CN106650784A - Feature clustering comparison-based power prediction method and device for photovoltaic power station - Google Patents
Feature clustering comparison-based power prediction method and device for photovoltaic power station Download PDFInfo
- Publication number
- CN106650784A CN106650784A CN201610966221.3A CN201610966221A CN106650784A CN 106650784 A CN106650784 A CN 106650784A CN 201610966221 A CN201610966221 A CN 201610966221A CN 106650784 A CN106650784 A CN 106650784A
- Authority
- CN
- China
- Prior art keywords
- prediction
- feature
- module
- cluster
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- Computing Systems (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- Primary Health Care (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Human Resources & Organizations (AREA)
- Water Supply & Treatment (AREA)
- Molecular Biology (AREA)
- General Business, Economics & Management (AREA)
- Public Health (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种基于特征聚类比较的光伏电站功率预测方法及装置,属于光伏发电技术领域。本发明首先获取影响光伏功率预测精度的三个最主要特征量,并积累为历史气象数据;然后将得到的历史气象数据作为数据样本进行聚类,将样本分成相似性较高的k类,并得到各类的簇中心;分别使用各类历史数据建立相应类的预测模型;选取与当前对象距离最近簇中心所对应的预测模型进行预测。本发明将不同的气象数据分成不同的样本类型,并建立不同气象条件下的光伏出力预测模型,使预测模型的训练更有针对性,利用不同气象条件建立的功率预测模型进行预测,提高了光功率的预测精度。
The invention relates to a method and device for predicting the power of a photovoltaic power station based on feature clustering comparison, and belongs to the technical field of photovoltaic power generation. The present invention first acquires the three most important feature quantities that affect the prediction accuracy of photovoltaic power, and accumulates them as historical meteorological data; then clusters the obtained historical meteorological data as data samples, divides the samples into k categories with high similarity, and Get the cluster centers of various types; use various historical data to establish corresponding prediction models; select the prediction model corresponding to the cluster center closest to the current object for prediction. The invention divides different meteorological data into different sample types, and establishes photovoltaic output prediction models under different meteorological conditions, so that the training of the prediction models is more targeted. Power prediction accuracy.
Description
技术领域technical field
本发明涉及一种基于特征聚类比较的光伏电站功率预测方法及装置,属于光伏发电技术领域。The invention relates to a method and device for predicting the power of a photovoltaic power station based on feature clustering comparison, and belongs to the technical field of photovoltaic power generation.
背景技术Background technique
光伏发电作为清洁能源的一种,在世界范围内都受到了广泛的重视,我国大型地面光伏电站,分布式屋顶光伏电站已经越来越多,但是由于光伏发电具有波动性和间歇性,给电网调度带来了很大困难,光伏功率预测的开展有效缓解了这一问题,但是目前市面上的光伏功率预测误差较大,难以给电网调度以有效的参考。As a kind of clean energy, photovoltaic power generation has received extensive attention worldwide. There are more and more large-scale ground photovoltaic power stations and distributed rooftop photovoltaic power stations in my country. However, due to the volatility and intermittent nature of photovoltaic power generation, power grid Scheduling has brought great difficulties, and the development of photovoltaic power forecasting has effectively alleviated this problem. However, the photovoltaic power forecasting errors currently on the market are relatively large, and it is difficult to provide effective reference for grid dispatching.
目前,我国针对光伏电站的功率预测已经开展了部分技术研究,现有的预测模型包括神经网络模型、径向基函数模型和多层感知模型等。其中神经网络模型应用最为广泛,神经网络模型经过输入层、隐含层和输出层中各种神经元的作用生成输出量,再以误差为目标函数对网络权值进行不断地修正直至误差达到要求,经训练后的网络就可以进行预测光伏组件是输出功率。但是,目前的神经网络模型只能将预测误差控制在20%左右,若遇到雷雨大风天气,预测精度会更差,要想进一步提高预测精度,需对输入数据做合理的预处理,另外保证训练样本的历史数据的准确性。At present, my country has carried out some technical research on the power prediction of photovoltaic power plants. The existing prediction models include neural network models, radial basis function models, and multi-layer perception models. Among them, the neural network model is the most widely used. The neural network model generates output through the action of various neurons in the input layer, hidden layer and output layer, and then uses the error as the objective function to continuously correct the network weight until the error meets the requirements. , the trained network can predict the output power of photovoltaic modules. However, the current neural network model can only control the prediction error at about 20%. If there is a thunderstorm and strong wind, the prediction accuracy will be even worse. To further improve the prediction accuracy, it is necessary to do a reasonable preprocessing of the input data. Accuracy of historical data for training samples.
名称为《基于天气类型聚类和LS-SVM的光伏出力预测》的论文中给出一种预测方法,该方法将历史气象数据按季节类型聚类,得到每个季节的四种不同类型聚类样本,形成相应的预测模型;实际预测时,先根据待预测日期确定所属季节,由待预测日气象特征找到对应的预测子模型,进行预测,文章中虽然给出了一种缩小样本范围寻求最佳预测子模型进行预测的预测方法,但是由于待预测日期是根据时间划分季节,寻求预测子模型,这样的划分方法具有一定的主观性和强制性,进而也限制了寻求最优预测模型的过程,部分样本数据尤其是在季节交替时间段内的样本数据难免出现因寻求不到最佳预测模型而使得预测精度降低的情况。A prediction method is given in the paper titled "PV Output Prediction Based on Weather Type Clustering and LS-SVM", which clusters historical meteorological data by seasonal type and obtains four different types of clusters for each season samples to form a corresponding prediction model; in actual prediction, first determine the season according to the date to be predicted, and find the corresponding prediction sub-model based on the meteorological characteristics of the day to be predicted, and make a prediction. However, since the date to be predicted is divided into seasons according to time and the forecasting sub-model is sought, such a division method has a certain degree of subjectivity and compulsion, which in turn limits the process of finding the optimal forecasting model , part of the sample data, especially the sample data in the period of seasonal alternation, will inevitably reduce the prediction accuracy due to the failure to find the best prediction model.
发明内容Contents of the invention
本发明的目的是提供一种基于特征聚类比较的光伏电站功率预测方法,以及巨额目前光伏电站功率预测精度低、准确性不高的问题。同时还提供了一种基于特征聚类比较的光伏电站功率预测装置。The purpose of the present invention is to provide a method for predicting the power of photovoltaic power plants based on feature clustering and comparison, and solve the problems of low prediction accuracy and low accuracy of the huge amount of current photovoltaic power plant power. At the same time, it also provides a photovoltaic power plant power forecasting device based on feature cluster comparison.
本发明为解决上述技术问题而提供一种基于特征聚类比较的光伏电站功率预测方法,该预测方法的步骤如下:In order to solve the above technical problems, the present invention provides a photovoltaic power plant power prediction method based on feature cluster comparison, the steps of the prediction method are as follows:
1)采集影响光伏功率预测精度的特征量,总辐射、风速和温度,并利用特征量的历史数据构成样本集;1) Collect the characteristic quantities that affect the prediction accuracy of photovoltaic power, total radiation, wind speed and temperature, and use the historical data of the characteristic quantities to form a sample set;
2)将得到的样本集进行特征聚类,将样本集化分成相似性较高的k类,并得到各类样本数据的聚类中心Ci,i=1,2,……,k;2) Perform feature clustering on the obtained sample set, divide the sample set into k categories with high similarity, and obtain the cluster centers C i of various sample data, i=1, 2, ..., k;
3)分别采用各类样本数据对应建立k类预测模型;3) Use various sample data to establish k-type prediction models correspondingly;
4)计算当前预测对象与各类样本数据的聚类中心之间的距离,选取与当前预测对象距离最近的聚类中心所在类对应的预测模型进行预测。4) Calculate the distance between the current prediction object and the cluster centers of various sample data, and select the prediction model corresponding to the class of the cluster center closest to the current prediction object for prediction.
进一步地,所述步骤2)采用K-means算法进行特征聚类,各类的初始聚类中心采用Huffman构造树的思想获取。Further, the step 2) uses the K-means algorithm to perform feature clustering, and the initial clustering centers of various types are obtained using the idea of Huffman tree construction.
进一步地,所述步骤3)的预测模型采用BP神经网络预测模型,该预测模型采用包括输入层、隐含层和输出层的三层结构,输入层采用总辐射、温度、风速三个特征量,输出层为光伏电站输出功率。Further, the prediction model of the step 3) adopts a BP neural network prediction model, and the prediction model adopts a three-layer structure including an input layer, a hidden layer and an output layer, and the input layer adopts three characteristic quantities of total radiation, temperature and wind speed , the output layer is the output power of the photovoltaic power station.
进一步地,所述步骤4)中当前预测对象与各类的聚类中心之间的距离采用加权法的欧式距离计算得到。Further, in the step 4), the distance between the current predicted object and the cluster centers of each category is calculated by using the weighted Euclidean distance.
进一步地,所述步骤2)将样本集划分为三类,分别代表阴雨、多云和晴天。Further, the step 2) divides the sample set into three categories, representing rainy, cloudy and sunny days respectively.
本发明还提供了一种基于特征聚类比较的光伏电站功率预测装置,该预测装置包括采集模块、特征聚类模块、预测模型建立模块和预测模块,The present invention also provides a photovoltaic power station power forecasting device based on feature clustering comparison, the forecasting device includes an acquisition module, a feature clustering module, a prediction model building module and a prediction module,
所述的采集模块用于采集影响光伏功率预测精度的特征量,总辐射、风速和温度,并利用特征量的历史数据构成样本集;The collection module is used to collect feature quantities that affect the prediction accuracy of photovoltaic power, total radiation, wind speed and temperature, and use historical data of feature quantities to form a sample set;
所述的特征聚类模块用于将得到的样本集进行特征聚类,将样本集化分成相似性较高的k类,并得到各类样本数据的聚类中心Ci,i=1,2,……,k;The feature clustering module is used to perform feature clustering on the obtained sample set, divide the sample set into k categories with high similarity, and obtain the cluster centers C i of various sample data, i=1, 2 ,...,k;
所述的预测模块建立模块分别利用各类样本数据建立对应k类预测模型;Described prediction module establishment module utilizes various sample data to establish corresponding k class prediction models respectively;
所述的预测模块用于计算当前预测对象与各类样本数据的聚类中心之间的距离,选取与当前预测对象距离最近的聚类中心所在类对应的预测模型进行预测。The prediction module is used to calculate the distance between the current prediction object and the cluster centers of various sample data, and select the prediction model corresponding to the class of the cluster center closest to the current prediction object for prediction.
进一步地,所述的特征聚类模块采用K-means算法进行特征聚类,各类的初始聚类中心采用Huffman构造树的思想获取。Further, the feature clustering module uses the K-means algorithm to perform feature clustering, and various initial cluster centers are obtained using the idea of Huffman tree construction.
进一步地,所述的预测模块建立模块采用BP神经网络预测模型,该预测模型采用包括输入层、隐含层和输出层的三层结构,输入层采用总辐射、温度、风速三个特征量,输出层为光伏电站输出功率。Further, the building block of the prediction module adopts a BP neural network prediction model, and the prediction model adopts a three-layer structure including an input layer, a hidden layer and an output layer, and the input layer adopts three characteristic quantities of total radiation, temperature and wind speed, The output layer is the output power of the photovoltaic power station.
进一步地,所述的预测模块在计算当前预测对象与各类的聚类中心之间的距离采用加权法的欧式距离计算得到。Further, the prediction module calculates the distance between the current prediction object and the cluster center of each category by using the Euclidean distance calculation of the weighted method.
进一步地,所述的特征聚类模块将样本集划分为三类,分别代表阴雨、多云和晴天。Further, the feature clustering module divides the sample set into three categories, representing rainy, cloudy and sunny days respectively.
本发明的有益效果是:本发明首先获取影响光伏功率预测精度的三个最主要特征量,并积累为历史气象数据;然后将得到的历史气象数据作为数据样本进行聚类,将样本分成相似性较高的k类,并得到各类的簇中心;分别使用各类历史数据建立相应类的预测模型;选取与当前对象距离最近簇中心所对应的预测模型进行预测。本发明将不同的气象数据分成不同的样本类型,并建立不同气象条件下的光伏出力预测模型,使预测模型的训练更有针对性,利用不同气象条件建立的功率预测模型进行预测,提高了光功率预测精度。The beneficial effects of the present invention are: the present invention at first obtains the three most important feature quantities that affect the prediction accuracy of photovoltaic power, and accumulates as historical meteorological data; then clusters the obtained historical meteorological data as data samples, and divides the samples into similarity Higher class k, and get the cluster center of each type; use each type of historical data to establish the prediction model of the corresponding class; select the prediction model corresponding to the cluster center closest to the current object for prediction. The invention divides different meteorological data into different sample types, and establishes photovoltaic output prediction models under different meteorological conditions, so that the training of the prediction models is more targeted. Power prediction accuracy.
附图说明Description of drawings
图1是本发明基于特征聚类比较的光伏电站功率预测方法的流程图;Fig. 1 is the flowchart of the method for predicting power of photovoltaic power plants based on feature clustering comparison in the present invention;
图2是Huffman树的构造过程示意图;Figure 2 is a schematic diagram of the construction process of the Huffman tree;
图3是基于Huffman树的初始聚类中心选取流程图;Fig. 3 is the flow chart of initial clustering center selection based on Huffman tree;
图4是基于BP神经网络的预测模型图。Fig. 4 is a prediction model diagram based on BP neural network.
具体实施方式detailed description
下面结合附图对本发明的具体实施方式做进一步的说明。The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
本发明基于特征聚类比较的光伏电站功率预测方法的实施例Embodiment of the method for predicting the power of photovoltaic power plants based on feature clustering comparison in the present invention
本发明的光伏电站功率预测方法首先获取影响光伏功率预测精度特征量,利用特征量的历史数据构成样本集;然后通过特征聚类算法将样本集聚为k类,利用各类历史数据建立相应类的预测模型;最后计算当前对象与各类簇中心之间的距离,并选取与当前对象距离最近的簇中心所在类对应的预测模型对当前对象预测,从而实现光伏电站功率的预测。该方法的实施流程如图1所示,具体步骤如下。The photovoltaic power plant power prediction method of the present invention firstly obtains the characteristic quantity that affects the photovoltaic power prediction accuracy, and uses the historical data of the characteristic quantity to form a sample set; then uses the feature clustering algorithm to gather the samples into k categories, and uses various historical data to establish the corresponding category. Prediction model; finally calculate the distance between the current object and various cluster centers, and select the prediction model corresponding to the class of the cluster center closest to the current object to predict the current object, so as to realize the prediction of the power of the photovoltaic power station. The implementation process of this method is shown in Figure 1, and the specific steps are as follows.
1.获取影响光伏功率预测精度的三个最主要特征量,并利用特征量的历史数据构成样本集。1. Obtain the three most important characteristic quantities that affect the prediction accuracy of photovoltaic power, and use the historical data of the characteristic quantities to form a sample set.
本发明所选取的影响光伏功率预测精度的三个最主要特征量分别为总辐射、风速和温度,这三种特征量可从NWP数值天气预报中获取。The three most important characteristic quantities affecting the prediction accuracy of photovoltaic power selected by the present invention are total radiation, wind speed and temperature respectively, and these three characteristic quantities can be obtained from NWP numerical weather prediction.
2.将得到的样本集进行特征聚类,将样本分成相似性较高的k类,并得到各类的聚类中心Ci,i=1,2,……,k。2. Perform feature clustering on the obtained sample set, divide the samples into k classes with high similarity, and obtain the cluster centers C i of each class, i=1, 2, ..., k.
实现样本聚类的算法有多种,基于划分的聚类算法、基于层次的聚类算法、基于网格的聚类算法、基于密度的聚类算法等,均可实现本发明中的聚类过程,下面以基于划分聚类算法中最典型的K-means算法为例,对本发明的聚类过程进行详细说明,具体实施如下:There are many algorithms for realizing sample clustering, such as partition-based clustering algorithms, hierarchical-based clustering algorithms, grid-based clustering algorithms, density-based clustering algorithms, etc., all of which can realize the clustering process in the present invention , the following is an example based on the most typical K-means algorithm in the partition clustering algorithm, the clustering process of the present invention is described in detail, and the specific implementation is as follows:
(1)建立特征矩阵。(1) Establish feature matrix.
以光伏电站历史气象数据作为样本,特征量分别为总辐射、温度、风速,则样本构成如下:Taking the historical meteorological data of photovoltaic power plants as samples, the characteristic quantities are total radiation, temperature, and wind speed, and the sample composition is as follows:
每个样本数据涵盖各个特征量Each sample data covers various feature quantities
其中,ui1,ui2,ui3分别代表总辐射,风速,温度3个特征量。Among them, u i1 , u i2 , and u i3 respectively represent three characteristic quantities of total radiation, wind speed and temperature.
(2)选取初始聚类中心。(2) Select the initial cluster center.
本实施例采用基于Huffman树构造思想来选取初始聚类中心。向量个数为n,样本集维数为3,拟聚类种类为3类,聚类种类可根据实际情况进行调整,本实施例中仅给出3类的情况,初始中心点选取具体步骤如下。In this embodiment, the initial cluster center is selected based on the Huffman tree construction idea. The number of vectors is n, the dimension of the sample set is 3, and the type of clustering is 3 types. The type of clustering can be adjusted according to the actual situation. In this embodiment, only 3 types of cases are given. The specific steps for selecting the initial center point are as follows .
第一步:计算两两向量之间的欧氏距离。Step 1: Calculate the Euclidean distance between two vectors.
其中i=1,2…n;j=1,2…n;且i≠j。where i=1,2...n; j=1,2...n; and i≠j.
得到相异度矩阵,矩阵如下式:The dissimilarity matrix is obtained, and the matrix is as follows:
第二步:找到矩阵中最小值dij,计算ui,uj两个向量平均值,得到向量V1。Step 2: find the minimum value d ij in the matrix, calculate the average value of the two vectors u i and u j , and obtain the vector V 1 .
第三步:从原特征矩阵中删除ui,uj两个向量,并加入向量V1,得到新的特征矩阵。Step 3: Delete the two vectors u i and u j from the original feature matrix, and add vector V 1 to obtain a new feature matrix.
第四步:重复步骤一、步骤二、步骤三,直到特征矩阵中仅剩下一个向量,迭代过程中构造树的过程如图2所示。Step 4: Repeat step 1, step 2, and step 3 until there is only one vector left in the feature matrix. The process of constructing a tree in the iterative process is shown in Figure 2.
第五步:将数据聚为5类,从顶点Jm起依次将节点从树中减掉,减掉个数为4个,构成5个树,如图3所示。Step 5: Cluster the data into 5 categories, and subtract the nodes from the tree sequentially from the vertex J m to 4, forming 5 trees, as shown in Figure 3.
第六步,分别求取3个树最底层的节点向量的平均值,得到向量即为初始聚类中心。The sixth step is to calculate the average value of the node vectors at the bottom of the three trees to obtain the vector is the initial cluster center.
(3)计算初始聚类中心下平均误差准则函数。(3) Calculate the average error criterion function under the initial cluster center.
其中k=3,代表所划分簇的个数;ui (0)代表3个簇的中心。Where k=3, represents the number of divided clusters; u i (0) represents the centers of the three clusters.
(4)计算新的聚类中心。(4) Calculate the new cluster center.
N1表示属于元素个数 N 1 means belong to number of elements
N2表示属于元素个数 N 2 means belong to number of elements
N3表示属于元素个数 N 3 means belong to number of elements
其中N1+N2+N3=n n表示样本数据总量Where N 1 +N 2 +N 3 =nn represents the total amount of sample data
(5)重复上述步骤(2)、(3)、(4),直至满足如下关系。(5) Repeat the above steps (2), (3) and (4) until the following relationship is satisfied.
且存在E(s+1)≤E(s),说明经过s次聚类迭代后,平均误差准则函数呈现收敛状态,且簇中心不再发生变化,停止迭代,至此聚类结果完成。 And there is E (s+1) ≤ E (s) , which means that after s clustering iterations, the average error criterion function is in a state of convergence, and the cluster center does not change any more, so the iteration is stopped, and the clustering result is completed.
3.建立光伏功率预测模型。3. Establish a photovoltaic power prediction model.
本实施例中采用BP神经网络预测模型作为光功率的预测模型,分别使用聚类后的各类历史数据对BP神经网络模型进行训练,以得到与各类对应的预测模型。如图4所示,BP神经网络预测模型采用三层结构,输入层、隐含层、输出层,输入层采用总辐射、温度、风速三个特征量,输出层为光伏电站输出功率、隐含层神经元个数通过工程实际验证获得。根据步骤2中得到聚类结果,将三类的样本数据分别带入到BP神经网络预测模型中进行训练,即可得到三类不同的预测模型。具体实现过程如下:In this embodiment, the BP neural network prediction model is used as the optical power prediction model, and the BP neural network model is trained by using various types of historical data after clustering, so as to obtain prediction models corresponding to each type. As shown in Figure 4, the BP neural network prediction model adopts a three-layer structure, input layer, hidden layer, and output layer. The input layer uses three characteristic quantities of total radiation, temperature, and wind speed. The number of layer neurons is obtained through actual engineering verification. According to the clustering results obtained in step 2, the three types of sample data are respectively brought into the BP neural network prediction model for training, and three different types of prediction models can be obtained. The specific implementation process is as follows:
第一步,网络初始化:给各连接权值分别赋一个区间(-1、1)内的随机数,设定误差函数e,给定计算精度值Δ和最大学习次数。The first step is network initialization: assign a random number in the interval (-1, 1) to each connection weight, set the error function e, and give the calculation accuracy value Δ and the maximum number of learning times.
第二步,选取k个输入样本(最近30天的历史数据)及对应期望输出(期望输出值为相应30天实际发电功率)。In the second step, select k input samples (historical data of the last 30 days) and the corresponding expected output (the expected output value corresponds to the actual power generated in 30 days).
第三步,计算隐含层各神经元的输入和输出。The third step is to calculate the input and output of each neuron in the hidden layer.
第四步,利用网络期望输出(实际发电功率)和实际训练后输出结果,计算误差函数对输出各神经元的偏导数。The fourth step is to use the expected output of the network (actual power generation) and the actual output after training to calculate the partial derivative of the error function to each output neuron.
第五步,利用输出层各神经元的误差偏导数和隐含层各神经元的输出来修正连接权值。The fifth step is to use the error partial derivative of each neuron in the output layer and the output of each neuron in the hidden layer to modify the connection weight.
第六步,利用隐含层各神经元的误差偏导数和输入层各神经元的输出修正连接权值。The sixth step is to use the error partial derivative of each neuron in the hidden layer and the output of each neuron in the input layer to modify the connection weight.
第七步,计算全局误差。The seventh step is to calculate the global error.
第八步,判断网络误差是否满足要求,当误差达到预设精度或学习次数大于设定的最大次数,则结束算法,否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。The eighth step is to judge whether the network error meets the requirements. When the error reaches the preset accuracy or the number of learning times is greater than the set maximum number of times, the algorithm ends. Otherwise, select the next learning sample and the corresponding expected output, and return to the third step. Go to the next round of study.
4.计算当前预测对象与各类的聚类中心之间的距离,选取与当前预测对象距离最近的聚类中心所在类对应的预测模型进行预测。4. Calculate the distance between the current prediction object and various cluster centers, and select the prediction model corresponding to the class of the cluster center closest to the current prediction object for prediction.
第一步,获取当前预测对象的气象数据,根据聚类算法输出结果,选定预测模型。The first step is to obtain the meteorological data of the current forecast object, and select the forecast model according to the output results of the clustering algorithm.
计算当前对象的气象数据与各类聚类中心之间的加权欧式距离,若与第i类簇中心Ci距离最小,则使用第i类预测模型进行预测。Calculate the weighted Euclidean distance between the meteorological data of the current object and various cluster centers. If the distance to the i-th cluster center C i is the smallest, use the i-th type forecasting model for prediction.
第二步,气象数据归一化处理。The second step is to normalize the meteorological data.
第三步,将当前气象数据作为输入,加载相应的预测模型,输出预测结果。The third step is to use the current meteorological data as input, load the corresponding prediction model, and output the prediction results.
通过上述过程本发明能够根据不同的气象条件建立的功率预测模型,可有效改善阴雨天气条件下光伏输出功率预测精度低的问题。Through the above process, the present invention can establish a power prediction model according to different meteorological conditions, which can effectively improve the problem of low prediction accuracy of photovoltaic output power under cloudy and rainy weather conditions.
本发明基于特征聚类比较的光伏电站功率预测装置的实施例Embodiment of the photovoltaic power plant power prediction device based on feature clustering comparison of the present invention
本实施例中的预测装置包括采集模块、特征聚类模块、预测模型建立模块和预测模块;采集模块用于采集影响光伏功率预测精度的特征量,总辐射、风速和温度,并利用特征量的历史数据构成样本集;特征聚类模块用于将得到的样本集进行特征聚类,将样本集化分成相似性较高的k类,并得到各类样本数据的聚类中心Ci,i=1,2,……,k;预测模块建立模块分别利用各类样本数据建立对应k类预测模型;预测模块用于计算当前预测对象与各类样本数据的聚类中心之间的距离,选取与当前预测对象距离最近的聚类中心所在类对应的预测模型进行预测。各模块的具体实现手段已在方法的实例中进行说明,这里不再赘述。The prediction device in this embodiment includes an acquisition module, a feature clustering module, a prediction model building module, and a prediction module; the acquisition module is used to collect feature quantities that affect the prediction accuracy of photovoltaic power, total radiation, wind speed and temperature, and use the feature quantities Historical data constitutes a sample set; the feature clustering module is used to perform feature clustering on the obtained sample set, divide the sample set into k categories with high similarity, and obtain the cluster centers C i of various sample data, i= 1, 2, ..., k; the prediction module building module uses various sample data to establish corresponding k-type prediction models; the prediction module is used to calculate the distance between the current prediction object and the cluster centers of various sample data, and select the The current prediction object is predicted by the prediction model corresponding to the class of the nearest cluster center. The specific implementation means of each module has been described in the example of the method, and will not be repeated here.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610966221.3A CN106650784A (en) | 2016-11-04 | 2016-11-04 | Feature clustering comparison-based power prediction method and device for photovoltaic power station |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610966221.3A CN106650784A (en) | 2016-11-04 | 2016-11-04 | Feature clustering comparison-based power prediction method and device for photovoltaic power station |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106650784A true CN106650784A (en) | 2017-05-10 |
Family
ID=58820784
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610966221.3A Pending CN106650784A (en) | 2016-11-04 | 2016-11-04 | Feature clustering comparison-based power prediction method and device for photovoltaic power station |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106650784A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107331068A (en) * | 2017-07-17 | 2017-11-07 | 重庆壹元电科技有限公司 | A kind of portable power source lease management system and method towards the ultimate attainment Consumer's Experience of amnesia |
| CN107784165A (en) * | 2017-09-29 | 2018-03-09 | 国网青海省电力公司 | Surface temperature field multi-scale data assimilation method based on photovoltaic plant |
| CN108197664A (en) * | 2018-01-24 | 2018-06-22 | 北京墨丘科技有限公司 | Model acquisition methods, device, electronic equipment and computer readable storage medium |
| CN108320050A (en) * | 2018-01-11 | 2018-07-24 | 国家电网公司 | A method of photovoltaic short term power precision of prediction is improved based on wind speed forecasting |
| CN109242209A (en) * | 2018-10-12 | 2019-01-18 | 北京交通大学 | Railway emergency event grading forewarning system method based on K-means cluster |
| CN109543911A (en) * | 2018-11-29 | 2019-03-29 | 中国农业科学院农业信息研究所 | A kind of solar radiation prediction technique and system |
| CN109670644A (en) * | 2018-12-20 | 2019-04-23 | 华北水利水电大学 | Forecasting system and method neural network based |
| CN110197298A (en) * | 2019-05-10 | 2019-09-03 | 中国电建集团西北勘测设计研究院有限公司 | The method and device of multi-model sun normal direction radiation prediction based on clustering algorithm |
| CN110348175A (en) * | 2019-08-12 | 2019-10-18 | 阳光电源股份有限公司 | A kind of photovoltaic plant effective irradiation calculation method and device |
| CN110472770A (en) * | 2019-07-05 | 2019-11-19 | 广东工业大学 | A kind of photovoltaic power generation power prediction method |
| CN110598956A (en) * | 2019-09-29 | 2019-12-20 | 国核电力规划设计研究院有限公司 | Method and device for predicting power generation power of photovoltaic power station |
| CN111210071A (en) * | 2020-01-03 | 2020-05-29 | 深圳前海微众银行股份有限公司 | Business object prediction method, device, equipment and readable storage medium |
| CN112365081A (en) * | 2020-11-24 | 2021-02-12 | 国家电网有限公司 | Photovoltaic power station power generation capacity prediction method and device |
| CN113177360A (en) * | 2021-05-06 | 2021-07-27 | 中国人民解放军国防科技大学 | Rain intensity self-adaptive estimation system and method based on clustering rain attenuation relation |
| CN113827233A (en) * | 2020-06-24 | 2021-12-24 | 京东方科技集团股份有限公司 | User characteristic value detection method and device, storage medium and electronic device |
| CN116432908A (en) * | 2023-04-18 | 2023-07-14 | 国网河北省电力有限公司雄安新区供电公司 | Near-zero carbon park carbon accounting method, device, terminal and storage medium |
| CN118523319A (en) * | 2024-07-23 | 2024-08-20 | 国网天津市电力公司城西供电分公司 | Short-term photovoltaic power generation power prediction method and device, storage medium and electronic equipment |
| CN119668327A (en) * | 2025-02-24 | 2025-03-21 | 深圳市前海吉运现代物流有限公司 | A method and system for regulating indoor environmental temperature in modern animal husbandry |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102930358A (en) * | 2012-11-28 | 2013-02-13 | 江西九江供电公司 | Neural network prediction method for generated output of photovoltaic power station |
| CN103390200A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power station electricity generation output power forecasting method based on similar days |
| CN103390199A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power generation capacity/power prediction device |
| CN103904682A (en) * | 2014-03-18 | 2014-07-02 | 许继电气股份有限公司 | Power prediction method based on wind-solar hybrid model |
| CN104573879A (en) * | 2015-01-30 | 2015-04-29 | 河海大学 | Photovoltaic power station output predicting method based on optimal similar day set |
| CN104915899A (en) * | 2015-06-30 | 2015-09-16 | 许继集团有限公司 | Photovoltaic power station operation state classifying method based on characteristic cluster analysis |
| CN105184678A (en) * | 2015-09-18 | 2015-12-23 | 齐齐哈尔大学 | Construction Method of Short-term Prediction Model of Photovoltaic Power Plant Power Generation Based on Multiple Neural Network Combination Algorithms |
| CN105373857A (en) * | 2015-11-27 | 2016-03-02 | 许昌许继软件技术有限公司 | Photovoltaic power station irradiance prediction method |
| CN106022528A (en) * | 2016-05-26 | 2016-10-12 | 上海电力学院 | Short-term power prediction method of photovoltaic power plant based on density peak hierarchical clustering |
-
2016
- 2016-11-04 CN CN201610966221.3A patent/CN106650784A/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102930358A (en) * | 2012-11-28 | 2013-02-13 | 江西九江供电公司 | Neural network prediction method for generated output of photovoltaic power station |
| CN103390200A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power station electricity generation output power forecasting method based on similar days |
| CN103390199A (en) * | 2013-07-18 | 2013-11-13 | 国家电网公司 | Photovoltaic power generation capacity/power prediction device |
| CN103904682A (en) * | 2014-03-18 | 2014-07-02 | 许继电气股份有限公司 | Power prediction method based on wind-solar hybrid model |
| CN104573879A (en) * | 2015-01-30 | 2015-04-29 | 河海大学 | Photovoltaic power station output predicting method based on optimal similar day set |
| CN104915899A (en) * | 2015-06-30 | 2015-09-16 | 许继集团有限公司 | Photovoltaic power station operation state classifying method based on characteristic cluster analysis |
| CN105184678A (en) * | 2015-09-18 | 2015-12-23 | 齐齐哈尔大学 | Construction Method of Short-term Prediction Model of Photovoltaic Power Plant Power Generation Based on Multiple Neural Network Combination Algorithms |
| CN105373857A (en) * | 2015-11-27 | 2016-03-02 | 许昌许继软件技术有限公司 | Photovoltaic power station irradiance prediction method |
| CN106022528A (en) * | 2016-05-26 | 2016-10-12 | 上海电力学院 | Short-term power prediction method of photovoltaic power plant based on density peak hierarchical clustering |
Non-Patent Citations (3)
| Title |
|---|
| 嵇灵等: "《基于相似日聚类和贝叶斯神经网络的光伏发电功率预测研究》", 《中国管理科学》 * |
| 胡斌等: "《考虑大规模光伏电站接入的电力系统旋转备用需求评估》", 《电力系统自动化》 * |
| 金鑫等: "《天气类型聚类的支持向量机在光伏系统输出功率预测中的应用》", 《现代电力》 * |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107331068A (en) * | 2017-07-17 | 2017-11-07 | 重庆壹元电科技有限公司 | A kind of portable power source lease management system and method towards the ultimate attainment Consumer's Experience of amnesia |
| CN107784165A (en) * | 2017-09-29 | 2018-03-09 | 国网青海省电力公司 | Surface temperature field multi-scale data assimilation method based on photovoltaic plant |
| CN107784165B (en) * | 2017-09-29 | 2021-07-09 | 国网青海省电力公司 | Multi-scale data assimilation method of surface temperature field based on photovoltaic power station |
| CN108320050A (en) * | 2018-01-11 | 2018-07-24 | 国家电网公司 | A method of photovoltaic short term power precision of prediction is improved based on wind speed forecasting |
| CN108197664A (en) * | 2018-01-24 | 2018-06-22 | 北京墨丘科技有限公司 | Model acquisition methods, device, electronic equipment and computer readable storage medium |
| CN109242209A (en) * | 2018-10-12 | 2019-01-18 | 北京交通大学 | Railway emergency event grading forewarning system method based on K-means cluster |
| CN109543911B (en) * | 2018-11-29 | 2020-09-18 | 中国农业科学院农业信息研究所 | A method and system for predicting solar radiation |
| CN109543911A (en) * | 2018-11-29 | 2019-03-29 | 中国农业科学院农业信息研究所 | A kind of solar radiation prediction technique and system |
| CN109670644A (en) * | 2018-12-20 | 2019-04-23 | 华北水利水电大学 | Forecasting system and method neural network based |
| CN109670644B (en) * | 2018-12-20 | 2023-04-25 | 华北水利水电大学 | Prediction system and method based on neural network |
| CN110197298A (en) * | 2019-05-10 | 2019-09-03 | 中国电建集团西北勘测设计研究院有限公司 | The method and device of multi-model sun normal direction radiation prediction based on clustering algorithm |
| CN110472770A (en) * | 2019-07-05 | 2019-11-19 | 广东工业大学 | A kind of photovoltaic power generation power prediction method |
| CN110348175B (en) * | 2019-08-12 | 2023-01-06 | 阳光电源股份有限公司 | Effective irradiation calculation method and device for photovoltaic power station |
| CN110348175A (en) * | 2019-08-12 | 2019-10-18 | 阳光电源股份有限公司 | A kind of photovoltaic plant effective irradiation calculation method and device |
| CN110598956A (en) * | 2019-09-29 | 2019-12-20 | 国核电力规划设计研究院有限公司 | Method and device for predicting power generation power of photovoltaic power station |
| CN110598956B (en) * | 2019-09-29 | 2022-02-18 | 国核电力规划设计研究院有限公司 | Method and device for predicting power generation power of photovoltaic power station |
| CN111210071A (en) * | 2020-01-03 | 2020-05-29 | 深圳前海微众银行股份有限公司 | Business object prediction method, device, equipment and readable storage medium |
| CN113827233A (en) * | 2020-06-24 | 2021-12-24 | 京东方科技集团股份有限公司 | User characteristic value detection method and device, storage medium and electronic device |
| CN112365081A (en) * | 2020-11-24 | 2021-02-12 | 国家电网有限公司 | Photovoltaic power station power generation capacity prediction method and device |
| CN113177360B (en) * | 2021-05-06 | 2022-04-29 | 中国人民解放军国防科技大学 | Rain intensity self-adaptive estimation system and method based on clustering rain attenuation relation |
| CN113177360A (en) * | 2021-05-06 | 2021-07-27 | 中国人民解放军国防科技大学 | Rain intensity self-adaptive estimation system and method based on clustering rain attenuation relation |
| CN116432908A (en) * | 2023-04-18 | 2023-07-14 | 国网河北省电力有限公司雄安新区供电公司 | Near-zero carbon park carbon accounting method, device, terminal and storage medium |
| CN116432908B (en) * | 2023-04-18 | 2024-11-15 | 国网河北省电力有限公司雄安新区供电公司 | Carbon accounting method, device, terminal and storage medium for near-zero carbon parks |
| CN118523319A (en) * | 2024-07-23 | 2024-08-20 | 国网天津市电力公司城西供电分公司 | Short-term photovoltaic power generation power prediction method and device, storage medium and electronic equipment |
| CN119668327A (en) * | 2025-02-24 | 2025-03-21 | 深圳市前海吉运现代物流有限公司 | A method and system for regulating indoor environmental temperature in modern animal husbandry |
| CN119668327B (en) * | 2025-02-24 | 2025-06-03 | 深圳市前海吉运现代物流有限公司 | A method and system for regulating indoor environmental temperature in modern animal husbandry |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106650784A (en) | Feature clustering comparison-based power prediction method and device for photovoltaic power station | |
| WO2024051524A1 (en) | Joint prediction method and apparatus for hydraulic, wind and photovoltaic generation power | |
| WO2021238505A1 (en) | Federated learning-based regional photovoltaic power probability prediction method, and cooperative regulation and control system | |
| CN110334870B (en) | Photovoltaic power station short-term power prediction method based on gated cyclic unit network | |
| CN115115125A (en) | Probabilistic prediction method of photovoltaic power interval based on deep learning fusion model | |
| CN112215428B (en) | Photovoltaic power generation power prediction method and system based on error correction and fuzzy logic | |
| CN112149879A (en) | A new energy medium and long-term electricity forecast method considering macro-volatility classification | |
| CN108280545A (en) | A kind of photovoltaic power prediction technique based on K mean cluster neural network | |
| CN109002915A (en) | Photovoltaic plant short term power prediction technique based on Kmeans-GRA-Elman model | |
| CN105139264A (en) | Photovoltaic generation capacity prediction method based on particle swarm algorithm wavelet neural network | |
| CN103729685A (en) | Method for photovoltaic power station group region power prediction on basis of improved RBF neural network | |
| CN110766134A (en) | Short-term power prediction method of photovoltaic power station based on recurrent neural network | |
| CN105069521A (en) | Photovoltaic power plant output power prediction method based on weighted FCM clustering algorithm | |
| CN109978284A (en) | A Time-sharing Prediction Method of Photovoltaic Power Generation Based on Hybrid Neural Network Model | |
| CN115374995A (en) | Distributed photovoltaic and small wind power station power prediction method | |
| CN115965132A (en) | Power prediction method for distributed photovoltaic digital twin system based on GA-BP neural network | |
| CN112862274A (en) | WRF-LES and Deepar combined wind power prediction method | |
| CN109636054A (en) | Solar energy power generating amount prediction technique based on classification and error combination prediction | |
| CN116722544B (en) | Distributed photovoltaic short-term prediction method and device, electronic equipment and storage medium | |
| CN112418346B (en) | A Calculation Method for Error Classification of Global Radiation System in Numerical Weather Forecast | |
| CN116894384A (en) | A multi-wind turbine wind speed spatio-temporal prediction method and system | |
| CN116701868A (en) | Short-term wind power section probability prediction method | |
| CN113052386A (en) | Distributed photovoltaic daily generated energy prediction method and device based on random forest algorithm | |
| CN115829126A (en) | Photovoltaic power prediction method based on multi-view adaptive feature fusion | |
| CN112784477A (en) | WRF-LES and BP-PSO-Bagging combined wind power prediction method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170510 |
|
| RJ01 | Rejection of invention patent application after publication |