CN106056587B - Full view line laser structured light three-dimensional imaging caliberating device and method - Google Patents
Full view line laser structured light three-dimensional imaging caliberating device and method Download PDFInfo
- Publication number
- CN106056587B CN106056587B CN201610351274.4A CN201610351274A CN106056587B CN 106056587 B CN106056587 B CN 106056587B CN 201610351274 A CN201610351274 A CN 201610351274A CN 106056587 B CN106056587 B CN 106056587B
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- calibration
- camera
- scaling
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
- G06T2207/30208—Marker matrix
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了全视角线激光扫描三维成像标定装置及方法。本发明全视角激光扫描三维成像标定装置包括一维移动部件、标定块、激光发射器及相机,标定块安装于所述的一维移动部件,标定块是一个至少具有三个面的多面体,标定块的数个面沿周向相围,标定块的各个面上各固定一标定板,数标定板沿周向相围;激光发射器及相机的数量与标定板的数量相对应,数个激光发射器沿环形方向正对所述的标定块而布设;每个相机上各安装一镜头,镜头对标定板成像。本发明全视角线激光扫描三维成像标定装置结构简单,便于操作和处理,能适用于多种大小视场的标定,且弥补了单个系统成像不全面的缺点。
The invention discloses a laser scanning three-dimensional imaging calibration device and method for a full viewing angle. The full-view laser scanning three-dimensional imaging calibration device of the present invention includes a one-dimensional moving part, a calibration block, a laser emitter and a camera. The calibration block is installed on the one-dimensional moving part, and the calibration block is a polyhedron with at least three faces. Several faces of the block surround each other in the circumferential direction, and each face of the calibration block is fixed with a calibration plate, and several calibration plates surround each other in the circumferential direction; the number of laser emitters and cameras corresponds to the number of calibration plates, and several laser emitters are aligned along the ring. The direction is arranged facing the calibration block; each camera is equipped with a lens, and the lens images the calibration plate. The full-view laser scanning three-dimensional imaging calibration device of the present invention has a simple structure, is convenient for operation and processing, is applicable to calibration of various sizes of fields of view, and makes up for the shortcoming of incomplete imaging of a single system.
Description
技术领域technical field
本发明属于三维激光测量技术领域,具体涉及一种全视角线激光扫描三维成像标定装置与方法。The invention belongs to the technical field of three-dimensional laser measurement, and in particular relates to a full-view laser scanning three-dimensional imaging calibration device and method.
背景技术Background technique
线激光三角扫描三维成像的方法是一种非接触式光学主动三维测量方法,其利用三角法数学原理,通过计算和分析具有深度信息的光学图像,获取测量点的三维坐标,并且通过数据处理输出所需的测量结果。具体来说,使用激光器作为主动光源,激光器发出的线激光投射到待扫描物体的表面,其反射像通过成像物镜在工业相机上成像,成像位置会由于光斑在物体表面投射点高度的不同而发生位移,且像点位置与物体表面在该投射点的高度信息具有唯一的几何对应关系。通过对一系列采样激光线的测量和计算,就可以得到物体位移信息或表面轮廓深度变化。The method of line laser triangulation scanning three-dimensional imaging is a non-contact optical active three-dimensional measurement method, which uses the mathematical principle of trigonometry to obtain the three-dimensional coordinates of the measurement point by calculating and analyzing the optical image with depth information, and outputs it through data processing desired measurement results. Specifically, using a laser as an active light source, the line laser emitted by the laser is projected onto the surface of the object to be scanned, and its reflected image is imaged on the industrial camera through the imaging objective lens. Displacement, and the position of the image point has a unique geometric correspondence with the height information of the object surface at the projection point. Through the measurement and calculation of a series of sampled laser lines, the displacement information of the object or the depth change of the surface profile can be obtained.
但现有的线激光扫描三维成像装置只针对待扫描物体的一个角度做三维扫描,同时用于待扫描物体表面的形态变化使测量的表面产生一定的数据缺失,应用范围相对较小,且无法全面的获得待扫描物体全面信息。However, the existing line laser scanning 3D imaging device only performs 3D scanning for one angle of the object to be scanned, and at the same time, it is used for the morphological changes of the surface of the object to be scanned to cause certain data loss on the measured surface, the application range is relatively small, and cannot Get comprehensive information on the object to be scanned.
发明内容Contents of the invention
为解决现有技术存在的上述问题,本发明公开了一种全视角线激光扫描三维成像标定装置及方法。In order to solve the above-mentioned problems in the prior art, the present invention discloses a full-view laser scanning three-dimensional imaging calibration device and method.
本发明通过研究新的标定方式,搭建实验装置,使多台相机同时对待扫描物体进行多角度的表面数据采集,计算表面轮廓的三维数据,并且通过新的标定技术,将多个相机分别得到的点云数据进行匹配重合,以此来增加被测表面的三维数据扫描信息点,从而实现对待扫描物体的全角度全方位扫描。The present invention studies a new calibration method, builds an experimental device, and enables multiple cameras to collect multi-angle surface data of the object to be scanned at the same time, calculates the three-dimensional data of the surface profile, and uses the new calibration technology to separate the data obtained by multiple cameras. The point cloud data is matched and overlapped to increase the three-dimensional data scanning information points of the measured surface, so as to realize the full-angle and all-round scanning of the object to be scanned.
本发明既能适应小型物体的表面轮廓特征,也能对大尺寸物体的外貌形体进行测量,测量系统结构简单、维护方便、灵活性大,同时测量精度较高,可以适用于多样化的工作场景和需求。The invention can not only adapt to the surface contour characteristics of small objects, but also measure the appearance of large-sized objects. The measurement system has simple structure, convenient maintenance, high flexibility, and high measurement accuracy, and can be applied to various working scenes and demand.
为达到上述目的,本发明采取如下技术方案:全视角线激光扫描三维成像标定装置,包括一维移动部件、标定块、激光发射器及相机,所述的标定块安装于所述的一维移动部件,所述的标定块是一个至少具有三个面的多面体,标定块的数个面沿周向相围,标定块的各个面上各固定一标定板,数标定板沿周向相围;激光发射器及相机的数量与标定板的数量相对应,数个激光发射器沿环形方向正对所述的标定块而布设;每个相机上各安装一镜头,镜头对标定板成像。In order to achieve the above-mentioned purpose, the present invention adopts the following technical solutions: a full-view laser scanning three-dimensional imaging calibration device, including a one-dimensional moving part, a calibration block, a laser emitter and a camera, and the calibration block is installed on the one-dimensional moving Components, the calibration block is a polyhedron with at least three faces, several faces of the calibration block surround each other in the circumferential direction, a calibration plate is respectively fixed on each face of the calibration block, and several calibration plates surround each other in the circumferential direction; the laser transmitter and The number of cameras corresponds to the number of calibration plates, and several laser emitters are arranged in a circular direction facing the calibration blocks; each camera is equipped with a lens, and the lens images the calibration plate.
优选的,标定块是一正方体,所述的标定板有四块,四块标定板沿标定块四个依次相邻的面布设;与此相对应的,激光发射器、相机以及镜头各设四个。Preferably, the calibration block is a cube, and there are four calibration plates, and the four calibration plates are arranged along the four successively adjacent faces of the calibration block; indivual.
优选的,标定块是三菱柱,所述的标定板有三块,三块标定板沿标定块三个依次相邻的面布设;与此相对应的,激光发射器、相机以及镜头各设三个。Preferably, the calibration block is a Mitsubishi column, and there are three calibration plates, and the three calibration plates are arranged along three successively adjacent faces of the calibration block; correspondingly, three laser emitters, cameras and lenses are respectively provided .
优选的,标定板选用标准圆点标定板。Preferably, the calibration plate is a standard dot calibration plate.
本发明全视角线激光扫描三维成像标定方法,其按如下步骤进行:The laser scanning three-dimensional imaging calibration method of the present invention is carried out according to the following steps:
步骤1‐1,搭建如权利要求1‐4任一项所述全视角线激光扫描三维成像标定装置;Step 1-1, building a full-view laser scanning three-dimensional imaging calibration device as described in any one of claims 1-4;
步骤1‐2,保持标定块(8)位置不变,使数个相机(2‐1、2‐2、2‐3、2‐4)同时采集一张对应的标定板(7‐1、7‐2、7‐3、7‐4)的图像,计算各个相机(2‐1、2‐2、2‐3、2‐4)坐标和姿态数据,标定板(7‐1、7‐2、7‐3、7‐4)所对应的坐标系作为对应相机(2‐1、2‐2、2‐3、2‐4)的标准世界坐标系;Step 1-2, keep the position of the calibration block (8) unchanged, so that several cameras (2-1, 2-2, 2-3, 2-4) simultaneously collect a corresponding calibration board (7-1, 7 ‐2, 7‐3, 7‐4) images, calculate the coordinates and attitude data of each camera (2‐1, 2‐2, 2‐3, 2‐4), and the calibration board (7‐1, 7‐2, The coordinate system corresponding to 7‐3, 7‐4) is used as the standard world coordinate system of the corresponding camera (2‐1, 2‐2, 2‐3, 2‐4);
步骤1‐3,移动标定块(8),使各个相机(2‐1、2‐2、2‐3、2‐4)多次采集与其对应的标定板(7‐1、7‐2、7‐3、7‐4)的坐姿和姿势数据,根据每个位置的标定数据通过预定得方法得出每个相机(2‐1、2‐2、2‐3、2‐4)在世界坐标系下的位置;Step 1-3, move the calibration block (8), so that each camera (2-1, 2-2, 2-3, 2-4) collects the corresponding calibration board (7-1, 7-2, 7 ‐3, 7‐4) sitting posture and posture data, according to the calibration data of each position, get each camera (2‐1, 2‐2, 2‐3, 2‐4) in the world coordinate system through a predetermined method under the position;
步骤1‐4,一维移动部件(4)带动标定块(8)移动,在运动方向上分别取两幅图像,分别识别两幅图像中各个标定板(7‐1、7‐2、7‐3、7‐4)同一位置,求得一维运动装置(4)的运动方向和距离;Step 1-4, the one-dimensional moving part (4) drives the calibration block (8) to move, take two images respectively in the direction of motion, and identify each calibration board (7-1, 7-2, 7- 3.7-4) at the same position, obtain the moving direction and distance of the one-dimensional moving device (4);
步骤1‐5,打开各个激光发射器(1‐1、1‐2、1‐3、1‐4),采用相机(2‐1、2‐2、2‐3、2‐4)采集激光发射器(1‐1、1‐2、1‐3、1‐4)光平面内几条不重合的直线所成的像,求线激光平面方程,确定线激光光平面相对于相机(2‐1、2‐2、2‐3、2‐4)坐标系和世界坐标系的位置关系;Step 1‐5, turn on each laser transmitter (1‐1, 1‐2, 1‐3, 1‐4), and use cameras (2‐1, 2‐2, 2‐3, 2‐4) to collect laser emission The image formed by several non-overlapping straight lines in the light plane of the camera (1‐1, 1‐2, 1‐3, 1‐4), find the line laser plane equation, and determine the line laser light plane relative to the camera (2‐1 , 2‐2, 2‐3, 2‐4) the positional relationship between the coordinate system and the world coordinate system;
步骤1‐6,移走标定块,于一维移动部件4的同一位置上安装待测物体5;调整待扫描物体(5)位置,使激光线投射在待扫描物体(5)上,使用一维移动部件(4)带动待扫描物体(5)垂直于各个激光发射器(1‐1、1‐2、1‐3、1‐4)所组成的平面运动,使用相机(2‐1、2‐2、2‐3、2‐4)同时对待扫描物体(5)采集图像,将采集的图像传输回计算机,对图像进行处理,得到扫描物体(5)不同面的坐标数据;Step 1-6, remove the calibration block, install the object 5 to be measured on the same position of the one-dimensional moving part 4; adjust the position of the object to be scanned (5) so that the laser line is projected on the object to be scanned (5), use a The three-dimensional moving part (4) drives the object to be scanned (5) to move perpendicular to the plane formed by each laser emitter (1‐1, 1‐2, 1‐3, 1‐4), using the camera (2‐1, 2 ‐2, 2‐3, 2‐4) Simultaneously collect images of the object to be scanned (5), transmit the collected images back to the computer, process the images, and obtain the coordinate data of different surfaces of the scanned object (5);
步骤1‐7,线激光扫描三维成像所得的像的坐标数据是在标定板(7‐1、7‐2、7‐3、7‐4)下的标准坐标系,而多个标定板(7‐1、7‐2、7‐3、7‐4)的相对位置已知,通过标定板(7‐1、7‐2、7‐3、7‐4)对应的标准坐标系之间的相互转化使多个相机(2‐1、2‐2、2‐3、2‐4)所成的不同面的像拼接在一起,完成全视角线激光扫描三维成像。In step 1-7, the coordinate data of the image obtained by line laser scanning three-dimensional imaging is the standard coordinate system under the calibration board (7-1, 7-2, 7-3, 7-4), while multiple calibration boards (7-2 ‐1, 7‐2, 7‐3, 7‐4) relative positions are known, through the mutual relationship between the standard coordinate systems corresponding to the calibration board (7‐1, 7‐2, 7‐3, 7‐4) Transformation allows multiple cameras (2‐1, 2‐2, 2‐3, 2‐4) to splice images of different surfaces together to complete full-view laser scanning 3D imaging.
优选的,标定板有四块。Preferably, there are four calibration plates.
优选的,步骤1‐2,设其中一个面的标定板(7‐1)为标准世界坐标系(XW1,YW1,ZW1),与之相邻的其中一个面上的标定板(7‐2)的坐标系为临时坐标系(Xw2,Yw2,Zw2),以此类推,第三标定板(7‐3)的坐标系为临时坐标系(Xw3,Yw3,Zw3),第四标定板(7‐4)的坐标系为临时坐标系(Xw4,Yw4,Zw4)。Preferably, in step 1-2, set the calibration plate (7-1) on one of the surfaces as the standard world coordinate system (X W1 , Y W1 , Z W1 ), and the calibration plate (7-1) on one of the adjacent surfaces ‐2) is the temporary coordinate system (X w2 , Y w2 , Z w2 ), and so on, the coordinate system of the third calibration plate (7‐3) is the temporary coordinate system (X w3 , Y w3 , Z w3 ), the coordinate system of the fourth calibration plate (7‐4) is the temporary coordinate system (X w4 , Y w4 , Z w4 ).
优选的,步骤1‐7,将多个相机所成的不同面的像拼接在一起,具体步骤如下:Preferably, in step 1-7, the images of different surfaces formed by multiple cameras are stitched together, and the specific steps are as follows:
一维运动装置(4)带动待扫描物体(5)移动时,相机(2‐1、2‐2、2‐3、2‐4)每当待扫描物体(5)移动一定距离时采集一张待扫描物体(5)表面激光线的图像,计算高度信息并根据移动的方向和距离将采集到的多条激光线进行拼接,得到待扫描物体(5)表面的三维数据;When the one-dimensional motion device (4) drives the object to be scanned (5) to move, the cameras (2‐1, 2‐2, 2‐3, 2‐4) collect a picture every time the object to be scanned (5) moves a certain distance The image of the laser line on the surface of the object to be scanned (5), calculating the height information and splicing the collected multiple laser lines according to the moving direction and distance, to obtain the three-dimensional data on the surface of the object to be scanned (5);
通过四个相机(2‐1、2‐2、2‐3、2‐4)分别得到四组三维数据,其坐标根据步骤1‐2中标准坐标系和临时坐标系确定;假设其中两个面在其对应的标准世界坐标系中的点坐标为(XAi,YAi,ZAi),临时世界坐标系中的点坐标为(XBi,YBi,ZBi);Four sets of three-dimensional data are obtained through four cameras (2‐1, 2‐2, 2‐3, 2‐4), and their coordinates are determined according to the standard coordinate system and temporary coordinate system in step 1‐2; assuming that two of the surfaces The point coordinates in its corresponding standard world coordinate system are (X Ai , Y Ai , Z Ai ), and the point coordinates in the temporary world coordinate system are (X Bi , Y Bi , Z Bi );
线激光扫描三维成像所得的像的坐标是在世界坐标系下,两个标定板(7‐1、7‐2、7‐3、7‐4)的相对位置已知,即通过两个世界坐标系之间的相互转化使两个相机(2‐1、2‐2、2‐3、2‐4)所成的待扫描物体(5)的不同面的像重合;The coordinates of the image obtained by line laser scanning three-dimensional imaging are in the world coordinate system, and the relative positions of the two calibration plates (7‐1, 7‐2, 7‐3, 7‐4) are known, that is, through the two world coordinates The mutual transformation between the two cameras (2-1, 2-2, 2-3, 2-4) overlaps the images of different surfaces of the object to be scanned (5);
因这些标定板对应的世界坐标系转化关系一定,各个标定板所对应的世界坐标系之间的转换关系用正交旋转矩阵R与平移向量T来表示;规定其中一标定板(7‐1)为标准世界坐标系(XW1,YW1,ZW1),与之相邻的标定板(7‐2)坐标系为临时坐标系(Xw2,Yw2,Zw2),那么两个坐标之间的变换关系表示如下:Because the conversion relationship of the world coordinate system corresponding to these calibration boards is fixed, the conversion relationship between the world coordinate systems corresponding to each calibration board is represented by an orthogonal rotation matrix R and a translation vector T; one of the calibration boards (7-1) is the standard world coordinate system (X W1 , Y W1 , Z W1 ), and the adjacent calibration plate (7‐2) coordinate system is the temporary coordinate system (X w2 , Y w2 , Z w2 ), then the two coordinates The transformation relationship between them is expressed as follows:
其中,R为3×3的正交旋转矩阵;T为三维平移向量,0=(0,0,0);M为4×4外参数矩阵,表示了标准世界坐标系和临时世界坐标系之间的变换关系;Among them, R is a 3×3 orthogonal rotation matrix; T is a three-dimensional translation vector, 0=(0,0,0); M is a 4×4 external parameter matrix, which represents the difference between the standard world coordinate system and the temporary world coordinate system. Transformation relationship between;
两标定板中,得取正方体边长为d,则将临时世界坐标系中的点坐标为转化为标准世界坐标系中的点,公式为Among the two calibration plates, we get Take the side length of the cube as d, then Set the point coordinates in the temporary world coordinate system as Converted to a point in the standard world coordinate system, the formula is
两个坐标在同一坐标系中显示,则待扫描物体(5)两个不同的面便能拼接在一起。If the two coordinates are displayed in the same coordinate system, two different surfaces of the object to be scanned (5) can be spliced together.
优选的,步骤1‐4,一维移动部件(4)带动标定块(8)移动时,每运动一定脉冲时,相机(2‐1、2‐2、2‐3、2‐4)对应采集一个标定板(7‐1、7‐2、7‐3、7‐4)的图像,对标定板(7‐1、7‐2、7‐3、7‐4)进行识别分析,得出待扫描物体(5)每次移动的距离,从而将多组激光线的图像相同的移动距离即可得出待扫描物体(5)表面的三维数据。Preferably, in step 1-4, when the one-dimensional moving part (4) drives the calibration block (8) to move, the cameras (2-1, 2-2, 2-3, 2-4) correspondingly collect An image of a calibration board (7‐1, 7‐2, 7‐3, 7‐4), identify and analyze the calibration board (7‐1, 7‐2, 7‐3, 7‐4), and obtain The moving distance of the object (5) is scanned each time, so that three-dimensional data on the surface of the object (5) to be scanned can be obtained by moving images of multiple sets of laser lines at the same moving distance.
本发明全视角线激光扫描三维成像标定装置与方法,通过将多张标定板固定在一个已知几何尺寸多面体的表面构成一标定块,使用标定块同时对多个相机进行标定,相机分别采集待扫描物体不同面的三维信息,然后根据坐标转换,将待测物体不同面的信息拼接在一起,得到物体表面的完整信息,从而解决单个线激光扫描装置无法得到物体表面完整信息的缺点。The full-view laser scanning three-dimensional imaging calibration device and method of the present invention comprise a calibration block by fixing multiple calibration plates on the surface of a polyhedron with known geometric dimensions, and use the calibration block to calibrate multiple cameras at the same time, and the cameras are collected separately to be Scan the three-dimensional information of different surfaces of the object, and then splicing the information of different surfaces of the object to be measured according to the coordinate transformation to obtain the complete information of the object surface, thereby solving the shortcoming that a single line laser scanning device cannot obtain complete information on the object surface.
本发明全视角线激光扫描三维成像的方法包括两大步骤:一是通过标定块对相机进行标定,二是对待扫描物体进行扫描成像并将不同面的信息拼接组合在一起。The method of the present invention for three-dimensional imaging by full-view laser scanning includes two steps: one is to calibrate the camera through a calibration block, and the other is to scan and image the object to be scanned and splice and combine information from different surfaces.
本发明全视角线激光扫描三维成像标定装置结构简单,便于操作和处理,能适用于多种大小视场的标定,且弥补了单个系统成像不全面的缺点。The full-view laser scanning three-dimensional imaging calibration device of the present invention has a simple structure, is convenient for operation and processing, is applicable to calibration of various sizes of fields of view, and makes up for the shortcoming of incomplete imaging of a single system.
附图说明Description of drawings
图1为一种优选实施例全视角线激光三角法扫描三维成像标定方法与扫描成像的流程示意图。Fig. 1 is a schematic flow diagram of a scanning three-dimensional imaging calibration method and scanning imaging of a preferred embodiment of full view line laser triangulation.
图2为一种优选实施例全视角线激光三角法扫描三维成像装置扫描待测物体状态下的结构示意图。FIG. 2 is a schematic structural diagram of a preferred embodiment of a full-view line laser triangulation scanning three-dimensional imaging device in the state of scanning an object to be measured.
图3为一种优选实施例全视角线激光三角法扫描三维成像标定装置使用状态下的结构示意图。Fig. 3 is a schematic structural diagram of a preferred embodiment of a laser triangulation scanning three-dimensional imaging calibration device in use.
图4为一种优选的标定板(7‐1、7‐2、7‐3、7‐4)的结构示意图。Fig. 4 is a structural schematic diagram of a preferred calibration board (7-1, 7-2, 7-3, 7-4).
图5为将标定板(7‐1、7‐2、7‐3、7‐4)固定在一个正方体四个不同平面构成一标定块(8)。Fig. 5 shows that the calibration plates (7-1, 7-2, 7-3, 7-4) are fixed on four different planes of a cube to form a calibration block (8).
图6为标准世界坐标系和临时世界坐标系的位置示意图。FIG. 6 is a schematic diagram of positions of the standard world coordinate system and the temporary world coordinate system.
具体实施方式Detailed ways
以下结合附图对本发明优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
如图2所示,本实施例全视角线激光扫描三维成像标定装置包括:四个激光发射器(1‐1、1‐2、1‐3、1‐4)、四个工业相机(2‐1、2‐2、2‐3、2‐4)、四个镜头(3‐1、3‐2、3‐3、3‐4)、一维移动部件(4),每个工业相机上安装一个镜头,镜头侧向安装,对标定板成像。一维移动部件4上安装待扫描物体5。As shown in Figure 2, the full-view laser scanning three-dimensional imaging calibration device in this embodiment includes: four laser emitters (1-1, 1-2, 1-3, 1-4), four industrial cameras (2- 1, 2‐2, 2‐3, 2‐4), four lenses (3‐1, 3‐2, 3‐3, 3‐4), one-dimensional moving parts (4), installed on each industrial camera A lens, mounted sideways, images the calibration plate. An object to be scanned 5 is installed on the one-dimensional moving part 4 .
四个激光发射器沿环形布置于待扫描物体(5)的周围,四个激光发射器1‐1、1‐2、1‐3、1‐4围成一圆周面,一维运动装置(4)能带动待扫描物体(5)垂直于激光器(1‐1、1‐2、1‐3、1‐4)所组成的平面运动。Four laser emitters are arranged in a ring around the object to be scanned (5), and the four laser emitters 1-1, 1-2, 1-3, 1-4 form a circular surface, and the one-dimensional motion device (4 ) can drive the object to be scanned (5) to move perpendicularly to the plane formed by the lasers (1‐1, 1‐2, 1‐3, 1‐4).
各自带有镜头的四个工业相机对准待扫描物体5,每一激光发射器向待扫描物体5投射激光后,通过其中的一个工业相机及镜头采集所成的像,从而由一个激光器、一个工业相机及一个镜头构成一个单一线激光扫描三维成像组合件。Four industrial cameras each with a lens are aimed at the object 5 to be scanned. After each laser emitter projects laser light to the object 5 to be scanned, the image is collected by one of the industrial cameras and lenses, so that one laser, one An industrial camera and a lens constitute a single line laser scanning 3D imaging assembly.
本实施例全视角线激光扫描三维成像标定装置包括还包括四张标定板(7‐1、7‐2、7‐3、7‐4),标定板为标准圆点标定板,如图4所示,其具有如下特点:In this embodiment, the full-view laser scanning three-dimensional imaging calibration device includes four calibration plates (7-1, 7-2, 7-3, 7-4), and the calibration plates are standard dot calibration plates, as shown in Figure 4 , it has the following characteristics:
1).将标定板上每个圆点的圆心作为标定特征点,规定世界坐标系的原点位于正中间的圆心处,如图6所示,Z轴垂直于标定板平面。1). Use the center of each dot on the calibration board as the calibration feature point, and stipulate that the origin of the world coordinate system is located at the center of the circle in the middle. As shown in Figure 6, the Z axis is perpendicular to the plane of the calibration board.
2).标定板左上角的黑色方向标记确定了标定板的坐标系方向。2). The black direction mark on the upper left corner of the calibration board determines the direction of the coordinate system of the calibration board.
四张标定板(7‐1、7‐2、7‐3、7‐4)固定于一正方体块的四个依次相邻的面(四个相邻面沿圆周方向围合而成),从而构成一个标定块(8)。Four calibration plates (7-1, 7-2, 7-3, 7-4) are fixed on four successively adjacent faces of a cube block (the four adjacent faces are surrounded by the circumferential direction), so that A calibration block (8) is formed.
通过标定块对相机进行标定时,参见图3,标定块8安装于图2中待扫描物体5的位置。When the camera is calibrated by the calibration block, referring to FIG. 3 , the calibration block 8 is installed at the position of the object 5 to be scanned in FIG. 2 .
当标定完成后,将标定块8移除,并在同一位置上安装待扫描物体5。一维运动装置(4)带动待扫描物体(5)垂直于四个激光器(1‐1、1‐2、1‐3、1‐4)所围成的平面运动,利用工业相机(2‐1、2‐2、2‐3、2‐4)及镜头(3‐1、3‐2、3‐3、3‐4)对其进行成像。After the calibration is completed, the calibration block 8 is removed, and the object 5 to be scanned is installed on the same position. The one-dimensional motion device (4) drives the object to be scanned (5) to move perpendicular to the plane surrounded by the four lasers (1‐1, 1‐2, 1‐3, 1‐4), using the industrial camera (2‐1 , 2‐2, 2‐3, 2‐4) and lenses (3‐1, 3‐2, 3‐3, 3‐4) to image it.
本实施例以四个的组合为例进行说明,例如,三个、五个或者更多个的组合也落入本发明的保护范围之内,其中,类似于制作标定块(8)的正方体也可以采用已知的几何尺寸的其它多面体。The present embodiment is described with the combination of four as an example, for example, the combination of three, five or more also falls within the protection scope of the present invention, wherein, the cube similar to making the calibration block (8) also Other polyhedra of known geometrical dimensions may be used.
为实现全视角线激光扫描三维成像,标定为关键步骤。标定块(8)对后期坐标转化起到重要作用。In order to realize the three-dimensional imaging of full-view line laser scanning, calibration is a key step. The calibration block (8) plays an important role in the coordinate conversion in the later stage.
图1为本实施例提供的全视角线激光三角法扫描三维成像标定方法与扫描成像的流程示意图。参见图1,本实施例全视角线激光扫描三维成像标定方法包括以下步骤:FIG. 1 is a schematic flow chart of the scanning three-dimensional imaging calibration method and scanning imaging provided by this embodiment. Referring to Fig. 1, the laser scanning three-dimensional imaging calibration method of the present embodiment includes the following steps:
步骤1‐1,搭建实验装置,使用四个单个线激光扫描三维成像组合分别对准标定块上的四张标定板。具体如下:Step 1-1, set up the experimental device, and use four single-line laser scanning 3D imaging combinations to align the four calibration plates on the calibration block. details as follows:
采用前述的结构设计,即一个激光器、一个工业相机及一个镜头构成一个单一线激光扫描三维成像组合件,将四个单一线激光扫描三维成像组合件(沿圆周方向)环形布设于待扫描物体(5)周围,每个组合件分别对应标定块(8)上的一张标定板(7‐1、7‐2、7‐3、7‐4)。Using the aforementioned structural design, that is, a laser, an industrial camera and a lens form a single-line laser scanning three-dimensional imaging assembly, and four single-line laser scanning three-dimensional imaging assemblies (along the circumferential direction) are arranged in a ring on the object to be scanned ( 5) around, each assembly corresponds to a calibration plate (7‐1, 7‐2, 7‐3, 7‐4) on the calibration block (8).
一维运动装置(4)上安装标定块8,其能带动标定块8运动,其运动方向平行于多个标定板(7‐1、7‐2、7‐3、7‐4)平面或者垂直于四个激光器(1‐1、1‐2、1‐3、1‐4)所围成的平面。A calibration block 8 is installed on the one-dimensional movement device (4), which can drive the calibration block 8 to move, and its motion direction is parallel to or perpendicular to the plane of multiple calibration plates (7‐1, 7‐2, 7‐3, 7‐4). In the plane surrounded by four lasers (1‐1, 1‐2, 1‐3, 1‐4).
其中,标定板一般为标准圆点标定板,如图4所示。这种标定板具有如下特点:Wherein, the calibration plate is generally a standard dot calibration plate, as shown in FIG. 4 . This calibration board has the following characteristics:
1).将标定板上每个圆点的圆心作为标定特征点,规定世界坐标系的原点位于正中间的圆心处,如图6所示,Z轴垂直于标定板平面。1). Use the center of each dot on the calibration board as the calibration feature point, and stipulate that the origin of the world coordinate system is located at the center of the circle in the middle. As shown in Figure 6, the Z axis is perpendicular to the plane of the calibration board.
2).标定板左上角的黑色方向标记确定了标定板的坐标系方向。2). The black direction mark on the upper left corner of the calibration board determines the direction of the coordinate system of the calibration board.
步骤1‐2,保持标定块位置不变,使四个相机同时采集一张对应的标定板的图像,计算相机坐标和姿态数据。具体如下:Step 1-2, keep the position of the calibration block unchanged, make the four cameras capture an image of the corresponding calibration board at the same time, and calculate the camera coordinates and attitude data. details as follows:
保持标定块(8)位置不变,使四个相机(2‐1、2‐2、2‐3、2‐4)同时采集一张对应的标定板(7‐1、7‐2、7‐3、7‐4)的图像,计算相机(2‐1、2‐2、2‐3、2‐4)坐标和姿态数据,标定板(7‐1、7‐2、7‐3、7‐4)所对应的坐标系作为对应相机(2‐1、2‐2、2‐3、2‐4)的标准世界坐标系。采集时,必须保证保持标定块(8)位置不变,同时不能采集到另一面的标定板(7‐1、7‐2、7‐3、7‐4)图像。Keep the position of the calibration block (8) unchanged, so that four cameras (2‐1, 2‐2, 2‐3, 2‐4) simultaneously capture a corresponding calibration board (7‐1, 7‐2, 7‐ 3. 7‐4) image, calculate camera (2‐1, 2‐2, 2‐3, 2‐4) coordinates and attitude data, calibration board (7‐1, 7‐2, 7‐3, 7‐ 4) The corresponding coordinate system is used as the standard world coordinate system of the corresponding camera (2‐1, 2‐2, 2‐3, 2‐4). When collecting, it must be ensured that the position of the calibration block (8) remains unchanged, and at the same time the image of the calibration board (7-1, 7-2, 7-3, 7-4) on the other side cannot be collected.
固定其中一个面的标定板(7‐1)为标准世界坐标系(XW1,YW1,ZW1),与之相邻的一个面上的标定板(7‐2)的坐标系为临时坐标系(Xw2,Yw2,Zw2),标定板(7‐3)的坐标系为临时坐标系(Xw3,Yw3,Zw3),与之相邻的一个面上的标定板(7‐4)的坐标系为临时坐标系(Xw4,Yw4,Zw4),如图5、6所示。Fix the calibration plate (7‐1) on one surface as the standard world coordinate system (X W1 , Y W1 , Z W1 ), and the coordinate system of the calibration plate (7‐2) on the adjacent surface is the temporary coordinate system system (X w2 , Y w2 , Z w2 ), the coordinate system of the calibration plate (7‐3) is the temporary coordinate system (X w3 , Y w3 , Z w3 ), and the calibration plate (7‐3) on an adjacent surface ‐4) The coordinate system is the temporary coordinate system (X w4 , Y w4 , Z w4 ), as shown in Figures 5 and 6.
步骤1‐3,手工移动标定块,使标定块置于相机视场里的不同位置,每次移动标定块时都使相机多次采集其对应的标定板的坐姿和姿势数据,减小误差。多次重复步骤1‐3,一般采集20次左右效果最佳,具体如下:Step 1-3, manually move the calibration block, so that the calibration block is placed in different positions in the camera's field of view, and each time the calibration block is moved, the camera collects the sitting posture and posture data of the corresponding calibration board multiple times to reduce the error. Repeat steps 1-3 many times, generally about 20 times of collection is the best, as follows:
手工移动标定块(8),使标定块置于相机视场里的不同位置,每次移动标定块时都使相机(2‐1、2‐2、2‐3、2‐4)多次采集其对应的标定板(7‐1、7‐2、7‐3、7‐4)的坐姿和姿势数据,根据每个位置的标定数据通过预定得方法得出每个相机(2‐1、2‐2、2‐3、2‐4)在世界坐标系下的位置,多次采集的目的为减小误差。Manually move the calibration block (8), so that the calibration block is placed in different positions in the camera's field of view, and each time the calibration block is moved, the camera (2‐1, 2‐2, 2‐3, 2‐4) collects multiple times The sitting posture and posture data of the corresponding calibration board (7-1, 7-2, 7-3, 7-4), according to the calibration data of each position, get each camera (2-1, 2 ‐2, 2‐3, 2‐4) The position in the world coordinate system, the purpose of multiple acquisitions is to reduce the error.
步骤1‐4,使一维移动部件带动标定块移动,在运动方向上分别取两幅图像,求得一维运动装置的运动方向和距离。具体如下:Step 1-4, make the one-dimensional moving part drive the calibration block to move, take two images respectively in the moving direction, and obtain the moving direction and distance of the one-dimensional moving device. details as follows:
使一维移动部件(4)带动标定块(8)移动,在运动方向上分别取两幅图像,分别识别两幅图像中标定板(7‐1、7‐2、7‐3、7‐4)同一位置,求得一维运动装置(4)的运动方向和距离。Make the one-dimensional moving part (4) drive the calibration block (8) to move, take two images respectively in the moving direction, and identify the calibration boards (7-1, 7-2, 7-3, 7-4 ) at the same position, obtain the moving direction and distance of the one-dimensional moving device (4).
一维移动部件(4)带动标定块(8)移动时,每运动一定脉冲时,相机(2‐1、2‐2、2‐3、2‐4)对应采集一个标定板(7‐1、7‐2、7‐3、7‐4)的图像,对标定板(7‐1、7‐2、7‐3、7‐4)进行识别分析,可以得出待扫描物体(5)每次移动的距离,从而将多组激光线的图像相同的移动距离即可得出待扫描物体(5)表面的三维数据。When the one-dimensional moving part (4) drives the calibration block (8) to move, the camera (2-1, 2-2, 2-3, 2-4) correspondingly collects a calibration board (7-1, 7‐2, 7‐3, 7‐4), and identify and analyze the calibration board (7‐1, 7‐2, 7‐3, 7‐4), it can be obtained that the object to be scanned (5) The moving distance, so that the images of multiple groups of laser lines can be moved at the same moving distance to obtain the three-dimensional data on the surface of the object (5) to be scanned.
步骤1‐5,打开激光发射器,用相机采集激光发射器光平面内几条不重合的光线所成的像,求线激光平面方程,确定线激光光平面相对于相机坐标系和世界坐标系的位置关系。具体如下:Step 1-5, turn on the laser transmitter, use the camera to collect the image formed by several non-overlapping rays in the light plane of the laser transmitter, find the line laser plane equation, and determine the line laser light plane relative to the camera coordinate system and the world coordinate system location relationship. details as follows:
打开激光发射器(1‐1、1‐2、1‐3、1‐4),用相机(2‐1、2‐2、2‐3、2‐4)采集激光发射器(1‐1、1‐2、1‐3、1‐4)光平面内几条不重合的直线所成的像,求线激光平面方程,从而就可以确定线激光光平面相对于相机(2‐1、2‐2、2‐3、2‐4)坐标系和世界坐标系的位置关系。Turn on the laser transmitter (1‐1, 1‐2, 1‐3, 1‐4), and use the camera (2‐1, 2‐2, 2‐3, 2‐4) to capture the laser transmitter (1‐1, 1‐2, 1‐3, 1‐4) The image formed by several non-overlapping straight lines in the light plane, find the line laser plane equation, so that the line laser light plane can be determined relative to the camera (2‐1, 2‐ 2, 2‐3, 2‐4) The positional relationship between the coordinate system and the world coordinate system.
通过一个平面中不同的两条直线,既可以确定平面的方程,从而得出,平面方程关于世界坐标系(XW1,YW1,ZW1)和相机(2‐1、2‐2、2‐3、2‐4)坐标系的位置,从而通过激光三角法,得出激光线对该位置下待测物体(5)的表面三维数据。Through two different straight lines in a plane, the equation of the plane can be determined, so that the equation of the plane is about the world coordinate system (X W1 , Y W1 , Z W1 ) and the camera (2‐1, 2‐2, 2‐ 3.2-4) the position of the coordinate system, so that by laser triangulation, the surface three-dimensional data of the object to be measured (5) under the position of the laser line is obtained.
标定完成后,对待测物体(5)进行全视角线激光扫描三维成像步骤如下。After the calibration is completed, the steps of performing three-dimensional imaging of the object to be measured (5) by full-view laser scanning are as follows.
步骤1‐6,一维移动部件带动待扫描物体垂直于激光器所组成的平面运动,使用相机同时对待扫描物体采集图像,得到扫描物体不同面的坐标数据。具体如下:Step 1-6, the one-dimensional moving part drives the object to be scanned to move perpendicular to the plane formed by the laser, and the camera is used to collect images of the object to be scanned at the same time to obtain the coordinate data of different surfaces of the scanned object. details as follows:
移走标定块,于一维移动部件4上安装待测物体5。调整待扫描物体(5)位置,使激光线投射在待扫描物体(5)上,使用一维移动部件(4)带动待扫描物体(5)垂直于激光器(1‐1、1‐2、1‐3、1‐4)所组成的平面运动,使用相机(2‐1、2‐2、2‐3、2‐4)同时对待扫描物体(5)采集图像,将采集的图像传输回计算机,对图像进行处理,得到扫描物体(5)不同面的坐标数据。The calibration block is removed, and the object 5 to be measured is installed on the one-dimensional moving part 4 . Adjust the position of the object to be scanned (5) so that the laser line is projected on the object to be scanned (5), and use the one-dimensional moving part (4) to drive the object to be scanned (5) to be perpendicular to the laser (1‐1, 1‐2, 1 ‐3, 1‐4), use cameras (2‐1, 2‐2, 2‐3, 2‐4) to collect images of objects to be scanned (5) at the same time, and transmit the collected images back to the computer, The image is processed to obtain coordinate data of different surfaces of the scanned object (5).
步骤1‐7,通过标定板对应的标准坐标系之间的相互转化使多个相机所成的不同面的像拼接在一起,完成全视角线激光扫描三维成像。具体如下:Step 1-7, through the mutual conversion between the standard coordinate systems corresponding to the calibration board, the images of different surfaces formed by multiple cameras are stitched together to complete the full-view laser scanning 3D imaging. details as follows:
线激光扫描三维成像所得的像的坐标数据是在标定板(7‐1、7‐2、7‐3、7‐4)下的标准坐标系,而多个标定板(7‐1、7‐2、7‐3、7‐4)的相对位置已知,即可通过标定板(7‐1、7‐2、7‐3、7‐4)对应的标准坐标系之间的相互转化使多个相机(2‐1、2‐2、2‐3、2‐4)所成的不同面的像拼接在一起,完成全视角线激光扫描三维成像。The coordinate data of the image obtained by line laser scanning three-dimensional imaging is the standard coordinate system under the calibration plate (7-1, 7-2, 7-3, 7-4), while multiple calibration plates (7-1, 7- 2, 7‐3, 7‐4) relative positions are known, and multiple The images of different planes formed by two cameras (2-1, 2-2, 2-3, 2-4) are stitched together to complete the full-view laser scanning three-dimensional imaging.
将多个不同面的像拼接在一起是本发明的重要内容,具体实施方式如下:Stitching images of a plurality of different faces together is an important content of the present invention, and the specific implementation method is as follows:
一维运动装置(4)带动待扫描物体(5)移动时,相机(2‐1、2‐2、2‐3、2‐4)每当待扫描物体(5)移动一定距离时采集一张待扫描物体(5)表面激光线的图像,计算高度信息并根据移动的方向和距离将采集到的多条激光线进行拼接,得到待扫描物体(5)表面的三维数据。When the one-dimensional motion device (4) drives the object to be scanned (5) to move, the cameras (2‐1, 2‐2, 2‐3, 2‐4) collect a picture every time the object to be scanned (5) moves a certain distance The image of the laser line on the surface of the object to be scanned (5), calculates the height information and stitches the multiple collected laser lines according to the moving direction and distance, to obtain the three-dimensional data on the surface of the object (5) to be scanned.
通过四个相机(2‐1、2‐2、2‐3、2‐4)分别得到四组三维数据,其坐标是根据步骤1‐2中标准坐标系和临时坐标系确定的。假设其中两个面在其对应的标准世界坐标系中的点坐标为(XAi,YAi,ZAi),临时世界坐标系中的点坐标为(XBi,YBi,ZBi)。Four sets of three-dimensional data are obtained through four cameras (2‐1, 2‐2, 2‐3, 2‐4), and their coordinates are determined according to the standard coordinate system and temporary coordinate system in step 1‐2. Assume that the point coordinates of the two surfaces in the corresponding standard world coordinate system are (X Ai , Y Ai , Z Ai ), and the point coordinates in the temporary world coordinate system are (X Bi , Y Bi , Z Bi ).
线激光扫描三维成像所得的像的坐标是在世界坐标系下,两个标定板(7‐1、7‐2、7‐3、7‐4)的相对位置已知,即可通过两个世界坐标系之间的相互转化使两个相机(2‐1、2‐2、2‐3、2‐4)所成的待扫描物体(5)的不同面的像重合。The coordinates of the image obtained by line laser scanning three-dimensional imaging are in the world coordinate system, and the relative positions of the two calibration plates (7‐1, 7‐2, 7‐3, 7‐4) are known, and the two world coordinates can be used to The mutual conversion between the coordinate systems makes the images of different surfaces of the object to be scanned (5) formed by the two cameras (2-1, 2-2, 2-3, 2-4) overlap.
因这些标定板对应的世界坐标系转化关系一定,各个标定板所对应的世界坐标系之间的转换关系可以用正交旋转矩阵R与平移向量T来表示。规定其中标定板(7‐1)为标准世界坐标系(XW1,YW1,ZW1),与之相邻的标定板(7‐2)坐标系为临时坐标系(Xw2,Yw2,Zw2),那么两个坐标之间的变换关系可以表示成如下:Since the world coordinate systems corresponding to these calibration boards have certain conversion relationships, the conversion relationship between the world coordinate systems corresponding to each calibration board can be expressed by an orthogonal rotation matrix R and a translation vector T. It is stipulated that the calibration plate (7‐1) is the standard world coordinate system (X W1 , Y W1 , Z W1 ), and the adjacent calibration plate (7‐2) coordinate system is the temporary coordinate system (X w2 , Y w2 , Z w2 ), then the transformation relationship between the two coordinates can be expressed as follows:
其中,R为3×3的正交旋转矩阵;T为三维平移向量,0=(0,0,0);M为4×4外参数矩阵,表示了标准世界坐标系和临时世界坐标系之间的变换关系。Among them, R is a 3×3 orthogonal rotation matrix; T is a three-dimensional translation vector, 0=(0,0,0); M is a 4×4 external parameter matrix, which represents the difference between the standard world coordinate system and the temporary world coordinate system. transformation relationship between them.
在图4中,按图5中两标定板,得取正方体边长为d,则将临时世界坐标系中的点坐标为(XAi,YAi,ZAi)转化为标准世界坐标系中的点,公式为In Figure 4, according to the two calibration plates in Figure 5, we get Take the side length of the cube as d, then Transform the point coordinates in the temporary world coordinate system (X Ai , Y Ai , Z Ai ) into points in the standard world coordinate system, the formula is
两个坐标在同一坐标系中显示,则待扫描物体(5)两个不同的面便可以拼接在一起,大大简化了现行方法对物体两物体的边缘进行识别,然后通过现有软件进行图像的计算。If the two coordinates are displayed in the same coordinate system, the two different surfaces of the object to be scanned (5) can be spliced together, which greatly simplifies the current method for identifying the edges of the two objects, and then performs image recognition through existing software. calculate.
其标定特点为,在标定过程中,首先将四张标定板(7‐1、7‐2、7‐3、7‐4)分别固定在一正方体的的四个表面上形成一标定块(8)。一个激光器和一个工业相机及一个镜头构成一个单一线激光扫描三维成像组合件,将多个单一线激光扫描三维成像组合件环形放置在待扫描物体(5)周围,每个组合件分别对应标定块(8)上的一张标定板(7‐1、7‐2、7‐3、7‐4)。The characteristic of its calibration is that in the calibration process, firstly, four calibration plates (7-1, 7-2, 7-3, 7-4) are respectively fixed on the four surfaces of a cube to form a calibration block (8 ). A laser, an industrial camera and a lens form a single-line laser scanning three-dimensional imaging assembly, and multiple single-line laser scanning three-dimensional imaging assemblies are placed in a ring around the object (5) to be scanned, and each assembly corresponds to a calibration block One calibration plate (7‐1, 7‐2, 7‐3, 7‐4) on (8).
确定两世界坐标系时,使四个相机(2‐1、2‐2、2‐3、2‐4)同时分别采集一张对应的标定板(7‐1、7‐2、7‐3、7‐4)的图像,计算坐标和姿态数据,使四个个标定板(7‐1、7‐2、7‐3、7‐4)所对应的坐标系作为四个个相机(2‐1、2‐2、2‐3、2‐4)的标准世界坐标系。采集时,保持标定块(8)位置姿态不变,同时不能采集到另一面的标定板(7‐1、7‐2、7‐3、7‐4)图像。When determining the coordinate system of the two worlds, let the four cameras (2‐1, 2‐2, 2‐3, 2‐4) capture a corresponding calibration board (7‐1, 7‐2, 7‐3, 7-4) image, calculate the coordinates and attitude data, make the coordinate system corresponding to the four calibration boards (7-1, 7-2, 7-3, 7-4) as the four cameras (2-1 , 2‐2, 2‐3, 2‐4) standard world coordinate system. When collecting, keep the position and posture of the calibration block (8) unchanged, and at the same time, the image of the calibration board (7-1, 7-2, 7-3, 7-4) on the other side cannot be collected.
由上述具体实施方案可以看出,本发明全视角线激光三角法扫描三维成像标定简单,操作方便,且极大简化了后期的图像拼接工作。本发明所设计的装置结构简单、成本低、维护方便、灵活性大、测量范围灵活,既能适应小型物体的表面轮廓特征,也可对大尺寸物体的外貌形体进行测量,可以适用于多样化的工作场景和需求。It can be seen from the above specific embodiments that the laser triangulation method scanning 3D imaging calibration of the present invention is simple, easy to operate, and greatly simplifies the later image stitching work. The device designed in the present invention has the advantages of simple structure, low cost, convenient maintenance, great flexibility, and flexible measurement range. work scenarios and needs.
以上所述,仅为本发明的优选的具体实施方式,但本发明的保护范围并不局限于次,任何熟悉本技术领域的技术人员在进行本发明实例揭露的技术范围内,可以轻易想到的变化或替代,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围是该以权力要求的保护范围为准。The above is only a preferred specific implementation of the present invention, but the scope of protection of the present invention is not limited to the second, and any person familiar with the technical field can easily think of it within the technical scope disclosed by the examples of the present invention. Any changes or substitutions shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention is subject to the protection scope of the claims.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610351274.4A CN106056587B (en) | 2016-05-24 | 2016-05-24 | Full view line laser structured light three-dimensional imaging caliberating device and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610351274.4A CN106056587B (en) | 2016-05-24 | 2016-05-24 | Full view line laser structured light three-dimensional imaging caliberating device and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106056587A CN106056587A (en) | 2016-10-26 |
| CN106056587B true CN106056587B (en) | 2018-11-09 |
Family
ID=57174982
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610351274.4A Active CN106056587B (en) | 2016-05-24 | 2016-05-24 | Full view line laser structured light three-dimensional imaging caliberating device and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106056587B (en) |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106959704B (en) * | 2017-03-20 | 2020-05-15 | 安徽金盾三维高科技有限公司 | Control method and system of three-dimensional topography measuring instrument |
| CN107038757A (en) * | 2017-04-07 | 2017-08-11 | 湖南师范大学 | A kind of human body sitting posture three-dimensional reconstruction apparatus and method based on Kinect |
| WO2018195096A1 (en) * | 2017-04-17 | 2018-10-25 | Cognex Corporation | High-accuracy calibration system and method |
| CN107101623B (en) * | 2017-05-18 | 2018-07-27 | 金钱猫科技股份有限公司 | Measuring method, system and device |
| CN107339935B (en) * | 2017-06-27 | 2020-11-06 | 中国航空工业集团公司北京长城航空测控技术研究所 | Target space intersection measuring method for full-view scanning measuring system |
| CN109215108B (en) * | 2017-06-30 | 2023-05-23 | 深圳先进技术研究院 | Panoramic three-dimensional reconstruction system and method based on laser scanning |
| CN107560563B (en) * | 2017-07-28 | 2019-10-18 | 华南理工大学 | Calibration and error compensation method of a line laser three-dimensional measuring device |
| CN109029284B (en) * | 2018-06-14 | 2019-10-22 | 大连理工大学 | A 3D Laser Scanner and Camera Calibration Method Based on Geometric Constraints |
| CN108844489A (en) * | 2018-06-25 | 2018-11-20 | 苏州乐佰图信息技术有限公司 | Using the method and camera calibration method of line laser structured light contour of object |
| CN109754433B (en) * | 2018-12-27 | 2023-10-03 | 中国科学院长春光学精密机械与物理研究所 | Calibration image acquisition method, device, equipment and storage medium |
| CN110095136B (en) * | 2019-03-27 | 2023-12-01 | 苏州德沃物流科技有限公司 | Binocular vision three-dimensional reconstruction calibration device and method integrating IMU pose correction |
| CN110487213B (en) * | 2019-08-19 | 2022-01-11 | 杭州电子科技大学 | A full-view line laser scanning 3D imaging device and method based on spatial dislocation |
| CN110793459B (en) * | 2019-10-30 | 2022-07-22 | 成都安科泰丰科技有限公司 | Calibration device for two-dimensional laser displacement sensor |
| CN111062992B (en) * | 2019-11-14 | 2023-05-12 | 杭州电子科技大学 | A dual-view laser scanning three-dimensional imaging device and method |
| CN111504202A (en) * | 2020-02-29 | 2020-08-07 | 深圳市智信精密仪器有限公司 | Method for high-precision calibration splicing of multiple line lasers |
| CN111462253B (en) * | 2020-04-23 | 2025-03-21 | 群滨智造科技(苏州)有限公司 | Three-dimensional calibration plate, system and calibration method suitable for laser 3D vision |
| CN111610173B (en) * | 2020-05-27 | 2021-07-27 | 中国水利水电科学研究院 | Three-dimensional fluid concentration field calibration device and calibration method |
| CN112361982B (en) * | 2020-10-29 | 2022-02-01 | 山东省科学院激光研究所 | Method and system for extracting three-dimensional data of large-breadth workpiece |
| CN113310430B (en) * | 2021-04-12 | 2022-04-01 | 中国地质大学(武汉) | A four-line four-eye three-dimensional laser scanner and scanning method |
| CN113727087A (en) * | 2021-08-06 | 2021-11-30 | 上海有个机器人有限公司 | 3D scanner device and method for generating three-dimensional map |
| CN113888626B (en) * | 2021-09-27 | 2024-11-26 | 湖南大学 | Inertial measurement unit and line scan 3D camera online joint calibration device and method |
| CN114782543B (en) * | 2022-03-15 | 2025-07-22 | 群滨智造科技(苏州)有限公司 | Intelligent three-dimensional image splicing and calibrating device and method for vehicle-mounted glass screen |
| CN115112046B (en) * | 2022-06-23 | 2025-08-08 | 深圳市万顺兴科技有限公司 | A three-dimensional laser scanning calibration block, calibration method, device, equipment and medium |
| CN115375776A (en) * | 2022-09-06 | 2022-11-22 | 苏州中科行智智能科技有限公司 | A Ring Layout Calibration Method for Line Laser 3D Camera |
| CN115607320A (en) * | 2022-10-25 | 2023-01-17 | 无锡赛锐斯医疗器械有限公司 | An extraoral scanning connection abutment pose measuring instrument and pose parameter determination method |
| CN116342718B (en) * | 2023-05-26 | 2023-08-01 | 合肥埃科光电科技股份有限公司 | Calibration method, device, storage medium and equipment of line laser 3D camera |
| CN116973894B (en) * | 2023-07-31 | 2024-06-14 | 苏州如涵科技有限公司 | Calibration method and system of line laser ranging sensor |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1375741A (en) * | 2002-04-30 | 2002-10-23 | 北京理工大学 | Complete object surface-restoring 3D device based on multiple stereo digital visual heads |
| CN101551918A (en) * | 2009-04-28 | 2009-10-07 | 浙江大学 | Acquisition method of large scene based on line laser |
| CN101986350A (en) * | 2010-10-22 | 2011-03-16 | 武汉大学 | Monocular structured light-based three-dimensional modeling method |
| CN102042825A (en) * | 2010-11-09 | 2011-05-04 | 青岛市光电工程技术研究院 | Three-dimensional imaging measurement system combining planar array imaging with laser scanning |
| CN103267491A (en) * | 2012-07-17 | 2013-08-28 | 深圳大学 | Method and system for automatically acquiring complete three-dimensional data of object surface |
| CN104021540A (en) * | 2013-02-28 | 2014-09-03 | 宝山钢铁股份有限公司 | Static state calibration device and method for machine visual surface detection equipment |
| CN104183010A (en) * | 2013-05-22 | 2014-12-03 | 上海迪谱工业检测技术有限公司 | Multi-view three-dimensional online reconstruction method |
| CN104457569A (en) * | 2014-11-27 | 2015-03-25 | 大连理工大学 | Geometric parameter visual measurement method for large composite board |
| CN104897060A (en) * | 2015-06-17 | 2015-09-09 | 大连理工大学 | large Large field of view global measurement method using coordinates tracking control board |
| CN104913737A (en) * | 2015-06-30 | 2015-09-16 | 长安大学 | Component quality checking device based on line laser three-dimensional measurement and detection method of device |
| CN105403156A (en) * | 2016-01-07 | 2016-03-16 | 杭州汉振科技有限公司 | Three-dimensional measuring device and data fusion calibration method for three-dimensional measuring device |
-
2016
- 2016-05-24 CN CN201610351274.4A patent/CN106056587B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1375741A (en) * | 2002-04-30 | 2002-10-23 | 北京理工大学 | Complete object surface-restoring 3D device based on multiple stereo digital visual heads |
| CN101551918A (en) * | 2009-04-28 | 2009-10-07 | 浙江大学 | Acquisition method of large scene based on line laser |
| CN101986350A (en) * | 2010-10-22 | 2011-03-16 | 武汉大学 | Monocular structured light-based three-dimensional modeling method |
| CN102042825A (en) * | 2010-11-09 | 2011-05-04 | 青岛市光电工程技术研究院 | Three-dimensional imaging measurement system combining planar array imaging with laser scanning |
| CN103267491A (en) * | 2012-07-17 | 2013-08-28 | 深圳大学 | Method and system for automatically acquiring complete three-dimensional data of object surface |
| CN104021540A (en) * | 2013-02-28 | 2014-09-03 | 宝山钢铁股份有限公司 | Static state calibration device and method for machine visual surface detection equipment |
| CN104183010A (en) * | 2013-05-22 | 2014-12-03 | 上海迪谱工业检测技术有限公司 | Multi-view three-dimensional online reconstruction method |
| CN104457569A (en) * | 2014-11-27 | 2015-03-25 | 大连理工大学 | Geometric parameter visual measurement method for large composite board |
| CN104897060A (en) * | 2015-06-17 | 2015-09-09 | 大连理工大学 | large Large field of view global measurement method using coordinates tracking control board |
| CN104913737A (en) * | 2015-06-30 | 2015-09-16 | 长安大学 | Component quality checking device based on line laser three-dimensional measurement and detection method of device |
| CN105403156A (en) * | 2016-01-07 | 2016-03-16 | 杭州汉振科技有限公司 | Three-dimensional measuring device and data fusion calibration method for three-dimensional measuring device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106056587A (en) | 2016-10-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106056587B (en) | Full view line laser structured light three-dimensional imaging caliberating device and method | |
| CN110487213B (en) | A full-view line laser scanning 3D imaging device and method based on spatial dislocation | |
| CN111121655B (en) | Visual detection method for pose and aperture of coplanar workpiece with equal large hole patterns | |
| CN102155923B (en) | Splicing measuring method and system based on three-dimensional target | |
| Tsai | A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses | |
| CN102364299B (en) | Calibration technology for multiple structured light projected three-dimensional profile measuring heads | |
| AU2013379669B2 (en) | Apparatus and method for three dimensional surface measurement | |
| CN110163918A (en) | A kind of line-structured light scaling method based on projective geometry | |
| CN106548489A (en) | The method for registering of a kind of depth image and coloured image, three-dimensional image acquisition apparatus | |
| CN109272555B (en) | A method of obtaining and calibrating external parameters of RGB-D camera | |
| CN107560547B (en) | Scanning system and scanning method | |
| CN111062992B (en) | A dual-view laser scanning three-dimensional imaging device and method | |
| CN105374067A (en) | Three-dimensional reconstruction method based on PAL cameras and reconstruction system thereof | |
| CN102750698B (en) | Texture camera calibration device, texture camera calibration method and geometry correction method of texture image of texture camera | |
| CN104240233A (en) | Method for solving camera homography matrix and projector homography matrix | |
| WO2022078439A1 (en) | Apparatus and method for acquisition and matching of 3d information of space and object | |
| CN112132891A (en) | Method for enlarging calibration space | |
| CN112330740A (en) | Pseudo-binocular dynamic distance measurement method based on monocular video | |
| CN115682937A (en) | A calibration method for an automated three-dimensional laser scanner | |
| Liao et al. | A calibration method for uncoupling projector and camera of a structured light system | |
| Yamauchi et al. | Calibration of a structured light system by observing planar object from unknown viewpoints | |
| CN110044266B (en) | Photogrammetry system based on speckle projection | |
| CN111028298B (en) | A converging binocular system for space transformation calibration of rigid body coordinate system | |
| Dai et al. | High-accuracy calibration for a multiview microscopic 3-D measurement system | |
| CN112304250B (en) | Three-dimensional matching equipment and method between moving objects |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |