+

CN105653569A - Image data expansion processing method and apparatus - Google Patents

Image data expansion processing method and apparatus Download PDF

Info

Publication number
CN105653569A
CN105653569A CN201410771359.9A CN201410771359A CN105653569A CN 105653569 A CN105653569 A CN 105653569A CN 201410771359 A CN201410771359 A CN 201410771359A CN 105653569 A CN105653569 A CN 105653569A
Authority
CN
China
Prior art keywords
data
image data
data processing
image
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410771359.9A
Other languages
Chinese (zh)
Other versions
CN105653569B (en
Inventor
李翔翔
刘明超
王剑
汪红强
王博
纪强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Star Technology Co Ltd
Original Assignee
Space Star Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Star Technology Co Ltd filed Critical Space Star Technology Co Ltd
Priority to CN201410771359.9A priority Critical patent/CN105653569B/en
Publication of CN105653569A publication Critical patent/CN105653569A/en
Application granted granted Critical
Publication of CN105653569B publication Critical patent/CN105653569B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

The invention discloses an image data expansion processing method and apparatus. The method comprises the following steps of receiving a data processing request for to-be-processed image data, determining whether a data type for the to-be-processed image data is built, executing a data type building step if the data type is not built, matching the data type and executing a stored data processing process if the data type is built and the stored data processing process can be reused, with data processing resource stored, customizing a data processing data corresponding to the to-be-processed image data based on the stored data processing resources when the data type is built but the stored data processing process cannot be reused, and matching the data type and executing the customized data processing process. With abstractive remote-sensing image types and effective rule collection, a DB dynamic management model is built and a work flow method capable of being expanded can be built; and expansion processing for massive image data can be achieved.

Description

影像数据扩展处理方法及装置Image data extension processing method and device

技术领域technical field

本发明涉及遥感卫星数据处理技术领域,尤其涉及一种基于SSI(StrutsSpringIbatis)的影像数据扩展处理方法及装置。The invention relates to the technical field of remote sensing satellite data processing, in particular to an SSI (Struts Spring Ibatis)-based image data expansion processing method and device.

背景技术Background technique

近年来,遥感卫星数据已经成为国家安全、外交政策、全球环境变化科学研究等领域的热点内容。随着我国对地观测系列卫星研制发展的不断加快,以及国家高分辨率对地观测系统项目的启动,遥感卫星应用产业已经成为国家战略性高技术产业,并从试验应用型向业务服务型转变,卫星应用已成为我国经济建设、社会发展和政府决策的重要支撑。十多年来,我国已经建成中巴地球资源卫星、环境减灾卫星、测绘卫星、高分辨卫星等对地观测系列卫星,建成国家统一的陆地观测遥感数据接收和地面处理系统,积累了丰富的遥感卫星数据资源,形成了卫星遥感服务与应用体系。In recent years, remote sensing satellite data has become a hot topic in the fields of national security, foreign policy, and scientific research on global environmental change. With the continuous acceleration of the research and development of my country's earth observation series satellites and the launch of the national high-resolution earth observation system project, the remote sensing satellite application industry has become a national strategic high-tech industry, and has transformed from a test application type to a business service type , Satellite applications have become an important support for my country's economic construction, social development and government decision-making. Over the past ten years, my country has built a series of earth observation satellites such as the China-Pakistan Earth Resources Satellite, the Environmental Disaster Reduction Satellite, the Surveying and Mapping Satellite, and the High-Resolution Satellite. Satellite data resources form a satellite remote sensing service and application system.

目前,由于单颗卫星的影像资源有限,而且卫星数据会受到天气等环境影响,而遥感应用通常涉及多星多载荷数据综合应用。以遥感洪水应急监测为例,涉及到的卫星数据不仅包括高分数据,还可能包括来自资源卫星、环境减灾卫星、国外卫星、军事卫星、航飞影像等数据,可能使用到的传感器数据包括可见光、雷达以及红外等。对于多源遥感数据信息服务系统的研究而言,多源卫星遥感数据中的每种卫星获取的遥感数据及其对应的元数据信息的认识和提取是一项极为重要的工作,是多源遥感数据信息服务系统中数据库建设的关键,也是进一步区分服务系统好坏以及是否能够为用户快速方便提供服务的核心部分。At present, due to the limited image resources of a single satellite, and the satellite data will be affected by the environment such as weather, remote sensing applications usually involve the comprehensive application of multi-satellite and multi-load data. Taking remote sensing flood emergency monitoring as an example, the satellite data involved not only includes high-score data, but also may include data from resource satellites, environmental disaster reduction satellites, foreign satellites, military satellites, and aerial images. Sensor data that may be used include visible light , radar and infrared. For the research of multi-source remote sensing data information service system, the recognition and extraction of the remote sensing data obtained by each satellite in the multi-source satellite remote sensing data and the corresponding metadata information is an extremely important task. The key to database construction in the data information service system is also the core part to further distinguish the quality of the service system and whether it can provide users with fast and convenient services.

遥感影像数据的处理具有高度的复杂性,主要包括:数据种类繁多、格式不统一,而同一种数据类型的特点也经常发生变化,因此导致需求规律变化快。随着我国对地观测信息的飞速扩张,如何有效管理、使用、共享这些异构、多源、海量数据的问题日益突出。上述问题集中到影像数据管理层突出的问题是针对每套系统需要单独开发数据管理模型及数据出入库流程,以便适应输入数据格式和配合地面处理系统的数据处理要求,大量的研发工作集中在了底层数据模型调整上,并且系统的数据管理类别扩展性较差,添加一种新的数据格式就必须由研发人员进行代码级修改,工作量大。The processing of remote sensing image data has a high degree of complexity, mainly including: a wide variety of data, inconsistent formats, and the characteristics of the same data type often change, which leads to rapid changes in the law of demand. With the rapid expansion of my country's earth observation information, the problem of how to effectively manage, use, and share these heterogeneous, multi-source, and massive data has become increasingly prominent. The above problems are concentrated in the image data management layer. The prominent problem is that each system needs to develop a data management model and data storage and storage process separately, so as to adapt to the input data format and meet the data processing requirements of the ground processing system. A large amount of research and development work is concentrated in the In terms of the adjustment of the underlying data model, and the scalability of the data management category of the system is poor, adding a new data format requires code-level modification by the R&D personnel, and the workload is heavy.

发明内容Contents of the invention

有鉴于此,为克服上述至少一个缺点,并提供下述至少一种优点。针对地面应用系统中异构、多源、海量遥感影像数据的一体化、自动化管理需求,提出了一种基于SSI的影像数据的扩展处理方法及装置,该方法通过抽象遥感影像格式及有效性规则集合,建立DB动态管理模型和可扩展配置的工作流方法,实现海量影像数据的扩展处理。具体地,本发明采用以下技术方案:In view of this, in order to overcome at least one of the above disadvantages, and provide at least one of the following advantages. Aiming at the integrated and automated management requirements of heterogeneous, multi-source, and massive remote sensing image data in the ground application system, an extended processing method and device for image data based on SSI is proposed. Collection, establish a DB dynamic management model and a workflow method that can be expanded and configured to realize the extended processing of massive image data. Specifically, the present invention adopts the following technical solutions:

一种影像数据的扩展处理方法,包括以下步骤:An extended processing method for image data, comprising the following steps:

接收到携带有待处理影像数据的数据处理请求;A data processing request carrying image data to be processed is received;

判断是否已创建所述待处理影像数据的数据类别,如果判断为否则执行创建所述数据类别的步骤;Judging whether the data category of the image data to be processed has been created, if it is judged otherwise, execute the step of creating the data category;

如果判断为是且判断为复用已存储的数据处理流程,则匹配所述数据类别并执行所存储的数据处理流程;If it is judged to be yes and it is judged to reuse the stored data processing flow, then match the data category and execute the stored data processing flow;

如果判断为是且判断为不复用已存储的数据处理流程,则在存储有数据处理资源的情况下,基于所存储的数据处理资源定制对应于所述待处理影像数据的数据处理流程,匹配所述数据类别并执行所定制的数据处理流程。If it is determined to be yes and it is determined not to reuse the stored data processing flow, then in the case of stored data processing resources, customize the data processing flow corresponding to the image data to be processed based on the stored data processing resources, matching The data category and execute the customized data processing flow.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,还包括:The extended processing method for image data as described above, in a possible implementation manner, further includes:

如果判断为已创建所述待处理影像数据的数据类别,且判断为不复用已存储的数据处理流程,则在没有存储有数据处理资源的情况下,添加对应于所述待处理影像数据的数据处理资源,基于所添加的数据处理资源定制对应于所述待处理影像数据的数据处理流程,匹配所述数据类别并执行所定制的数据处理流程。If it is determined that the data category of the image data to be processed has been created, and it is determined that the stored data processing flow is not to be reused, then if no data processing resource is stored, add the data corresponding to the image data to be processed The data processing resource customizes a data processing flow corresponding to the image data to be processed based on the added data processing resource, matches the data category and executes the customized data processing flow.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述创建所述数据类别的步骤包括:创建数据类别码,创建数据结构信息,创建数据索引解析模板以及创建数据索引验证规则。In the extended processing method for image data as described above, in a possible implementation, the step of creating the data category includes: creating a data category code, creating data structure information, creating a data index analysis template, and creating a data index Validation rules.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述创建所述数据类别的步骤包括:创建数据类别码,创建数据结构信息,导入数据索引解析模板以及数据索引验证规则。In the extended processing method for image data described above, in a possible implementation, the step of creating the data category includes: creating a data category code, creating data structure information, importing a data index analysis template, and data index verification rule.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述数据索引包括基础索引和扩展索引,所述基础索引包括卫星代号、传感器代号、产品级别代号、经纬度坐标信息中的任意一个或多个,所述扩展索引为所述各种待处理影像数据的属性信息。In the extended processing method of image data as described above, in a possible implementation, the data index includes a basic index and an extended index, and the basic index includes satellite code, sensor code, product level code, longitude and latitude coordinate information Any one or more of , the extended index is attribute information of the various image data to be processed.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述数据处理流程还包括:数据索引信息解析步骤、数据浏览图提取步骤、数据索引信息记录步骤、数据存储目录创建步骤、数据导入对应目录步骤、数据处理完整性检验步骤。In a possible implementation of the above-mentioned extended processing method for image data, the data processing flow further includes: a step of analyzing data index information, a step of extracting data browsing map, a step of recording data index information, and creating a data storage directory Steps, data import corresponding directory steps, data processing integrity check steps.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述数据索引信息解析步骤包括基于所述数据索引解析模板中所定义的元信息的格式以及解析规则对所述待处理影像数据进行解析,得到数据的格式,基于所述数据索引验证规则验证所解析出的数据的格式是否符合所定义的规则。In the extended processing method for image data as described above, in a possible implementation manner, the data index information parsing step includes processing the to-be The image data is processed and analyzed to obtain the format of the data, and based on the data index verification rule, it is verified whether the format of the parsed data conforms to the defined rules.

如上所述的影像数据的扩展处理方法,在一种可能的实现方式中,所述数据类别包括根据逻辑特性分类的小数据类型、标准影像类型、1对N关联影像类型以及N关联产品影像类型;以及根据数据格式特点分类的标准格式和独立文件格式。In a possible implementation of the above-mentioned extended processing method for image data, the data categories include small data types, standard image types, 1-to-N associated image types, and N-associated product image types classified according to logical characteristics ; and standard formats and independent file formats classified according to data format characteristics.

一种影像数据的扩展处理装置,包括:An extended processing device for image data, comprising:

接收模块,用于接收携带有待处理影像数据的数据处理请求;A receiving module, configured to receive a data processing request carrying image data to be processed;

判断模块,用于判断是否已创建所述待处理影像数据的数据类别;A judging module, configured to judge whether the data category of the image data to be processed has been created;

数据类别创建模块,用于在所述判断模块判断为否的情况下创建所述数据类别;A data category creation module, configured to create the data category when the judging module judges as no;

匹配模块,用于在所述判断模块判断为是且判断为复用已存储的数据处理流程的情况下,或已经定制对应于所述待处理影像数据的数据处理流程的情况下,匹配所述数据类别;a matching module, configured to match the data category;

流程定制模块,用于在所述判断模块判断为是且判断为不复用已存储的数据处理流程,则在存储有数据处理资源的情况下,基于所存储的数据处理资源定制对应于所述待处理影像数据的数据处理流程;以及The flow customization module is used to customize the data corresponding to the stored data processing resources based on the stored data processing resources when the judgment module judges to be yes and the stored data processing flow is not to be reused. the data processing flow of the image data to be processed; and

执行模块,用于在所述匹配模块匹配所述数据类别之后,执行所存储或所定制的数据处理流程。An executing module, configured to execute the stored or customized data processing flow after the matching module matches the data category.

如上所述的影像数据的扩展处理装置,在一种可能的实现方式中,还包括:The extended processing device for image data as described above, in a possible implementation manner, further includes:

资源添加模块,用于在所述判断模块判断为已创建所述待处理影像数据的数据类别,且判断为不复用已存储的数据处理流程,则在没有存储有数据处理资源的情况下,添加对应于所述待处理影像数据的数据处理资源;A resource adding module, configured to determine that the data category of the image data to be processed has been created by the judging module, and judge that the stored data processing flow is not to be reused, if no data processing resources are stored, adding data processing resources corresponding to the image data to be processed;

则所述定制模块还用于基于所述资源添加模块所添加的数据处理资源定制对应于所述待处理影像数据的数据处理流程 The customization module is further configured to customize the data processing flow corresponding to the image data to be processed based on the data processing resources added by the resource adding module .

通过采用上述技术方案,本发明的所达到的有益效果为:本发明所提供的方法所基于的核心框架为SSI,用于实现数据类别的扩展定义和对在库影像数据的全自动化管理。该SSI框架采用半自动化的ORM机制,允许直接嵌入复杂的数据库SQL操作、控制逻辑,能够兼容复杂数据库处理逻辑,更适用于历史数据复杂、数据处理量大、性能要求严格的海量遥感影像管理需求。通过基于SSI技术实现人机交互业务层面的数据类别定义及数据管理业务模型与底层数据库服务模型的松耦合衔接方法,避免了传统影像管理系统中数据模型管理硬编码和扩展性差的问题,能够提供数据类别定义交互式的服务方式,实现数据管理系统类别动态扩展能力。而且本方法通过对工作流程的扩展,实现数据归档、提取特定流程定义,实现特殊数据格式如HDF、NC等格式数据的解析扩展能力。By adopting the above-mentioned technical solution, the beneficial effects achieved by the present invention are: the core framework based on the method provided by the present invention is SSI, which is used to realize the extended definition of data categories and the fully automatic management of image data in storage. The SSI framework adopts a semi-automatic ORM mechanism, allowing direct embedding of complex database SQL operations and control logic, compatible with complex database processing logic, and more suitable for massive remote sensing image management needs with complex historical data, large data processing volume, and strict performance requirements . Based on SSI technology, the data category definition at the human-computer interaction business level and the loosely coupled connection method between the data management business model and the underlying database service model are realized, which avoids the problems of hard-coded data model management and poor scalability in traditional image management systems, and can provide The data category defines an interactive service mode to realize the dynamic expansion capability of the data management system category. Moreover, the method realizes data archiving, extracts specific process definitions, and realizes the ability to analyze and expand data in special data formats such as HDF and NC through the expansion of the workflow.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments of the present invention. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention , for those skilled in the art, other drawings can also be obtained according to the content of the embodiment of the present invention and these drawings without any creative effort.

图1为本发明一个实施例提供的影像数据的处理方法的一部分流程图;FIG. 1 is a flow chart of a part of a method for processing image data provided by an embodiment of the present invention;

图2为本发明一个实施例提供的影像数据的处理方法的另一部分流程图;Fig. 2 is another part of the flow chart of the image data processing method provided by one embodiment of the present invention;

图3为本发明一个实施例提供的1对N关联影像类型影像数据的结构示意图;FIG. 3 is a schematic structural diagram of 1-to-N associated image type image data provided by an embodiment of the present invention;

图4为本发明另一个实施例提供的影像数据的处理装置的结构示意图。FIG. 4 is a schematic structural diagram of an image data processing device provided by another embodiment of the present invention.

具体实施方式detailed description

为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems solved by the present invention, the technical solutions adopted and the technical effects achieved clearer, the technical solutions of the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings. Obviously, the described embodiments are only the technical solutions of the present invention. Some, but not all, embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present invention.

下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods.

基于上述背景技术的分析可知,对遥感影像数据进行管理的主要难点在于影像数据格式繁多,针对不同格式的影像数据建立查询索引基本上都需要定制化开发,系统无法动态扩展可管理的影像产品类别,如果必须扩展则需要专业工程师付出大量工作,修改业务逻辑,维护成本较高。本发明人在分析遥感影像大数据的特点和存储要求的基础之上,针对上述问题,开展海量遥感影像的存储模型和逻辑结构设计、标准化处理及多元异构数据集成等方面的研究工作,实现海量影像数据的可扩展的自动化存储与有效集成共享。下面以具体的实施例对本发明提出的影像数据的扩展处理方法进行说明。Based on the analysis of the above-mentioned background technology, it can be seen that the main difficulty in managing remote sensing image data lies in the variety of image data formats. The establishment of query indexes for image data in different formats basically requires customized development, and the system cannot dynamically expand the manageable image product categories. , if it must be expanded, professional engineers will need to pay a lot of work, modify the business logic, and the maintenance cost will be high. Based on the analysis of the characteristics and storage requirements of remote sensing image big data, the inventors have carried out research work on the storage model and logical structure design, standardized processing, and multivariate heterogeneous data integration of massive remote sensing images to achieve the above-mentioned problems. Scalable automatic storage and effective integration and sharing of massive image data. The extended processing method for image data proposed by the present invention will be described below with specific embodiments.

实施例1Example 1

如图1和图2所示,为本发明一个实施例提供的影像数据处理方法的流程图,该方法包括以下步骤:As shown in Figure 1 and Figure 2, it is a flowchart of an image data processing method provided by an embodiment of the present invention, the method includes the following steps:

步骤S11、接收到数据处理请求,该请求中携带有待处理影像数据;Step S11. A data processing request is received, and the request carries image data to be processed;

步骤S12、根据系统提示及系统已存储的数据类别定义信息判断系统中是否已创建对应于待处理影像数据的数据类别,如果还未创建则执行步骤S13;如果已创建则执行步骤S14;Step S12. According to the system prompt and the data category definition information stored in the system, it is judged whether the data category corresponding to the image data to be processed has been created in the system. If it has not been created, perform step S13; if it has been created, perform step S14;

其中,数据类别可以根据逻辑特性来分类,分为小数据类型、标准影像类型、1对N关联影像类型以及N关联产品影像类型;也可以按照数据格式特点来分类,分为标准格式和独立文件格式。Among them, data categories can be classified according to logical characteristics, divided into small data types, standard image types, 1-to-N associated image types, and N-associated product image types; they can also be classified according to data format characteristics, divided into standard formats and independent files Format.

步骤S13、执行创建数据类别的步骤;具体地,Step S13, execute the step of creating data categories; specifically,

判断是否需要手动创建数据类别,是则执行步骤S19,否则执行步骤S110;Determine whether to manually create a data category, if so, execute step S19, otherwise execute step S110;

步骤S14、判断是否能够复用已存储的数据处理流程,是则执行步骤S21,否则执行S15;Step S14, judging whether the stored data processing flow can be reused, if yes, execute step S21, otherwise execute S15;

步骤S15、判断资源数据库中是否存储有对应于待处理影像数据的数据处理资源,如果存储有对应的数据处理资源则执行步骤S16,如果没有存储对应的数据处理资源则执行步骤S17;Step S15, judging whether there is a data processing resource corresponding to the image data to be processed stored in the resource database, if there is a corresponding data processing resource stored, execute step S16, if there is no corresponding data processing resource stored, execute step S17;

此外,数据库中还定义了影像数据的组成方式、数据格式、文件命名规则、元信息提取方式、格式等,以实现可扩展的数据库服务模型。In addition, the composition method, data format, file naming rules, meta-information extraction method, format, etc. of the image data are defined in the database to realize an extensible database service model.

步骤S16、基于所存储的数据处理资源定制对应于待处理影像数据的数据处理流程,执行步骤S21;Step S16, customize the data processing flow corresponding to the image data to be processed based on the stored data processing resources, and execute step S21;

步骤S17、创建(或添加)对应于所述待处理影像数据的数据处理资源,并基于所创建的资源定制对应于所述待处理影像数据的数据处理流程,执行步骤S21;Step S17, create (or add) a data processing resource corresponding to the image data to be processed, and customize a data processing flow corresponding to the image data to be processed based on the created resource, and execute step S21;

本方法提供数据处理的扩展配置,可以于步骤S14中选择复用系统已有的处理流程,也可以于步骤S17中新增处理资源并基于新增的处理资源定制处理流程;This method provides an extended configuration of data processing, and the existing processing flow of the multiplexing system can be selected in step S14, or new processing resources can be added in step S17 and the processing flow can be customized based on the newly added processing resources;

步骤S21、判断是否能够自动匹配所存储的数据类别,是则执行步骤S22,否则执行步骤S23;Step S21, judging whether the stored data category can be automatically matched, if yes, execute step S22, otherwise execute step S23;

步骤S22、匹配所述待处理影像数据的数据类别所对应的数据处理流程,进入步骤S24;Step S22, matching the data processing flow corresponding to the data category of the image data to be processed, and proceeding to step S24;

步骤S23、提示无法识别,结束处理流程;Step S23, prompting that it cannot be recognized, and ending the processing flow;

步骤S24、执行该数据处理流程;Step S24, execute the data processing flow;

系统会自动根据设定的转换规则形成后台数据库定义语言,自动完成底层数据库服务的创建及服务的启动,过程简单,无需专人维护。例如,将上述模型规则即数据索引解析、验证规则转换成XML格式的模板语言,并实现XML模板解译服务,从而实现影像产品模型资料自动化的导入及导出服务。The system will automatically form the background database definition language according to the set conversion rules, and automatically complete the creation and startup of the underlying database service. The process is simple and no special maintenance is required. For example, the above-mentioned model rules, ie, data index analysis and verification rules, are converted into template language in XML format, and XML template interpretation services are implemented, so as to realize automatic import and export services of image product model data.

其中,系统已存储的数据处理流程包括预设流程和用户自定义流程,系统预设流程包括存档、提取以及共享等处理。用户自定义流程设置为可选择流程资源管理库已有的流程资源,也可新增符合系统接口规则的流程资源。系统资源管理库提供系统所有流程资源的添加、删除、修改接口。具体而言,数据处理流程包括数据索引信息解析步骤、数据浏览图提取步骤、数据索引信息记录步骤、数据存储目录创建步骤、数据导入对应目录步骤、数据处理完整性检验步骤。完成这些步骤后数据处理流程结束,用户即可在系统中检索、浏览数据索引信息,下载数据。Among them, the data processing processes stored in the system include preset processes and user-defined processes, and the system preset processes include archiving, extraction, and sharing. The user-defined process is set to select the existing process resources in the process resource management library, or add process resources that conform to the system interface rules. The system resource management library provides interfaces for adding, deleting and modifying all process resources in the system. Specifically, the data processing flow includes the steps of data index information analysis, data browsing map extraction, data index information recording, data storage directory creation, data import corresponding directory steps, and data processing integrity inspection steps. After completing these steps, the data processing process ends, and users can retrieve and browse data index information and download data in the system.

步骤S18、创建数据类别码,创建数据结构信息,创建数据索引解析模板,创建数据索引验证规则,完成遥感数据类别创建,执行步骤S14;Step S18, create data category codes, create data structure information, create data index analysis templates, create data index verification rules, complete creation of remote sensing data categories, and execute step S14;

步骤S19、创建数据类别码,创建数据结构信息,导入数据类别定义模板,即导入数据索引解析模板及数据索引验证规则,完成遥感数据类别创建,执行步骤S14。Step S19: Create data category codes, create data structure information, import data category definition templates, that is, import data index analysis templates and data index verification rules, complete creation of remote sensing data categories, and execute step S14.

其中,数据类别码为预先定义的数据类别标识,可以以数字或字母、符号的任意组合来表示;数据结构信息包括数据文件组成、影像文件命名规则、数据所包含的文件个数等信息;数据索引解析模板用于对待处理影像数据进行解析,根据所定义的元信息的格式以及解析规则,解析得到数据的格式;数据索引验证规则用于验证数据的格式是否符合所定义的规则。数据索引包括基础索引和扩展索引。数据基础索引为影像数据检索过程中,能够唯一确定一条影像数据的主索引,一般包含的信息有卫星代号、传感器代号、产品级别代号、经纬度坐标信息等。扩展索引为各种影像数据特有的属性信息,例如影像数据所包含的地物、目标名称等。系统中需要预先整理并抽象定义影像数据常用索引的定义域和值域,包括名称、类型、唯一性、值域等,从而形成数据索引解析、验证规则的管理模型。Among them, the data category code is a predefined data category identifier, which can be represented by any combination of numbers, letters, and symbols; the data structure information includes information such as data file composition, image file naming rules, and the number of files contained in the data; The index parsing template is used to parse the image data to be processed, and the format of the data is parsed according to the defined metadata format and parsing rules; the data index verification rule is used to verify whether the format of the data conforms to the defined rules. Data indexes include basic indexes and extended indexes. The basic data index is the main index that can uniquely determine a piece of image data during the image data retrieval process, and generally contains information such as satellite code, sensor code, product level code, longitude and latitude coordinate information, etc. The extended index is the unique attribute information of various image data, such as the features and target names contained in the image data. The system needs to pre-organize and abstractly define the definition domain and value domain of commonly used indexes of image data, including name, type, uniqueness, value domain, etc., so as to form a management model for data index analysis and verification rules.

在上述数据类型中,小数据类型表示数据格式简单,索引元素较少的影像数据。例如常见的GPS文件、预报轨道根数文件等,这种文件一般仅需要建立包含时间、卫星代号、数据代号的索引就可以保证数据的唯一标定。Among the above data types, the small data type represents image data with a simple data format and fewer index elements. For example, common GPS files, forecast orbit root files, etc., generally only need to establish an index including time, satellite code, and data code to ensure the unique calibration of the data.

标准影像类型表示如环境系列卫星的标准产品数据,这种影像数据除了本身的遥感应用特性之外没有与其他影像数据特定的必然关联,并且产品数据格式规则,虽然数据长度多有变化但是管理逻辑较为简单。The standard image type refers to standard product data such as environmental series satellites. This image data has no specific and necessary relationship with other image data except for its own remote sensing application characteristics, and the product data format is regular. Although the data length varies, the management logic Simpler.

1对N关联影像类型的影像一般包含一套条带概览数据、一套包含N组逻辑景的概览数据以及一套规格条带影像,条带与逻辑景的1对N关联关系如图3所示,逻辑景条带影像中的一个区域,一般通过定义其角点坐标来区分每个逻辑景的区划范围。由于大条带影像的陆地观测范围广,行业用户往往仅对整个条带中的一小块感兴趣,利用逻辑景能够减小数据处理量从而提高应用处理、数据传输的速度。因此条带与对应的N组逻辑景之间需要建立关联。需要特别说明逻辑景本身就是条带影像的索引,不需要作为独立的影像产品进行数据处理,但行业应用中往往以逻辑景索引为条带影像提取条件,获取大条带中的一部分影像数据。An image of the 1-to-N associated image type generally includes a set of strip overview data, a set of overview data containing N groups of logical scenes, and a set of standardized strip images. The 1-to-N association relationship between strips and logical scenes is shown in Figure 3 As shown, a region in the logical scene strip image generally distinguishes the division range of each logical scene by defining its corner coordinates. Due to the wide land observation range of large strip images, industry users are often only interested in a small part of the entire strip. The use of logical scenes can reduce the amount of data processing and improve the speed of application processing and data transmission. Therefore, associations need to be established between the stripes and the corresponding N groups of logical scenes. It should be noted that the logical scene itself is the index of the strip image, and does not need to be processed as an independent image product. However, in industrial applications, the logical scene index is often used as the strip image extraction condition to obtain a part of the image data in the large strip.

N关联产品影像类型,表示N组产品之间有必然的关联关系,但是各组产品本身也是标准影像类型,需要对外提供组合的归档、提取方法,也需要针对每个产品提供独立的归档、提取方法。N-associated product image type means that there is an inevitable relationship between N groups of products, but each group of products is also a standard image type, and a combined archiving and extraction method needs to be provided externally, as well as an independent archiving and extraction for each product. method.

此外,根据影像数据的文件构成方式还可以将影像数据分为文件集合结构和独立文件结构,用于数据结构定义。In addition, according to the file structure of the image data, the image data can also be divided into a file collection structure and an independent file structure, which are used for data structure definition.

对于文件集合结构的影像产品,每个产品由多个文件组成,这些文件都是必须的,都将服务于遥感处理和应用共享中,例如:元信息索引文件用于影像检索,辅助数据文件用于应用处理,浏览图文件用于影像浏览,数据实体则是应用处理的对象等。对于独立文件结构,即一个产品仅包含一个文件,典型文件标准如HDF5,NC,TIFF等。For image products with a file collection structure, each product is composed of multiple files. These files are all necessary and will serve in remote sensing processing and application sharing. For example: metadata index files are used for image retrieval, auxiliary data files are used for For application processing, the browser map file is used for image browsing, and the data entity is the object of application processing. For an independent file structure, that is, a product contains only one file, typical file standards such as HDF5, NC, TIFF, etc.

在本发明所提供的方法中,可以采取导入配置文件的方式实现影像产品管理方法定义,也可以采取向导式,由本模块引导用户定义影像产品管理方法,向导式定义过程允许用户创建新的元信息元素,并根据用户定义由系统自动完成类型匹配及值域选择。In the method provided by the present invention, the image product management method definition can be implemented by importing configuration files, or a wizard can be adopted, and this module guides users to define image product management methods. The wizard definition process allows users to create new meta information Elements, and the system automatically completes type matching and value range selection according to user definitions.

实施例2Example 2

如图4所示,为本发明一个实施例提供的影像数据的处理装置的结构示意图,该影像数据的处理装置100包括:接收模块10、判断模块20、数据类别创建模块30、匹配模块40、流程定制模块50以及执行模块60。As shown in FIG. 4 , it is a schematic structural diagram of an image data processing device provided by an embodiment of the present invention. The image data processing device 100 includes: a receiving module 10, a judging module 20, a data category creating module 30, a matching module 40, Process customization module 50 and execution module 60 .

其中,接收模块10用于接收携带有待处理影像数据的数据处理请求;判断模块20用于判断是否已创建待处理影像数据的数据类别;数据类别创建模块30用于在判断模块20判断为否的情况下创建所述数据类别;匹配模块40用于在判断模块20判断为是且判断为复用已存储的数据处理流程的情况下,或已经定制对应于待处理影像数据的数据处理流程的情况下,匹配数据类别;流程定制模块50用于在判断模块20判断为是且判断为不复用已存储的数据处理流程,则在存储有数据处理资源的情况下,基于所存储的数据处理资源定制对应于待处理影像数据的数据处理流程;执行模块60用于在匹配模块40匹配数据类别之后,执行所存储或所定制的数据处理流程。Wherein, the receiving module 10 is used to receive the data processing request that carries the image data to be processed; the judging module 20 is used to judge whether the data category of the image data to be processed has been created; In the case of creating the data category; the matching module 40 is used for judging by the judging module 20 and judging that the stored data processing flow is reused, or the data processing flow corresponding to the image data to be processed has been customized Next, match the data category; the process customization module 50 is used to determine that the judgment module 20 is yes and judges not to reuse the stored data processing flow, then in the case of storing data processing resources, based on the stored data processing resources Customize the data processing flow corresponding to the image data to be processed; the execution module 60 is used to execute the stored or customized data processing flow after the matching module 40 matches the data category.

上述影像数据的处理装置100还包括:资源添加模块70,用于在判断模块20判断为已创建待处理影像数据的数据类别,且判断为不复用已存储的数据处理流程,则在没有存储有数据处理资源的情况下,添加对应于待处理影像数据的数据处理资源;则流程定制模块50还用于基于资源添加模块70所添加的数据处理资源定制对应于待处理影像数据的数据处理流程。The image data processing device 100 above also includes: a resource adding module 70, used for judging in the judging module 20 that the data category of the image data to be processed has been created, and judging that the stored data processing flow is not to be reused; In the case of data processing resources, add data processing resources corresponding to the image data to be processed; then the flow customization module 50 is also used to customize the data processing flow corresponding to the image data to be processed based on the data processing resources added by the resource adding module 70 .

本发明的有益效果主要包括以下两个方面:The beneficial effects of the present invention mainly include the following two aspects:

(1)解决了常见文件格式的遥感影像大数据的自动化扩展存储问题。由于遥感影像大数据具有种类繁多、数量多、存储量大、存储格式多样化以及元数据分散等特点,使得这些数据难以统一组织管理、难以高效访问、难以共享交换,这些特点成为制约影像数据高效共享利用的瓶颈。基于SSI构建松耦合的动态数据库扩展管理模型,提供交互式配置管理服务,从而解决了遥感影像大数据的自动化扩展存储问题。(1) Solve the problem of automatic extended storage of remote sensing image big data in common file formats. Due to the characteristics of remote sensing image big data, such as various types, large quantities, large storage capacity, diversified storage formats, and scattered metadata, it is difficult to organize and manage these data in a unified manner, access them efficiently, and share and exchange them. Bottlenecks for shared utilization. Based on SSI, a loosely coupled dynamic database expansion management model is built to provide interactive configuration management services, thus solving the problem of automatic expansion storage of remote sensing image big data.

(2)解决了特殊科学数据格式影像的自动化扩展存储问题。科学数据和空间天气科学数据种类多、结构复杂,例如HDF、CDF格式,存在数据访问接口通用、接口数量多、数据访问粒度和抽象级别不高等问题,导致该类数据格式定制性较强,数据集成应用限制较多,往往需要数据集成系统做针对性兼容研发。本发明针对此类数据的逻辑结构和数据访问接口方法,抽象为特殊数据解析模型库,构建基于可扩展工作流服务的原型系统,解决特殊科学数据格式影像的自动化扩展存储问题。(2) Solved the problem of automatic extended storage of images in special scientific data formats. Scientific data and space weather scientific data have many types and complex structures, such as HDF and CDF formats. There are problems such as common data access interfaces, large number of interfaces, and low data access granularity and abstraction level, which lead to strong customization of this type of data format. There are many restrictions on integrated applications, and data integration systems are often required for targeted and compatible research and development. The invention abstracts the logical structure and data access interface method of such data into a special data analysis model library, builds a prototype system based on scalable workflow services, and solves the problem of automatic extended storage of images in special scientific data formats.

以上实施例提供的技术方案中的全部或部分内容可以通过软件编程实现,其软件程序存储在可读取的存储介质中,存储介质例如:计算机中的硬盘、光盘或软盘。All or part of the technical solutions provided by the above embodiments can be realized by software programming, and the software program is stored in a readable storage medium, such as a hard disk, an optical disk or a floppy disk in a computer.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.

Claims (10)

1.一种影像数据的扩展处理方法,其特征在于,包括以下步骤:1. An extended processing method for image data, comprising the following steps: 接收到携带有待处理影像数据的数据处理请求;A data processing request carrying image data to be processed is received; 判断是否已创建所述待处理影像数据的数据类别,如果判断为否则执行创建所述数据类别的步骤;Judging whether the data category of the image data to be processed has been created, if it is judged otherwise, execute the step of creating the data category; 如果判断为是且判断为复用已存储的数据处理流程,则匹配所述数据类别并执行所存储的数据处理流程;If it is judged to be yes and it is judged to reuse the stored data processing flow, then match the data category and execute the stored data processing flow; 如果判断为是且判断为不复用已存储的数据处理流程,则在存储有数据处理资源的情况下,基于所存储的数据处理资源定制对应于所述待处理影像数据的数据处理流程,匹配所述数据类别并执行所定制的数据处理流程。If it is determined to be yes and it is determined not to reuse the stored data processing flow, then in the case of stored data processing resources, customize the data processing flow corresponding to the image data to be processed based on the stored data processing resources, matching The data category and execute the customized data processing flow. 2.如权利要求1所述的影像数据的扩展处理方法,其特征在于,还包括:2. The extended processing method of image data as claimed in claim 1, further comprising: 如果判断为已创建所述待处理影像数据的数据类别,且判断为不复用已存储的数据处理流程,则在没有存储有数据处理资源的情况下,添加对应于所述待处理影像数据的数据处理资源,基于所添加的数据处理资源定制对应于所述待处理影像数据的数据处理流程,匹配所述数据类别并执行所定制的数据处理流程。If it is determined that the data category of the image data to be processed has been created, and it is determined that the stored data processing flow is not to be reused, then if no data processing resource is stored, add the data corresponding to the image data to be processed The data processing resource customizes a data processing flow corresponding to the image data to be processed based on the added data processing resource, matches the data category and executes the customized data processing flow. 3.如权利要求1所述的影像数据的扩展处理方法,其特征在于,所述创建所述数据类别的步骤包括:创建数据类别码,创建数据结构信息,创建数据索引解析模板以及创建数据索引验证规则。3. The extended processing method of image data according to claim 1, wherein the step of creating the data category comprises: creating a data category code, creating data structure information, creating a data index parsing template and creating a data index Validation rules. 4.如权利要求1所述的影像数据的扩展处理方法,其特征在于,所述创建所述数据类别的步骤包括:创建数据类别码,创建数据结构信息,导入数据索引解析模板以及数据索引验证规则。4. The extended processing method of image data according to claim 1, wherein the step of creating the data category comprises: creating a data category code, creating data structure information, importing a data index analysis template and data index verification rule. 5.如权利要求3或4所述的影像数据的扩展处理方法,其特征在于,所述数据索引包括基础索引和扩展索引,所述基础索引包括卫星代号、传感器代号、产品级别代号、经纬度坐标信息中的任意一个或多个,所述扩展索引为所述各种待处理影像数据的属性信息。5. The extended processing method of image data as claimed in claim 3 or 4, wherein the data index includes a basic index and an extended index, and the basic index includes a satellite code, a sensor code, a product level code, latitude and longitude coordinates Any one or more of the information, the extended index is the attribute information of the various image data to be processed. 6.如权利要求3或4所述的影像数据的扩展处理方法,其特征在于,所述数据处理流程还包括:数据索引信息解析步骤、数据浏览图提取步骤、数据索引信息记录步骤、数据存储目录创建步骤、数据导入对应目录步骤、数据处理完整性检验步骤。6. The extended processing method of image data as claimed in claim 3 or 4, characterized in that, the data processing flow also includes: a data index information analysis step, a data browsing map extraction step, a data index information recording step, and a data storage Directory creation steps, data import corresponding directory steps, and data processing integrity inspection steps. 7.如权利要求6所述的影像数据的扩展处理方法,其特征在于,所述数据索引信息解析步骤包括基于所述数据索引解析模板中所定义的元信息的格式以及解析规则对所述待处理影像数据进行解析,得到数据的格式,基于所述数据索引验证规则验证所解析出的数据的格式是否符合所定义的规则。7. The extended processing method of image data as claimed in claim 6, wherein said data index information parsing step includes analyzing the format and parsing rules of the meta information defined in the data index parsing template for The image data is processed and analyzed to obtain the format of the data, and based on the data index verification rule, it is verified whether the format of the analyzed data conforms to the defined rules. 8.如权利要求1所述的影像数据的扩展处理方法,其特征在于,所述数据类别包括根据逻辑特性分类的小数据类型、标准影像类型、1对N关联影像类型以及N关联产品影像类型;以及根据数据格式特点分类的标准格式和独立文件格式。8. The extended processing method of image data according to claim 1, wherein the data categories include small data types, standard image types, 1-to-N associated image types, and N-associated product image types classified according to logical characteristics ; and standard formats and independent file formats classified according to data format characteristics. 9.一种影像数据的扩展处理装置,其特征在于,包括:9. An extended processing device for image data, comprising: 接收模块,用于接收携带有待处理影像数据的数据处理请求;A receiving module, configured to receive a data processing request carrying image data to be processed; 判断模块,用于判断是否已创建所述待处理影像数据的数据类别;A judging module, configured to judge whether the data category of the image data to be processed has been created; 数据类别创建模块,用于在所述判断模块判断为否的情况下创建所述数据类别;A data category creation module, configured to create the data category when the judging module judges as no; 匹配模块,用于在所述判断模块判断为是且判断为复用已存储的数据处理流程的情况下,或已经定制对应于所述待处理影像数据的数据处理流程的情况下,匹配所述数据类别;a matching module, configured to match the data category; 流程定制模块,用于在所述判断模块判断为是且判断为不复用已存储的数据处理流程,则在存储有数据处理资源的情况下,基于所存储的数据处理资源定制对应于所述待处理影像数据的数据处理流程;以及A flow customization module, configured to customize the data processing flow corresponding to the stored data processing resource based on the stored data processing resource when the judging module judges to be yes and the stored data processing flow is not to be reused. the data processing flow of the image data to be processed; and 执行模块,用于在所述匹配模块匹配所述数据类别之后,执行所存储或所定制的数据处理流程。An executing module, configured to execute the stored or customized data processing flow after the matching module matches the data category. 10.如权利要求9所述的影像数据的扩展处理装置,其特征在于,还包括:10. The image data extension processing device according to claim 9, further comprising: 资源添加模块,用于在所述判断模块判断为已创建所述待处理影像数据的数据类别,且判断为不复用已存储的数据处理流程,则在没有存储有数据处理资源的情况下,添加对应于所述待处理影像数据的数据处理资源;The resource adding module is used for determining that the data category of the image data to be processed has been created by the judging module, and judging that the stored data processing flow is not to be reused, if there is no data processing resource stored, adding data processing resources corresponding to the image data to be processed; 则所述流程定制模块还用于基于所述资源添加模块所添加的数据处理资源定制对应于所述待处理影像数据的数据处理流程。The process customization module is further configured to customize the data processing process corresponding to the image data to be processed based on the data processing resources added by the resource adding module.
CN201410771359.9A 2014-12-12 2014-12-12 Image data extension processing method and device Active CN105653569B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410771359.9A CN105653569B (en) 2014-12-12 2014-12-12 Image data extension processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410771359.9A CN105653569B (en) 2014-12-12 2014-12-12 Image data extension processing method and device

Publications (2)

Publication Number Publication Date
CN105653569A true CN105653569A (en) 2016-06-08
CN105653569B CN105653569B (en) 2019-04-05

Family

ID=56480865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410771359.9A Active CN105653569B (en) 2014-12-12 2014-12-12 Image data extension processing method and device

Country Status (1)

Country Link
CN (1) CN105653569B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106844468A (en) * 2016-12-22 2017-06-13 航天恒星科技有限公司 Towards the management method of multiple dimensioned multi-source mass remote sensing image data
CN107967655A (en) * 2016-10-20 2018-04-27 南京途牛科技有限公司 Data resource method for establishing model and device
CN109743202A (en) * 2018-12-26 2019-05-10 中国联合网络通信集团有限公司 Data management method, apparatus, device and readable storage medium
CN110427363A (en) * 2019-01-11 2019-11-08 中国铁路西安局集团有限公司 Railway signals equipment image information based on relevant database converts storage method
CN112783825A (en) * 2019-11-04 2021-05-11 富泰华工业(深圳)有限公司 Data archiving method, data archiving device, computer device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783991A (en) * 2004-11-30 2006-06-07 松下电器产业株式会社 Data processing apparatus
US20080186313A1 (en) * 2007-02-06 2008-08-07 Samsung Electronics Co., Ltd. Method and apparatus for high-speed image processing based on graphic processing unit
CN101447902A (en) * 2007-11-28 2009-06-03 株式会社日立制作所 Display device and image equipment
CN103544238A (en) * 2013-10-07 2014-01-29 宁波芝立软件有限公司 Non-universal genetic relationship information base traversal improvement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783991A (en) * 2004-11-30 2006-06-07 松下电器产业株式会社 Data processing apparatus
US20080186313A1 (en) * 2007-02-06 2008-08-07 Samsung Electronics Co., Ltd. Method and apparatus for high-speed image processing based on graphic processing unit
CN101447902A (en) * 2007-11-28 2009-06-03 株式会社日立制作所 Display device and image equipment
CN103544238A (en) * 2013-10-07 2014-01-29 宁波芝立软件有限公司 Non-universal genetic relationship information base traversal improvement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安慧斌: ""基于Struts 框架的业务逻辑复用的研究与应用"", 《电子设计工程》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107967655A (en) * 2016-10-20 2018-04-27 南京途牛科技有限公司 Data resource method for establishing model and device
CN107967655B (en) * 2016-10-20 2022-02-01 南京途牛科技有限公司 Data resource model establishing method and device
CN106844468A (en) * 2016-12-22 2017-06-13 航天恒星科技有限公司 Towards the management method of multiple dimensioned multi-source mass remote sensing image data
CN109743202A (en) * 2018-12-26 2019-05-10 中国联合网络通信集团有限公司 Data management method, apparatus, device and readable storage medium
CN110427363A (en) * 2019-01-11 2019-11-08 中国铁路西安局集团有限公司 Railway signals equipment image information based on relevant database converts storage method
CN110427363B (en) * 2019-01-11 2023-04-11 中国铁路西安局集团有限公司 Railway signal equipment image information conversion storage method based on relational database
CN112783825A (en) * 2019-11-04 2021-05-11 富泰华工业(深圳)有限公司 Data archiving method, data archiving device, computer device and storage medium
CN112783825B (en) * 2019-11-04 2024-01-02 富泰华工业(深圳)有限公司 Data archiving method, device, computer device and storage medium

Also Published As

Publication number Publication date
CN105653569B (en) 2019-04-05

Similar Documents

Publication Publication Date Title
CN111259006B (en) A general integrated physical aggregation, organization, release and service method and system for distributed heterogeneous data
CN108292323B (en) Database operations using metadata of data sources
CN109542967B (en) Smart city data sharing system and method based on XBRL standard
TW202002587A (en) Block chain-based data processing method and device
US9031920B2 (en) Objects in a storage environment for connected applications
US10180984B2 (en) Pivot facets for text mining and search
KR20060045622A (en) Extraction, transformation, and loading designer module of computerized financial systems
EP3732587B1 (en) Systems and methods for context-independent database search paths
CN114328682B (en) A data processing method, device, equipment and medium based on rule engine
CN114564930B (en) Document information integration method, device, equipment, medium and program product
CN105653569A (en) Image data expansion processing method and apparatus
CN103455335A (en) Multilevel classification Web implementation method
CN109710667A (en) A kind of shared realization method and system of the multisource data fusion based on big data platform
CN112182045B (en) Metadata management method, device, computer equipment and storage medium
CN118885544A (en) A method, system, medium and computer program product for organizing and managing multi-source heterogeneous remote sensing data
US20140114916A1 (en) Code generation and implementation method, system, and storage medium for delivering bidirectional data aggregation and updates
CN114358636B (en) Indicator configuration method, data acquisition method, device, equipment and medium
CN114490651B (en) Data storage method and device
US8949280B2 (en) Web service discovery via data abstraction model with input assistance
US20160162814A1 (en) Comparative peer analysis for business intelligence
CN106528644B (en) Remote sensing data retrieval method and device
CN114385733A (en) Method and device for unified creation of data model in ETL process
US12124480B2 (en) Simplified schema generation for data ingestion
US11321340B1 (en) Metadata extraction from big data sources
CN115543428A (en) Simulated data generation method and device based on strategy template

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载