这种优化结果表明了灰狼算法及改进灰狼算法所求得的最优解集的正确性。同时由表1可发现,虽然改进灰狼算法引入方向修正操作使得CPU运行时间相比于灰狼算法增加了18.54%,然而改进灰狼算法获取的Pareto经济目标极端值为10069.38$,比灰狼算法减少8.85%费用,同时比RCGA算法减少6.01%,且其环保目标极端值为14.0443kg,比灰狼降低了16.03%的排放,甚至也比NSGAⅡ减少了17%的排放。因此,改进灰狼算法求解多约束、非线性、不可微的热电联产经济环保调度优化问题时能够在相对合理的计算时间内获得范围更广的Pareto最优前沿,这也表明了该算法具有更强的全局搜索能力。其次,由表2结合各机组相关参数,不难发现,改进灰狼算法所得到的折中解正确合理,且无论是燃料费用还是排放值均较其它算法小,这进一步说明了改进灰狼算法在调度决策中的优越性。最后,与NSGAⅡ算法、SPEA2算法、灰狼算法所得Pareto最优前沿相比,改进灰狼算法所获的Pareto最优前沿在解空间中分布均匀,且范围更广,更接近全局最优解。这是因为改进灰狼算法不仅在对灰狼算法进行多目标优化拓展的同时,引进NSGAⅡ的快速非劣解排序和拥挤距离计算处理多目标排序问题,有效的保持了粒子多样性,提高了算法的计算效率。并融合了方向修正操作在处理部分维陷入局部最优问题的独有优势,有效地避免出现过早收敛现象。这一系列表明,改进后的多目标灰狼优化算法具有较好的全局收敛性、适应性。From Table 1-2, the comparison of the single-objective extreme values and compromise solutions of each algorithm shows that all dispatching schemes, whether it is the output of pure thermal power generating units, the power generation and calorific value of combined heat and power units, or the calorific value of pure heating units, all strictly meet the various requirements. Complicated constraints, and heat and electricity can better meet the load balance requirements, this optimization result shows the correctness of the optimal solution set obtained by the gray wolf algorithm and the improved gray wolf algorithm. At the same time, it can be found from Table 1 that although the improved gray wolf algorithm introduces the direction correction operation to increase the CPU running time by 18.54% compared with the gray wolf algorithm, the extreme value of the Pareto economic target obtained by the improved gray wolf algorithm is 10069.38$, which is higher than that of the gray wolf algorithm. The algorithm reduces the cost by 8.85%, and reduces the cost by 6.01% compared with the RCGA algorithm, and the extreme value of its environmental protection target is 14.0443kg, which reduces the emission by 16.03% compared with gray wolf, and even reduces the emission by 17% compared with NSGAⅡ. Therefore, the improved gray wolf algorithm can obtain a wider range of Pareto optimal frontiers in a relatively reasonable calculation time when solving the multi-constraint, nonlinear, non-differentiable cogeneration economic and environmental dispatch optimization problem, which also shows that the algorithm has Stronger global search capability. Secondly, from Table 2 combined with the relevant parameters of each unit, it is not difficult to find that the compromise solution obtained by the improved gray wolf algorithm is correct and reasonable, and both the fuel cost and the emission value are smaller than other algorithms, which further illustrates the improved gray wolf algorithm superiority in scheduling decisions. Finally, compared with the Pareto optimal front obtained by the NSGAⅡ algorithm, SPEA2 algorithm, and gray wolf algorithm, the Pareto optimal front obtained by the improved gray wolf algorithm is evenly distributed in the solution space and has a wider range, which is closer to the global optimal solution. This is because the improved gray wolf algorithm not only expands the multi-objective optimization of the gray wolf algorithm, but also introduces the fast non-inferior solution sorting and congestion distance calculation of NSGA II to deal with the multi-objective sorting problem, which effectively maintains the particle diversity and improves the algorithm. computing efficiency. It also combines the unique advantages of the direction correction operation in dealing with the problem of partial dimensions falling into local optimum, effectively avoiding premature convergence. This series shows that the improved multi-objective gray wolf optimization algorithm has better global convergence and adaptability.

表1各算法极端值及其调度方案对比Table 1 Comparison of extreme values and scheduling schemes of each algorithm

表2各算法最优折中解对比Table 2 Comparison of optimal compromise solutions of each algorithm

本发明实施例提供的基于多目标的改进灰狼优化算法的显著优越性在于:The significant advantages of the improved gray wolf optimization algorithm based on multi-objective provided by the embodiment of the present invention are:

1)将纵横交叉算法中的纵向交叉操作融入灰狼算法中以帮助部分陷入局部最优的维摆脱当前困局,修正狼群的前进方向,增强算法的全局收敛性。1) Integrating the vertical cross operation in the vertical and horizontal cross algorithm into the gray wolf algorithm to help some dimensions trapped in local optimum get rid of the current predicament, correct the direction of the wolf pack, and enhance the global convergence of the algorithm.

2)引用NSGAⅡ的快速非劣解排序、拥挤距离计算策略,协助对狼个体进行排序,并在一定程度上保持了粒子的多样性。2) Introduce the fast non-inferior solution sorting and crowding distance calculation strategy of NSGA II to assist in sorting wolf individuals and maintain the diversity of particles to a certain extent.

3)在狼群位置更新时,采用精英保留策略,赋予狼群一定的自主性,这种狼群始终保持狼群整体最优位置,有效地加快了整个算法的收敛速度。3) When the position of the wolf pack is updated, the elite retention strategy is adopted to give the wolf pack a certain degree of autonomy. This kind of wolf pack always maintains the overall optimal position of the wolf pack, which effectively speeds up the convergence speed of the entire algorithm.

4)包含4台火电纯发电机组、2台热电联产机组及1台纯发热机组的热电联产电力系统算例验证了本发明实施例中所提出的的改进灰狼算法,结果表明了改进灰狼算法具有较强的全局收敛性、适应性。4) The calculation example of the combined heat and power power system including 4 thermal power pure generating units, 2 combined heat and power units and 1 pure heating unit verifies the improved gray wolf algorithm proposed in the embodiment of the present invention, and the results show that the improved The gray wolf algorithm has strong global convergence and adaptability.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, device and method can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on such an understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-OnlyMemory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still understand the foregoing The technical solutions recorded in each embodiment are modified, or some of the technical features are replaced equivalently; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.

Claims (10)

1.一种基于多目标的改进灰狼优化算法,其特征在于,包括:1. A kind of improved gray wolf optimization algorithm based on multi-objective, it is characterized in that, comprises: S1、设置狼群的初始化参数及方向修正概率,在解空间中随机初始化每个狼个体的位置;S1. Set the initialization parameters and direction correction probability of the wolf group, and randomly initialize the position of each wolf individual in the solution space; S2、根据求解目标计算每个所述狼个体的适应度值,并选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδS2. Calculate the fitness value of each wolf individual according to the solution target, and select the top three wolf individuals and assign them to X α , X β , and X δ in turn; S3、根据所述Xα、所述Xβ、所述Xδ优化狼群每个所述狼个体的位置,产生中庸狼,并计算所述中庸狼的适应度值和更新狼群位置;S3. Optimizing the position of each wolf individual in the wolf pack according to the X α , the X β , and the X δ to generate a moderate wolf, and calculate the fitness value of the moderate wolf and update the position of the wolf pack; S4、对更新后的狼群执行方向修正操作并根据所述方向修正概率控制所述更新后的狼群参与修正维的规模,产生新的中庸狼,并计算所述新的中庸狼的适应度值,获得修正后的狼群位置;S4. Perform a direction correction operation on the updated wolf pack and control the scale of the updated wolf pack participating in the correction dimension according to the direction correction probability, generate a new moderate wolf, and calculate the fitness of the new moderate wolf value, to obtain the corrected wolf pack position; S5、判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,否则,转至S3继续进行迭代搜索。S5. Determine whether the number of iterations reaches the preset maximum number of iterations. If yes, output the corrected wolf pack position as the final optimization result; otherwise, go to S3 to continue the iterative search. 2.根据权利要求1所述的基于多目标的改进灰狼优化算法,其特征在于,所述S1具体包括:2. the improved gray wolf optimization algorithm based on multi-objective according to claim 1, is characterized in that, described S1 specifically comprises: 设置狼群的大小M、最大迭代次数maxgen及方向修正概率pv,在解空间中随机初始化每个狼个体的位置。Set the size M of the wolf pack, the maximum number of iterations maxgen and the direction correction probability p v , and randomly initialize the position of each wolf individual in the solution space. 3.根据权利要求1所述的基于多目标的改进灰狼优化算法,其特征在于,所述S2具体包括:3. the improved gray wolf optimization algorithm based on multi-objective according to claim 1, is characterized in that, described S2 specifically comprises: 根据求解目标计算每个所述狼个体的适应度值,并依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择排名靠前的三只狼个体依次赋予Xα、Xβ、XδCalculate the fitness value of each wolf individual according to the solution goal, and select the top three wolf individuals according to the fast non-inferior solution sorting operation, crowding distance calculation, and elite retention strategy to assign X α , X β , and X δ in turn . 4.根据权利要求3所述的基于多目标的改进灰狼优化算法,其特征在于,所述快速非劣解排序操作具体包括:4. the improved gray wolf optimization algorithm based on multi-objective according to claim 3, is characterized in that, described fast non-inferior solution ordering operation specifically comprises: 找到狼群中的非支配解集,将所述非支配解集标记为第一非支配层F1并将所述非支配解集中的所有狼个体赋予第一非支配序值,并将所述所有狼个体剔除;Find the non-dominated solution set in the wolf group, mark the non-dominated solution set as the first non-dominated layer F1 and assign the first non-dominated sequence value to all wolves in the non-dominated solution set, and set all the wolves in the non-dominated solution set Wolf individual culling; 在剔除后的狼群中找出下一层非支配解集并进行标记、非支配序值赋予操作及剔除操作;Find the next layer of non-dominated solution sets in the eliminated wolves and perform marking, non-dominated sequence value assignment operations and elimination operations; 依次持续进行对狼群进行非支配解集分层、标记、非支配序值赋予操作及剔除操作,直至整个狼群被完全分层并使得同一非支配层内的狼个体具有相同的非支配序值。Continue to perform non-dominated disassembly stratification, marking, non-dominated sequence value assignment and elimination operations on the wolf pack in sequence until the entire wolf pack is completely stratified and the wolves in the same non-dominated layer have the same non-dominated sequence. value. 5.根据权利要求4所述的基于多目标的改进灰狼优化算法,其特征在于,所述拥挤距离计算具体包括:5. the improved gray wolf optimization algorithm based on multi-objective according to claim 4, is characterized in that, described congestion distance calculation specifically comprises: 初始化同一非支配层内的狼个体的距离,令狼个体i的拥挤距离L[i]d为0;Initialize the distance of wolf individuals in the same non-dominated layer, so that the crowding distance L[i] d of wolf individual i is 0; 所述同一非支配层内的狼个体按第m个目标值进行递增排序;Wolf individuals in the same non-dominated layer are sorted incrementally according to the mth target value; 给定边缘上的两只狼个体赋予一个大数Inf,使所述两只狼个体具有绝对选择优势;Two wolf individuals on the given edge are assigned a large number Inf, so that the two wolf individuals have an absolute selection advantage; 对排序中间的狼个体根据公式八求所述排序中间的狼个体的拥挤距离,所述公式八具体为:The wolf individual in the middle of the sorting is calculated according to the formula eight for the crowding distance of the wolf individual in the middle of the sorting, and the formula eight is specifically: <mrow> <mi>L</mi> <msub> <mrow> <mo>&amp;lsqb;</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> </mrow> <mi>d</mi> </msub> <mo>=</mo> <mi>L</mi> <msub> <mrow> <mo>&amp;lsqb;</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> </mrow> <mi>d</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mi>m</mi> <mo>&amp;Element;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>o</mi> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow> <mi>L</mi> <msub> <mrow> <mo>&amp;lsqb;</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> </mrow> <mi>d</mi> </msub> <mo>=</mo> <mi>L</mi> <msub> <mrow> <mo>&amp;lsqb;</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> </mrow> <mi>d</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>f</mi> <mi>m</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mi>m</mi> <mo>&amp;Element;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>o</mi> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> 其中,Nobj为目标数,分别为第i+1和第i-1只狼个体的第m个适应度值,分别为非劣解集中第m个适应度值的最大值和最小值。Among them, N obj is the target number, are the mth fitness value of the i+1th and i-1th wolf individuals respectively, are the maximum and minimum values of the mth fitness value in the non-inferior solution set, respectively. 6.根据权利要求3所述的基于多目标的改进灰狼优化算法,其特征在于,所述S3具体包括:6. the improved gray wolf optimization algorithm based on multi-objective according to claim 3, is characterized in that, described S3 specifically comprises: 根据所述Xα、所述Xβ、所述Xδ通过狼群包围和狼群猎捕的步骤优化狼群每个所述狼个体的位置,产生中庸狼,并计算所述中庸狼的适应度值和依据快速非劣解排序操作、拥挤距离计算、精英保留策略选择性更新狼群位置。According to the X α , the X β , and the X δ , optimize the position of each wolf individual in the wolf pack through the steps of wolf pack encirclement and wolf pack hunting, generate a moderate wolf, and calculate the fitness of the moderate wolf The degree value and selective updating of wolf pack positions are based on fast non-inferior solution sorting operations, congestion distance calculation, and elite retention strategy. 7.根据权利要求6所述的基于多目标的改进灰狼优化算法,其特征在于,所述S3与S4之间还包括:7. the improved gray wolf optimization algorithm based on multi-objective according to claim 6, is characterized in that, also comprises between described S3 and S4: 对更新后的狼群的所有狼个体的每一维通过公式九执行归一化操作,所述公式九具体为:Perform a normalization operation on each dimension of all wolf individuals of the updated wolf group by formula nine, and the formula nine is specifically: <mrow> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mover> <mi>X</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>t</mi> </msup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mi>d</mi> <mo>&amp;Element;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mover> <mi>X</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>t</mi> </msup> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mi>d</mi> <mo>&amp;Element;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> 其中,D为维数,为狼的第d维变量,归一化后所对应的标量,max(d)、min(d)分别为狼群中第d维变量的上下限。Among them, D is the dimension, for the wolf The d-th dimension variable of , for The corresponding scalars after normalization, max(d) and min(d) are respectively the upper and lower limits of the d-th dimension variable in the wolf pack. 8.根据权利要求7所述的基于多目标的改进灰狼优化算法,其特征在于,所述S4具体包括:8. the improved gray wolf optimization algorithm based on multi-objective according to claim 7, is characterized in that, described S4 specifically comprises: 对更新后的狼群执行方向修正操作并根据所述方向修正概率控制所述更新后的狼群参与修正维的规模,产生新的中庸狼,并计算所述新的中庸狼的适应度值,根据快速非劣解排序操作、拥挤距离计算、精英保留策略择优保留狼个体位置,并根据狼群中的狼个体排名,将狼群划分为Xα、Xβ、Xδ、Xω,获得修正后的狼群位置。Performing a direction correction operation on the updated wolf pack and controlling the size of the updated wolf pack participating in the correction dimension according to the direction correction probability, generating a new moderate wolf, and calculating the fitness value of the new moderate wolf, According to the fast non-inferior solution sorting operation, the calculation of crowding distance, and the elite retention strategy, the positions of individual wolves are selected and reserved, and according to the ranking of individual wolves in the wolf pack, the wolf pack is divided into X α , X β , X δ , X ω , and the correction is obtained The position of the wolf pack behind. 9.根据权利要求8所述的基于多目标的改进灰狼优化算法,其特征在于,所述对更新后的狼群执行方向修正操作具体包括:9. the improved gray wolf optimization algorithm based on multi-objective according to claim 8, is characterized in that, described carrying out direction correction operation to the wolves after updating specifically comprises: 通过公式十对更新后的狼群执行方向修正操作,所述公式十具体为:Perform the direction correction operation on the updated wolves through formula ten, which is specifically: <mrow> <mover> <mi>M</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow> <mover> <mi>M</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> 其中,d1,d2∈(1,D),r为0到1的随机数,为中庸狼个体标量的第d1维;Among them, d 1 , d 2 ∈ (1, D), r is a random number from 0 to 1, is the mean wolf individual scalar The d1th dimension of ; 对产生的中庸狼个体标量的每一维通过公式十一进行反归一化操作,所述公式十一具体为:Each dimension of the generated mediocre wolf individual scalar is denormalized by formula 11, and the formula 11 is specifically: 其中,为中庸狼的第d维。in, mean wolf The d-th dimension of . 10.根据权利要求9所述的基于多目标的改进灰狼优化算法,其特征在于,所述S5具体包括:10. the improved gray wolf optimization algorithm based on multi-objective according to claim 9, is characterized in that, described S5 specifically comprises: 判断迭代次数是否达到预设最大迭代次数,若是,则输出修正后的狼群位置作为最终优化结果,并结合模糊决策方法选择最优折中解,否则,转至S3继续进行迭代搜索。Judging whether the number of iterations reaches the preset maximum number of iterations, if so, output the corrected wolf pack position as the final optimization result, and combine the fuzzy decision-making method to select the optimal compromise solution, otherwise, go to S3 to continue iterative search.
CN201710443537.9A 2017-06-13 2017-06-13 A kind of improvement grey wolf optimized algorithm based on multiple target Pending CN107067121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710443537.9A CN107067121A (en) 2017-06-13 2017-06-13 A kind of improvement grey wolf optimized algorithm based on multiple target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710443537.9A CN107067121A (en) 2017-06-13 2017-06-13 A kind of improvement grey wolf optimized algorithm based on multiple target

Publications (1)

Publication Number Publication Date
CN107067121A true CN107067121A (en) 2017-08-18

Family

ID=59593903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710443537.9A Pending CN107067121A (en) 2017-06-13 2017-06-13 A kind of improvement grey wolf optimized algorithm based on multiple target

Country Status (1)

Country Link
CN (1) CN107067121A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896716A (en) * 2017-04-17 2017-06-27 华北电力大学(保定) Micro-capacitance sensor alternating current-direct current section transverter pid parameter optimization method based on grey wolf algorithm
CN107832830A (en) * 2017-11-17 2018-03-23 湖北工业大学 Intruding detection system feature selection approach based on modified grey wolf optimized algorithm
CN108429633A (en) * 2018-01-18 2018-08-21 西南交通大学 Virtual Network Function Deployment Method Based on Gray Wolf Algorithm
CN108646560A (en) * 2018-05-11 2018-10-12 河北工业大学 Power of fan model parameter optimization method based on grey wolf algorithm improvement
CN108829036A (en) * 2018-06-12 2018-11-16 昆明理工大学 A kind of Optimization Scheduling of metal slab shaping by stock removal process
CN109408905A (en) * 2018-09-30 2019-03-01 湘潭大学 A kind of Alpha guiding grey wolf algorithm and its application in two-stage calculation amplifier design
CN109657885A (en) * 2019-02-25 2019-04-19 华南理工大学 A kind of electric-thermal net coordinated operation optimization method based on more searcher algorithms
CN109670639A (en) * 2018-12-17 2019-04-23 邓茂云 Regional complex energy resource system real-time optimization method based on multiple target grey wolf algorithm
CN109669423A (en) * 2019-01-07 2019-04-23 福州大学 The method that part processes optimal scheduling scheme is obtained based on multiple target grey wolf algorithm is improved
CN109858739A (en) * 2018-12-20 2019-06-07 电子科技大学中山学院 logistics transportation scheduling method, computer storage medium and electronic equipment
CN109993270A (en) * 2019-03-27 2019-07-09 东北大学 Remaining life prediction method of lithium-ion battery based on gray wolf pack optimization LSTM network
CN110145432A (en) * 2019-03-29 2019-08-20 广东工业大学 A Power Control Method of Wave Power Plant Based on Fourier Analysis and Improved Gray Wolf Algorithm
CN110322692A (en) * 2019-07-09 2019-10-11 广东工业大学 A kind of detection method, device and equipment repeating traffic flow data
CN111539508A (en) * 2020-04-01 2020-08-14 国家电网公司华东分部 Parameter Identification Algorithm of Generator Excitation System Based on Improved Grey Wolf Algorithm
CN111582428A (en) * 2020-04-01 2020-08-25 长江大学 Multi-modal multi-objective optimization method based on grey prediction evolution algorithm
CN112380760A (en) * 2020-10-13 2021-02-19 重庆大学 Multi-algorithm fusion based multi-target process parameter intelligent optimization method
CN112488283A (en) * 2020-12-11 2021-03-12 湖北工业大学 Improved multi-target grey wolf optimization algorithm
CN113011612A (en) * 2021-03-23 2021-06-22 合肥工业大学 Production and maintenance scheduling method and system based on improved wolf algorithm
CN113537440A (en) * 2021-07-05 2021-10-22 沈阳化工大学 CSTR period operating parameter optimization method based on Grey wolf algorithm
CN113705761A (en) * 2021-09-08 2021-11-26 吉林大学 Gray wolf optimization method based on dimension learning strategy and Levy flight
CN113902685A (en) * 2021-09-22 2022-01-07 百信信息技术有限公司 Visual detection method for scratches of case
CN113965569A (en) * 2021-10-22 2022-01-21 大连理工大学 High-energy-efficiency low-delay edge node calculation migration framework and configuration system
CN115017825A (en) * 2022-06-30 2022-09-06 中国石油大学(北京) A kind of argillaceous sandstone dielectric property inversion method, device and equipment
CN115951717A (en) * 2023-03-09 2023-04-11 北京卓翼智能科技有限公司 Unmanned aerial vehicle cluster target distribution method, device and system and storage medium
CN117452828A (en) * 2023-12-22 2024-01-26 中电行唐生物质能热电有限公司 Method and system for controlling emission of harmful gas in boiler based on neural network
CN117556718A (en) * 2024-01-12 2024-02-13 西北工业大学 Firepower allocation method based on neural network and multi-strategy combination gray wolf optimization algorithm

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896716B (en) * 2017-04-17 2019-12-27 华北电力大学(保定) Micro-grid AC/DC section converter PID parameter optimization method based on gray wolf algorithm
CN106896716A (en) * 2017-04-17 2017-06-27 华北电力大学(保定) Micro-capacitance sensor alternating current-direct current section transverter pid parameter optimization method based on grey wolf algorithm
CN107832830A (en) * 2017-11-17 2018-03-23 湖北工业大学 Intruding detection system feature selection approach based on modified grey wolf optimized algorithm
CN108429633A (en) * 2018-01-18 2018-08-21 西南交通大学 Virtual Network Function Deployment Method Based on Gray Wolf Algorithm
CN108429633B (en) * 2018-01-18 2020-04-03 西南交通大学 Virtual network function deployment method based on wolf algorithm
CN108646560A (en) * 2018-05-11 2018-10-12 河北工业大学 Power of fan model parameter optimization method based on grey wolf algorithm improvement
CN108829036B (en) * 2018-06-12 2021-05-14 昆明理工大学 Optimized scheduling method for metal casting blank cutting forming machining process
CN108829036A (en) * 2018-06-12 2018-11-16 昆明理工大学 A kind of Optimization Scheduling of metal slab shaping by stock removal process
CN109408905A (en) * 2018-09-30 2019-03-01 湘潭大学 A kind of Alpha guiding grey wolf algorithm and its application in two-stage calculation amplifier design
CN109670639A (en) * 2018-12-17 2019-04-23 邓茂云 Regional complex energy resource system real-time optimization method based on multiple target grey wolf algorithm
CN109858739A (en) * 2018-12-20 2019-06-07 电子科技大学中山学院 logistics transportation scheduling method, computer storage medium and electronic equipment
CN109669423B (en) * 2019-01-07 2021-08-31 福州大学 A method for obtaining the optimal scheduling scheme of parts processing based on the improved multi-objective gray wolf algorithm
CN109669423A (en) * 2019-01-07 2019-04-23 福州大学 The method that part processes optimal scheduling scheme is obtained based on multiple target grey wolf algorithm is improved
CN109657885A (en) * 2019-02-25 2019-04-19 华南理工大学 A kind of electric-thermal net coordinated operation optimization method based on more searcher algorithms
CN109993270A (en) * 2019-03-27 2019-07-09 东北大学 Remaining life prediction method of lithium-ion battery based on gray wolf pack optimization LSTM network
CN110145432A (en) * 2019-03-29 2019-08-20 广东工业大学 A Power Control Method of Wave Power Plant Based on Fourier Analysis and Improved Gray Wolf Algorithm
CN110322692A (en) * 2019-07-09 2019-10-11 广东工业大学 A kind of detection method, device and equipment repeating traffic flow data
CN111539508A (en) * 2020-04-01 2020-08-14 国家电网公司华东分部 Parameter Identification Algorithm of Generator Excitation System Based on Improved Grey Wolf Algorithm
CN111582428A (en) * 2020-04-01 2020-08-25 长江大学 Multi-modal multi-objective optimization method based on grey prediction evolution algorithm
CN111582428B (en) * 2020-04-01 2024-01-05 长江大学 Multi-mode and multi-target optimization method based on gray prediction evolution algorithm
CN111539508B (en) * 2020-04-01 2023-09-01 国家电网公司华东分部 Parameter Identification Algorithm of Generator Excitation System Based on Improved Gray Wolf Algorithm
CN112380760A (en) * 2020-10-13 2021-02-19 重庆大学 Multi-algorithm fusion based multi-target process parameter intelligent optimization method
CN112380760B (en) * 2020-10-13 2023-01-31 重庆大学 Multi-objective process parameter intelligent optimization method based on multi-algorithm fusion
CN112488283A (en) * 2020-12-11 2021-03-12 湖北工业大学 Improved multi-target grey wolf optimization algorithm
CN112488283B (en) * 2020-12-11 2024-03-22 湖北工业大学 Improved multi-objective gray wolf optimization algorithm implementation method
CN113011612B (en) * 2021-03-23 2022-09-20 合肥工业大学 Production and maintenance scheduling method and system based on improved wolf algorithm
CN113011612A (en) * 2021-03-23 2021-06-22 合肥工业大学 Production and maintenance scheduling method and system based on improved wolf algorithm
CN113537440A (en) * 2021-07-05 2021-10-22 沈阳化工大学 CSTR period operating parameter optimization method based on Grey wolf algorithm
CN113705761B (en) * 2021-09-08 2024-02-09 吉林大学 Gray wolf optimization method based on dimensional learning strategy and Levy flight
CN113705761A (en) * 2021-09-08 2021-11-26 吉林大学 Gray wolf optimization method based on dimension learning strategy and Levy flight
CN113902685A (en) * 2021-09-22 2022-01-07 百信信息技术有限公司 Visual detection method for scratches of case
CN113965569A (en) * 2021-10-22 2022-01-21 大连理工大学 High-energy-efficiency low-delay edge node calculation migration framework and configuration system
CN113965569B (en) * 2021-10-22 2022-08-12 大连理工大学 An energy-efficient and low-latency edge node computing migration configuration system
CN115017825A (en) * 2022-06-30 2022-09-06 中国石油大学(北京) A kind of argillaceous sandstone dielectric property inversion method, device and equipment
CN115951717A (en) * 2023-03-09 2023-04-11 北京卓翼智能科技有限公司 Unmanned aerial vehicle cluster target distribution method, device and system and storage medium
CN117452828B (en) * 2023-12-22 2024-03-01 中电行唐生物质能热电有限公司 Method and system for controlling emission of harmful gas in boiler based on neural network
CN117452828A (en) * 2023-12-22 2024-01-26 中电行唐生物质能热电有限公司 Method and system for controlling emission of harmful gas in boiler based on neural network
CN117556718A (en) * 2024-01-12 2024-02-13 西北工业大学 Firepower allocation method based on neural network and multi-strategy combination gray wolf optimization algorithm
CN117556718B (en) * 2024-01-12 2024-03-29 西北工业大学 Firepower allocation method based on neural network and multi-strategy combination gray wolf optimization algorithm

Similar Documents

Publication Publication Date Title
CN107067121A (en) A kind of improvement grey wolf optimized algorithm based on multiple target
CN102855412B (en) A kind of wind power forecasting method and device thereof
CN105809297B (en) A kind of thermal power plant&#39;s environmental economy dispatching method based on multiple target differential evolution algorithm
CN113361761A (en) Short-term wind power integration prediction method and system based on error correction
CN108038306A (en) A kind of method of power boiler burning modeling and optimization towards magnanimity high dimensional data
CN109932903A (en) The air-blower control Multipurpose Optimal Method of more parent optimization networks and genetic algorithm
CN106529674A (en) Multiple-unmanned-aerial-vehicle cooperated multi-target distribution method
CN107958424A (en) A kind of Economic Dispatch strategy based on improvement gravitation search algorithm
CN115963731B (en) Command control system network structure optimization method based on improved genetic algorithm
CN113705098A (en) Air duct heater modeling method based on PCA and GA-BP network
CN116526473A (en) Electric heating load forecasting method based on particle swarm optimization LSTM
CN114386659A (en) Optimization method of pump pipe of water system in nuclear power plant
CN116227360A (en) Multi-objective parameter optimization method for welding grid welding ball based on carbon emission
CN117634697A (en) Comprehensive energy scheduling method and system based on improved differential evolution whale optimization
CN105512755A (en) Decomposition-based multi-objective distribution estimation optimization method
Hakli The optimization of wind turbine placement using a binary artificial bee colony algorithm with multi-dimensional updates
CN105426959B (en) Aluminium electroloysis energy-saving and emission-reduction method based on BP neural network Yu adaptive M BFO algorithms
CN104598657B (en) A kind of gene die body reconstructing method based on memetic algorithms
CN106022464A (en) Cluster-based high-dimensional multi-objective evolution method
CN111382896A (en) WTA target optimization method of adaptive chaotic parallel clonal selection algorithm
CN114565236B (en) Power comprehensive energy system scheduling method and device under double-carbon target
CN114565241B (en) Electric-gas comprehensive energy system scheduling method and device considering carbon cost
CN110348576A (en) A kind of decision-making technique for improving multiple target bacterial chemotaxis algorithm based on index
CN105426960B (en) Aluminium electroloysis energy-saving and emission-reduction control method based on BP neural network Yu MBFO algorithms
Tang Intelligent Bionic Optimization Algorithm Based on the Growth Characteristics of Tree Branches.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载