CN106873606B - A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis - Google Patents
A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis Download PDFInfo
- Publication number
- CN106873606B CN106873606B CN201510933267.0A CN201510933267A CN106873606B CN 106873606 B CN106873606 B CN 106873606B CN 201510933267 A CN201510933267 A CN 201510933267A CN 106873606 B CN106873606 B CN 106873606B
- Authority
- CN
- China
- Prior art keywords
- height
- altitude
- command
- control
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/04—Control of altitude or depth
- G05D1/042—Control of altitude or depth specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明属于无人机高度控制技术,具体涉及一种基于非线性滞环的快速高度指令跟踪方法。本发明包括一种基于非线性滞环的快速高度指令跟踪方法。本发明通过融合当前无人机的飞行高度、飞行状态以及无人机接收到的高度指令等信息,经过基于非线性滞环的高度模态切换逻辑和指令解算,计算出高度控制指令,控制无人机的飞行高度快速跟踪到目标高度,使无人机具备在不同飞行状态实时下响应高度指令和快速跟踪到指令高度的能力。
The invention belongs to the height control technology of an unmanned aerial vehicle, and in particular relates to a fast height command tracking method based on a nonlinear hysteresis loop. The invention includes a fast height command tracking method based on nonlinear hysteresis. The present invention calculates the height control command by integrating the information such as the flight height and flight state of the current UAV, and the height command received by the UAV, and through the non-linear hysteresis-based height mode switching logic and command resolution, and the control The flying height of the UAV is quickly tracked to the target height, so that the UAV has the ability to respond to height commands and quickly track to the command height in real time under different flight states.
Description
技术领域technical field
本发明属于无人机高度控制技术,具体涉及一种基于非线性滞环的快速高度指令跟踪方法及实现。The invention belongs to the height control technology of an unmanned aerial vehicle, and in particular relates to a fast height command tracking method based on a nonlinear hysteresis loop and its realization.
背景技术Background technique
无人机在高空的工作方式为高度控制,即跟踪高度指令,当无人机的当前飞行高度与高度指令相差较大时,无人机以高度控制模态跟踪高度指令所需要得时间较长。一般无人机的高度控制的升降速度能力为6m/s,当高差为60m需要10s的调节时间,若无人机采用俯仰角表速模态的方式,一般无人机的表速控制在升降速度方向上的调整能力为大于等于15m/s,则60m的高差仅需4s。但无人机只能用高度控制的方式来定高飞行,所以当无人机当前飞行高度接近高度指令后又需要切换至高度控制模态对高度指令进行微调。The working mode of the UAV at high altitude is height control, that is, tracking the height command. When the current flying height of the UAV is far from the height command, it takes a long time for the UAV to track the height command in the height control mode. . Generally, the height control of UAVs has a lifting speed capability of 6m/s. When the height difference is 60m, it takes 10s to adjust. The adjustment ability in the direction of lifting speed is greater than or equal to 15m/s, and the height difference of 60m only takes 4s. However, the UAV can only fly at a fixed altitude by means of altitude control, so when the current flying altitude of the UAV is close to the altitude command, it needs to switch to the altitude control mode to fine-tune the altitude command.
发明内容Contents of the invention
本发明提出了一种基于非线性滞环的快速高度指令跟踪方法及这种方法的软件实现流程。通过对无人机在不同高度差下的控制模态的切换,解决了无人机对高度指令进行快速响应的技术问题。The invention proposes a fast height command tracking method based on a nonlinear hysteresis loop and a software implementation flow of the method. By switching the control mode of the UAV under different height differences, the technical problem of the UAV's rapid response to the height command is solved.
本发明提供一种基于非线性滞环的快速高度指令跟踪方法,具体步骤如下:The present invention provides a fast height command tracking method based on nonlinear hysteresis, and the specific steps are as follows:
步骤1:高度指令跟踪模块接收高度测量值、高度指令、飞行状态信息;所述飞行状态信息包括:平飞、下降、爬升;Step 1: The altitude command tracking module receives the altitude measurement value, the altitude command, and the flight status information; the flight status information includes: level flight, descent, and climb;
步骤2:高度指令跟踪初始化,判断是否是第一拍进入高度控制模态,如果是第一拍,进行高度指令跟踪初始化;如果不是,则执行高度控制模态切换逻辑,生成控制模态字;Step 2: Altitude command tracking initialization, judging whether it is the first shot to enter the height control mode, if it is the first shot, perform height command tracking initialization; if not, execute the height control mode switching logic, and generate the control mode word;
步骤3:根据控制模态字执行相应的高度指令计算;Step 3: Execute the corresponding height command calculation according to the control mode word;
步骤4:向升降舵输出高度指令。Step 4: Output the altitude command to the elevator.
上述步骤2中所述的高度指令跟踪初始化具体步骤如下:The specific steps of altitude command tracking initialization described in step 2 above are as follows:
A:计算第一拍的高度差DH,DH是指高度指令和实际高度的差;A: Calculate the height difference DH of the first shot, DH refers to the difference between the height command and the actual height;
B:如果第一拍高度差DH大于DH0,则将高度控制模态字置为俯仰角表速控制;否则,执行第三步。DH0表示最大的高度差绝对值;B: If the altitude difference DH of the first beat is greater than DH0, then set the altitude control modal word to pitch angle gauge speed control; otherwise, execute the third step. DH0 represents the absolute value of the maximum height difference;
C:如果第一拍高度差DH小于-DH0,则将高度控制模态字置为俯仰角表速控制;否则,执行D;C: If the height difference DH of the first beat is less than -DH0, then set the height control modal word as pitch angle gauge speed control; otherwise, execute D;
D:如果第一拍高度差DH大于-DH0,则将高度控制模态字置为高度控制。D: If the height difference DH of the first beat is greater than -DH0, then set the height control modal word as height control.
步骤2中所述的高度控制模态切换逻辑,具体步骤如下:The height control mode switching logic described in step 2, the specific steps are as follows:
A:计算连续四拍的高度差DH;A: Calculate the height difference DH of four consecutive beats;
B:如果高度差DH连续4拍小于-DH0m,则调度俯仰角表速控制;B: If the altitude difference DH is less than -DH0m for 4 consecutive beats, then schedule the pitch angle gauge speed control;
C:如果高度差DH连续4拍大于DH0m,则调度俯仰角表速控制;C: If the altitude difference DH is greater than DH0m for 4 consecutive beats, then schedule the pitch angle gauge speed control;
D:如果高度差DH连续4拍大于–DH0m并且小于-DH1m,需根据此时无人机的飞行状态分别处理:如果此时为无人机的飞行状态为平飞,那么调度高度控制;否则,调度俯仰角表速控制。所述DH1表示最小的高度差绝对值,DH1<DH0;D: If the altitude difference DH is greater than -DH0m and less than -DH1m for 4 consecutive beats, it needs to be handled separately according to the flight status of the drone at this time: if the flight status of the drone is level flight at this time, then schedule height control; otherwise , to schedule the pitch angle gauge speed control. The DH1 represents the minimum absolute value of height difference, DH1<DH0;
E:如果高度差DH连续4拍大于–DH1m并且小于DH1m,调度高度控制;E: If the altitude difference DH is greater than –DH1m and less than DH1m for 4 consecutive beats, dispatch altitude control;
F:如果高度差DH连续4拍大于DH1m并且小于DH0m,需根据此时无人机的飞行状态分别处理:如果此时为无人机的飞行状态为平飞,那么调度高度控制;否则,调度俯仰角表速控制。F: If the altitude difference DH is greater than DH1m and less than DH0m for 4 consecutive shots, it needs to be handled separately according to the flight status of the drone at this time: if the flight status of the drone is level flight at this time, then schedule height control; otherwise, schedule Pitch angle gauge speed control.
有益效果:本发明通过融合当前无人机的飞行高度、飞行状态以及发给无人机的高度指令等信息,自动计算无人机高度控制指令,控制无人机自动快速地跟踪到目标高度。当高度差较大时,本发明可以控制无人机快速达到目标高度;当高度差较小时又可以对高度控制指令进行微调,控制无人机定高飞行。具有重要的工程应用价值。Beneficial effects: the present invention automatically calculates the height control command of the drone by integrating information such as the current flying height and flight state of the drone, and the height command sent to the drone, and controls the drone to automatically and quickly track to the target height. When the height difference is large, the invention can control the UAV to quickly reach the target height; when the height difference is small, the height control command can be fine-tuned to control the UAV to fly at a fixed height. It has important engineering application value.
附图说明Description of drawings
图1---高度指令快速跟踪模块接口图。Figure 1---Interface diagram of altitude command fast tracking module.
图2---基于非线性滞环的快速高度指令跟踪流程图。Figure 2 --- The flow chart of fast altitude command tracking based on nonlinear hysteresis.
图3---高度指令跟踪初始化流程图。Figure 3 --- Altitude command tracking initialization flow chart.
图4---高度控制模态切换逻辑流程图。Figure 4 --- Altitude control mode switching logic flow chart.
具体实施方式Detailed ways
基于非线性滞环的快速高度指令跟踪方法,具体实施步骤如下:The method of fast altitude command tracking based on nonlinear hysteresis, the specific implementation steps are as follows:
(1)如图2所示,实现基于非线性滞环的快速高度指令跟踪的总调度函数;(1) As shown in Figure 2, realize the total scheduling function based on the fast height command tracking of nonlinear hysteresis;
(2)实现获取无人机飞行高度和高度指令的接口函数;(2) Realize the interface function for obtaining the flying height and altitude command of the drone;
(3)如图3所示,实现高度指令跟踪初始化的执行函数;(3) As shown in Figure 3, realize the execution function of height instruction tracking initialization;
(4)如图4所示,实现高度控制模态切换逻辑的执行函数;(4) As shown in Figure 4, realize the executive function of height control mode switching logic;
(5)实现高度指令计算函数。(5) Realize the height command calculation function.
下面以输入的飞行状态和连续四拍高度差为例,结合图2对本方法的具体实施步骤进行详细说明:Taking the input flight state and the altitude difference of four consecutive shots as an example, the specific implementation steps of this method will be described in detail in conjunction with Figure 2:
假设:Assumptions:
(1)执行周期是20ms;(1) The execution cycle is 20ms;
(2)DH0=50m;DH1=25m。(2) DH0=50m; DH1=25m.
实施步骤是:The implementation steps are:
(1)周期性调度高度指令跟踪程序;(1) Periodically dispatch the altitude command tracking program;
(2)如果第一拍高度差DH大于DH0或者小于-DH0,则将高度控制模态字置为俯仰角表速控制模态,其余情况置为高度控制模态。该步骤只执行一次;(2) If the height difference DH of the first beat is greater than DH0 or less than -DH0, then set the height control mode word as the pitch angle table speed control mode, and set it as the height control mode in other cases. This step is performed only once;
(3)执行高度控制模态切换逻辑,该步骤输出的高度控制模态字结果如表1列出所示;(3) Execute the height control mode switching logic, the height control mode word result of this step output is listed as shown in table 1;
(4)根据第(3)步得到的高度控制模态字执行相应的高度指令计算。(4) According to the altitude control modal word obtained in step (3), execute the corresponding altitude command calculation.
表1Table 1
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510933267.0A CN106873606B (en) | 2015-12-14 | 2015-12-14 | A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510933267.0A CN106873606B (en) | 2015-12-14 | 2015-12-14 | A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106873606A CN106873606A (en) | 2017-06-20 |
| CN106873606B true CN106873606B (en) | 2019-10-18 |
Family
ID=59238393
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510933267.0A Active CN106873606B (en) | 2015-12-14 | 2015-12-14 | A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106873606B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109625248B (en) * | 2018-11-23 | 2022-04-01 | 中国航空工业集团公司沈阳飞机设计研究所 | Given height control method |
| CN114089637B (en) * | 2022-01-20 | 2022-04-12 | 伸瑞科技(北京)有限公司 | Multimodal Robust Active Disturbance Rejection Motion Control Method and System |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005349871A (en) * | 2004-06-08 | 2005-12-22 | Fuji Heavy Ind Ltd | Advanced control equipment for rotorcraft |
| CN102390543A (en) * | 2011-08-23 | 2012-03-28 | 北京航空航天大学 | Vertical landing track design method for unmanned aerial vehicle |
| CN103935508A (en) * | 2014-04-09 | 2014-07-23 | 深圳市大疆创新科技有限公司 | Auxiliary control method and auxiliary control system for descending of unmanned aerial vehicle |
| CN105094138A (en) * | 2015-07-15 | 2015-11-25 | 东北农业大学 | Low-altitude autonomous navigation system for rotary-wing unmanned plane |
| CN105138012A (en) * | 2015-09-09 | 2015-12-09 | 南京航空航天大学 | GPS-guided unmanned aerial vehicle automatic carrier-landing adaptive control system and method |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8788118B2 (en) * | 2006-09-06 | 2014-07-22 | Jeffrey A. Matos | Systems and methods for detecting and managing the unauthorized use of an unmanned aircraft |
| US9606028B2 (en) * | 2014-02-14 | 2017-03-28 | Nutech Ventures | Aerial water sampler |
-
2015
- 2015-12-14 CN CN201510933267.0A patent/CN106873606B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005349871A (en) * | 2004-06-08 | 2005-12-22 | Fuji Heavy Ind Ltd | Advanced control equipment for rotorcraft |
| CN102390543A (en) * | 2011-08-23 | 2012-03-28 | 北京航空航天大学 | Vertical landing track design method for unmanned aerial vehicle |
| CN103935508A (en) * | 2014-04-09 | 2014-07-23 | 深圳市大疆创新科技有限公司 | Auxiliary control method and auxiliary control system for descending of unmanned aerial vehicle |
| CN105094138A (en) * | 2015-07-15 | 2015-11-25 | 东北农业大学 | Low-altitude autonomous navigation system for rotary-wing unmanned plane |
| CN105138012A (en) * | 2015-09-09 | 2015-12-09 | 南京航空航天大学 | GPS-guided unmanned aerial vehicle automatic carrier-landing adaptive control system and method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106873606A (en) | 2017-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nikdel et al. | Adaptive backstepping control for an n-degree of freedom robotic manipulator based on combined state augmentation | |
| Tao et al. | Dynamic modeling and trajectory tracking control of parafoil system in wind environments | |
| CN107992082B (en) | Flight control method of quadrotor UAV based on fractional power switching law | |
| CN106707759B (en) | A kind of aircraft Herbst maneuver autopilot method | |
| Mathisen et al. | Non-linear model predictive control for guidance of a fixed-wing UAV in precision deep stall landing | |
| CN106873606B (en) | A Fast Altitude Command Tracking Method Based on Nonlinear Hysteresis | |
| Beul et al. | Fast autonomous landing on a moving target at MBZIRC | |
| KR20190103400A (en) | How to control drones, devices and drones | |
| Collotta et al. | A real-time system based on a neural network model to control hexacopter trajectories | |
| CN104567545A (en) | Guidance method for endoatmospheric powered phase of RLV (reusable launch vehicle) | |
| CN113050427A (en) | Rapid terminal sliding mode fault-tolerant control method for nonlinear system under actuator fault | |
| WO2020172866A1 (en) | Flight simulation system, method and flight simulation device | |
| CN106855690B (en) | Adaptive control method for recovering target after close-range capture by space tethered robot | |
| CN101221414A (en) | An Integrator-Based Control Law Smooth Switching Method | |
| CN103645647B (en) | A kind of space vehicle dynamic Trajectory Tracking Control method | |
| JP5760772B2 (en) | Flying object guidance control device | |
| CN108974389B (en) | Implementation method of intelligent cockpit system for civil aircraft design and airworthiness certification | |
| He et al. | Learning control for a robotic manipulator with input saturation | |
| Chen et al. | Fuzzy adaptive backstepping trajectory tracking control of quadrotor suspension system with input saturation | |
| RU2461041C1 (en) | Aircraft pitch angle control system | |
| Serra et al. | Visual servo aircraft control for tracking parallel curves | |
| CN108829121B (en) | Separation controller based on parameter identification | |
| CN114114903B (en) | A sliding mode control method for integral terminal of cricket system based on variable exponent power reaching law | |
| Artale et al. | An adaptive trajectory control for UAV using a real-time architecture | |
| CN114115352A (en) | Unmanned aerial vehicle flight control method and system and unmanned aerial vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |