+

CN105206048B - A system and method for discovering transfer modes of urban resident groups based on traffic OD data - Google Patents

A system and method for discovering transfer modes of urban resident groups based on traffic OD data Download PDF

Info

Publication number
CN105206048B
CN105206048B CN201510746766.9A CN201510746766A CN105206048B CN 105206048 B CN105206048 B CN 105206048B CN 201510746766 A CN201510746766 A CN 201510746766A CN 105206048 B CN105206048 B CN 105206048B
Authority
CN
China
Prior art keywords
data
transfer
mrow
traffic
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510746766.9A
Other languages
Chinese (zh)
Other versions
CN105206048A (en
Inventor
吕卫锋
荣倩楠
张博文
林霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510746766.9A priority Critical patent/CN105206048B/en
Publication of CN105206048A publication Critical patent/CN105206048A/en
Application granted granted Critical
Publication of CN105206048B publication Critical patent/CN105206048B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于交通OD数据的城市居民换乘模式发现系统及方法,包括数据预处理模块、换乘轨迹识别模块、换乘热点区域发现模块和群体换乘模式挖掘模块;本发明建立在大量的真实居民公交出行一卡通刷卡数据,具有鲁棒性和普遍适用性,城市范围内换乘模式的发现为公共交通线路优化以及动态车辆调度提供了数据支撑和合理建议。

The invention discloses a system and method for discovering transfer modes of urban residents based on traffic OD data, including a data preprocessing module, a transfer trajectory identification module, a transfer hotspot area discovery module and a group transfer mode mining module; the invention establishes In a large number of real residents' bus travel card swiping data, it is robust and universally applicable. The discovery of transfer modes within the city provides data support and reasonable suggestions for the optimization of public transportation routes and dynamic vehicle scheduling.

Description

一种基于交通OD数据的城市居民群体换乘模式发现系统及 方法A system for discovering transfer modes of urban residents based on traffic OD data and its method

技术领域technical field

本发明属于智能交通技术领域,提出一种基于交通OD数据的城市居民群体换乘模式发现系统及方法。The invention belongs to the technical field of intelligent transportation, and proposes a system and method for discovering transfer modes of urban resident groups based on traffic OD data.

背景技术Background technique

公共交通不仅是居民经济、绿色的出行方式,更是缓解城市拥堵的重要手段。据统计,60%的城市人口每天至少花费1小时在乘坐公共交通工具(多少人乘坐公交,多少人乘坐地铁)。然而,城市建设的不断发展导致城市功能区和兴趣点分布的动态改变,改变了城市客流分布规律,例如,新建的购物商场和商业区等都会激发新的出行需求。因此,如何提高居民公共出行效率,动态发现新的公共出行需求对交通服务者及城市规划都是非常重要的。Public transportation is not only an economical and green way of travel for residents, but also an important means of alleviating urban congestion. According to statistics, 60% of the urban population spends at least 1 hour a day on public transportation (how many people take the bus, how many people take the subway). However, the continuous development of urban construction has led to dynamic changes in the distribution of urban functional areas and points of interest, which has changed the distribution of urban passenger flow. For example, newly built shopping malls and commercial districts will stimulate new travel needs. Therefore, how to improve residents' public travel efficiency and dynamically discover new public travel needs is very important for transportation service providers and urban planning.

当前,市民出行选择的公共交通工具主要包括公交车、地铁以及公租自行车等。公交车和地铁是用户优先选择的经济便捷的出行方式,这类交通工具的优点是快捷、覆盖面广且省时省力;另一特点是从出发地到某个目的地经常需要通过换乘,公交与公交的换乘或者公交与地铁的换乘,这也成为了公共交通规划的难点所在。At present, public transport options for citizens to travel mainly include buses, subways, and public rental bicycles. Buses and subways are the economical and convenient modes of travel preferred by users. The advantages of this type of transportation are fast, wide coverage, and time-saving and labor-saving; another feature is that it is often necessary to transfer from the departure point to a destination. The transfer with the bus or the transfer between the bus and the subway has also become a difficult point in public transportation planning.

换乘是多模式交通出行的重要环节,以北京早高峰为例,1/5的人无法依靠单一旅程直接到达目的地,中间需要换乘。换乘使出行花费提高,步行距离以及出行时间增加,出行效率明显降低。调查研究,80%的居民在出行时选择直达方案,避免换乘,所以换乘作为衡量出行效率的关键因素是合理的。另外,通过换乘可以发现现有交通系统的不足之处,例如,当换乘客流超过一定阈值,并且该情况发生频率较高时,就可以发现公交规划的不合理,并进一步通过对出行路径的研究,可以提供设置公交直达线路的需求依据;当假节日或演唱会等特殊事件发生时,会涌现出非规律性的换乘需求,可以为动态车辆调度,缓解交通拥堵等提供数据支持。从换乘区域角度分析,还可以了解及掌握乘客的出行变化规律,并可以通过换乘点的记录,推算出行者的真实目的地。Transfer is an important part of multi-modal transportation. Taking the morning rush hour in Beijing as an example, one fifth of people cannot reach their destination directly by a single journey and need to transfer in the middle. Transfers increase travel costs, increase walking distance and travel time, and significantly reduce travel efficiency. According to research, 80% of the residents choose the direct plan when traveling and avoid transfers, so it is reasonable to use transfers as a key factor to measure travel efficiency. In addition, the deficiencies of the existing transportation system can be found through transfers. For example, when the transfer passenger flow exceeds a certain threshold and the frequency of this situation is relatively high, it can be found that the bus planning is unreasonable, and further through the travel route The research can provide the demand basis for setting up direct bus lines; when special events such as holidays or concerts occur, there will be irregular transfer needs, which can provide data support for dynamic vehicle scheduling and traffic congestion relief. From the perspective of the transfer area, it is also possible to understand and grasp the passenger's travel changes, and the real destination of the traveler can be calculated through the records of the transfer points.

然而乘客的换乘行为难以准确采集,调查问卷等传统方法具有区域局限性且代价昂贵,一卡通供城市居民乘坐主要交通工具,公交和地铁,隐含着公交、地铁换乘的重要信息,与GPS、手机相比,近似全样本、全时的描述居民公共出行特征,满足需求。本发明采用的数据基于AFCS的公交和地铁数据,涵盖了城市居民95%的公交换乘出行。However, it is difficult to accurately collect the transfer behavior of passengers. Traditional methods such as questionnaires have regional limitations and are expensive. One-cards are used for urban residents to take the main means of transportation, buses and subways, which imply important information about bus and subway transfers. Compared with cellphones and mobile phones, it describes residents' public travel characteristics in an approximate full-sample and full-time manner to meet the needs. The data used in the present invention is based on the bus and subway data of AFCS, covering 95% of the bus transfer trips of urban residents.

另外,城市公共交通中,对个体出行行为的研究对于城市交通政策制定以及管理都有较大的参考价值,如常用的出行方式、出行距离等。由于个体出行行为是个性化的,并且在一定程度上具有随机性,所以对个体出行行为的分析并不能体现城市整体出行特征。由于公共交通站点的规划,采用公共交通进行出行的居民往往会形成客流“群体”。这种“群体”代表着在某一段时间和空间下具有相似出行目的出行人群。由于群体具有共性,所以较大的出行群体能够体现出在出行群体中的个体出行不能体现的特征,如站台拥挤度的潮汐性变化以及城市客流时空密度变化等。因此在分析城市公共交通换乘模式时,有必要对群体换乘模式进行分析。In addition, in urban public transportation, the research on individual travel behavior has great reference value for the formulation and management of urban transportation policies, such as commonly used travel modes and travel distances. Since individual travel behavior is personalized and random to a certain extent, the analysis of individual travel behavior cannot reflect the overall travel characteristics of the city. Due to the planning of public transport stations, residents who use public transport to travel often form passenger flow "groups". This "group" represents a group of people with similar travel purposes in a certain period of time and space. Due to the commonality of groups, larger travel groups can reflect characteristics that cannot be reflected in individual trips in travel groups, such as tidal changes in platform congestion and changes in the spatial-temporal density of urban passenger flows. Therefore, when analyzing the urban public transport transfer mode, it is necessary to analyze the group transfer mode.

公交与公交换乘客流、地铁与公交换乘客流一直是出行特征研究的一个重点,对换乘站的研究在城市规划领域有着重要的意义。Bus-to-bus exchange passenger flow, subway-to-bus exchange passenger flow has always been a key point in the study of travel characteristics, and the study of transfer stations is of great significance in the field of urban planning.

由于乘客的换乘行为难以准确采集,公共交通网络实际运行的换乘次数难以得到,传统的换乘次数指标的评价往往是基于线网拓扑结构的网络分析,如邻接矩阵分析法、Floyd算法等,成为制约公交线网服务水平评价的主要障碍之一。有效的识别换乘是进行公共交通合理规划的关键。Since it is difficult to accurately collect passengers' transfer behaviors, and the actual number of transfers in the public transportation network is difficult to obtain, the evaluation of traditional transfer times indicators is often based on network analysis of the network topology, such as adjacency matrix analysis, Floyd algorithm, etc. , has become one of the main obstacles restricting the evaluation of the service level of the bus network. Effective identification of transfers is the key to reasonable planning of public transport.

国外对于基于一卡通数据的换乘有一些研究,通过利用乘客上车数据来得到公共交通的换乘信息并描述了一个迭代分类算法,这个算法把乘客上车数据分为两类:换乘出行和单次出行。换乘节点识别矩阵的分析,等待时间分布图和空间第一次和第二次站点分布图。这个算法可以为交通调度人员提供重要的信息:乘客上车,换乘和等待时间等相关信息。这些信息可以为他们进行交通规划和政策制定提供有力的数据支持。There are some foreign studies on the transfer based on the one-card data. By using the passenger boarding data to obtain the transfer information of public transportation and describe an iterative classification algorithm, this algorithm divides the passenger boarding data into two categories: transfer travel and single trip. Analysis of transfer node identification matrix, waiting time distribution map and spatial first and second station distribution map. This algorithm can provide traffic dispatchers with important information: passenger boarding, transfer and waiting time and other relevant information. This information can provide powerful data support for their transportation planning and policy formulation.

由于基础数据的限制,当前国内外对公共交通的换乘模式的研究较少,大多数研究集中在单一交通方式的内部换乘以及对大的换乘枢纽站的建设的改进,更少有对居民在综合公共交通之间的换乘行为进行建模与分析。Due to the limitation of basic data, there are few researches on the transfer mode of public transportation at home and abroad. Modeling and analysis of residents' transfer behavior between integrated public transportation.

发明内容Contents of the invention

本发明的技术解决问题:克服现有技术的不足,提供一种基于交通OD数据的城市居民群体换乘模式发现系统及方法,建立在大量的真实居民公交出行一卡通刷卡数据,具有鲁棒性和普遍适用性,解决了现有城市居民群体换乘需求问题,并为公共交通线路优化以及动态车辆调度提供了数据支撑。The technical problem of the present invention is to overcome the deficiencies of the prior art, and provide a system and method for discovering transfer modes of urban residents based on traffic OD data, which is based on a large number of real residents' bus travel card swiping data, which is robust and reliable. Universal applicability, solves the transfer demand problem of existing urban residents, and provides data support for public transportation route optimization and dynamic vehicle scheduling.

本发明技术解决方案:一种基于交通OD数据的城市居民群体换乘模式发现系统,包括以下几个模块:数据预处理模块、换乘轨迹识别模块、换乘热点区域发现模块、群体换乘模式挖掘模块。Technical solution of the present invention: a system for discovering transfer modes of urban residents based on traffic OD data, including the following modules: data preprocessing module, transfer track identification module, transfer hotspot area discovery module, group transfer mode Mining modules.

属于智能交通技术领域。换乘模式代表大客流量频繁发生的换乘轨迹的时空特征,体现了城市居民换乘需求。该模型包括数据预处理模块、换乘轨迹识别模块、换乘热点区域发现模块和群体换乘模式挖掘模块。数据预处理模块用于公交、地铁的一卡通刷卡数据处理得到OD数据;换乘轨迹识别模块从本模型的输入数据OD数据通过时间阈值和空间阈值判断个人连续出行OD数据是否为换乘,得到个人换乘轨迹数据;热点区域发现模块通过聚类算法,判断站点及其相邻站点客流聚集程度得到热点区域,在此基础上通过交通小区数据对热点区域进行二次合并与划分得到热点交通小区,即换乘热点区域;群体换乘模式挖掘模块通过聚合个人换乘轨迹得到群体换乘轨迹数据,定义群体换乘模式,交通数据本身具有高维特性,通过建立高维数据描述模型,并利用降维的方法挖掘出热点区域间的大客流量的群体换乘模式。本模型建立在大量的真实居民公交出行一卡通刷卡数据,模型具有鲁棒性和普遍适用性,城市范围内换乘模式的发现为公共交通线路优化以及动态车辆调度提供了数据支撑和合理建议。It belongs to the field of intelligent transportation technology. The transfer mode represents the spatio-temporal characteristics of transfer trajectories with frequent large passenger flows, and reflects the transfer needs of urban residents. The model includes a data preprocessing module, a transfer trajectory identification module, a transfer hotspot area discovery module and a group transfer pattern mining module. The data preprocessing module is used to process the card swiping data of buses and subways to obtain OD data; the transfer trajectory identification module judges whether the OD data of continuous travel of individuals is transfer from the input data OD data of this model through the time threshold and space threshold, and obtains personal Transfer trajectory data; the hotspot area discovery module judges the degree of passenger flow aggregation of the station and its adjacent stations through a clustering algorithm to obtain the hotspot area. On this basis, the hotspot area is merged and divided twice through the traffic area data to obtain the hot traffic area. That is, transfer hotspot areas; the group transfer mode mining module obtains group transfer trajectory data by aggregating individual transfer trajectories, and defines group transfer modes. The traffic data itself has high-dimensional characteristics. By establishing a high-dimensional data description model and using the reduced Dimensional method to mine out the group transfer mode of large passenger flow between hotspot areas. This model is based on a large number of real residents' bus card swiping data. The model is robust and universally applicable. The discovery of transfer modes within the city provides data support and reasonable suggestions for the optimization of public transportation lines and dynamic vehicle scheduling.

数据预处理模块:用于处理公交、地铁一卡通刷卡数据,以得到个人完整公交出行OD数据,作为后续换乘识别模块的基础输入数据;具体实现如下:Data preprocessing module: used to process bus and subway card swiping data to obtain personal complete bus travel OD data as the basic input data of the subsequent transfer identification module; the specific implementation is as follows:

输入数据为公交一卡通刷卡数据、地铁一卡通刷卡数据等多种数据源,首先提取有效字段、剔除异常数据,然后通过对上下车时间、位置及相关信息进行填补,并标记出行方式;最后经过按卡号合并及时间序列化等步骤,得到公交OD数据;The input data is bus card swiping data, subway card swiping data and other data sources. Firstly, valid fields are extracted, abnormal data are eliminated, and then the time of getting on and off the bus, location and related information are filled, and the travel mode is marked; finally, by card number Steps such as merging and time serialization to obtain bus OD data;

将不同数据源的OD数据按卡号合并,并按上车时间排序得到个人完整公交出行时空OD数据,主要包括上下车时间信息、上下车站点空间位置信息等。The OD data from different data sources are merged by card number, and sorted by boarding time to obtain personal complete bus travel spatio-temporal OD data, which mainly includes boarding and boarding time information, spatial location information of boarding and boarding stations, etc.

换乘轨迹识别模块:通过对于城市居民公交出行的时空OD数据,按照同一卡号提取,判断连续两条OD数据,设定换乘识别时间阈值Th和空间阈值Td,时间阈值判断连续两条OD数据前一次下车时间和后一次上车时间间隔是否小于Th,空间阈值判断连续两条OD数据前一次下车地点和后一次上车地点间距离是否小于Td,符合上述两个条件即判断为一次换乘轨迹,依次递推,可以判断出连续多次换乘轨迹。Transfer track recognition module: through the time-space OD data of urban residents’ bus travel, extract according to the same card number, judge two consecutive OD data, set the transfer recognition time threshold Th and space threshold Td, and time threshold judge two consecutive OD data Whether the time interval between the previous time of getting off the bus and the next time of getting on the bus is less than Th, the spatial threshold determines whether the distance between the previous time of getting off the bus and the next time of getting on the bus is less than Td, and if the above two conditions are met, it is judged as one time The transfer trajectories are deduced sequentially, and multiple transfer trajectories in a row can be judged.

换乘热点区域发现模块:定义站点客流密度,将站点客流作为密度和站点间平均距离作为半径通过密度聚类,以DBSACN方法为例实现,得到热点区域,并通过交通小区数据对热点区域进行二次合并与划分得到热点交通小区,划分方法:a.若聚类完的热点区域内的站点中某两个站点的距离(地表距离)大于阈值dis,则需要进行切分。b.若热点区域的站点一半以上都分布在某交通小区内,则将其划入此交通小区。重复上述步骤直到所有热点区域全部处理完,得到热点交通小区作为换乘热点区域。Transfer hotspot area discovery module: define the passenger flow density of the station, use the passenger flow at the station as the density and the average distance between stations as the radius through density clustering, take the DBSACN method as an example to obtain the hotspot area, and conduct secondary analysis on the hotspot area through the traffic area data Secondary merging and division to obtain hotspot traffic areas, division method: a. If the distance (surface distance) between two stations in the clustered hotspot area is greater than the threshold dis, segmentation is required. b. If more than half of the sites in the hotspot area are distributed in a certain traffic area, it will be included in this traffic area. Repeat the above steps until all the hotspot areas are processed, and the hotspot traffic area is obtained as the transfer hotspot area.

群体换乘模式挖掘模块:定义了群体换乘模式并用高维张量模型来表示群体换乘模式的多维时空特性。群体换乘模式定义如下:对于换乘轨迹RO→RT→RD出发热点区域为RO,经过热点换乘区域RT,到达热点区域为RD,群体换乘模式定义为一个n维向量:Group transfer mode mining module: defines the group transfer mode and uses a high-dimensional tensor model to represent the multi-dimensional spatio-temporal characteristics of the group transfer mode. The group transfer mode is defined as follows: for the transfer trajectory R O → R T → R D the departure hotspot area is R O , after passing through the hot transfer area R T , the arrival hotspot area is R D , the group transfer mode is defined as an n-dimensional vector:

每一个元素代表出发时间在第i个时间片,换乘轨迹为RO→RT→RD的客流量。each element Represents the passenger flow whose departure time is in the i-th time slice and the transfer trajectory is R O → R T → R D.

建立四维张量模型描述群体换乘模式时空特性,其中包括一维时间信息,三维空间信息,即出发、换乘、到达区域。张量的第(i,j,k,l)个元素的值等于针对交通数据的时空分布不平衡特性,将数据做log平滑处理,即 Build a 4D tensor model Describe the spatio-temporal characteristics of the group transfer mode, including one-dimensional time information and three-dimensional space information, that is, departure, transfer, and arrival areas. tensor The value of the (i,j,k,l)th element of is equal to In view of the unbalanced spatio-temporal distribution of traffic data, the data is log-smoothed, that is,

采用非负张量因式分解(以CP分解为例实现)将四阶张量X分解为有限的R个秩一张量X(r)之和,分解如下:Using non-negative tensor factorization (implemented by CP decomposition) to decompose the fourth-order tensor X into a finite sum of R rank tensors X (r) , the decomposition is as follows:

通过ALS算法得到最优投影矩阵。其中对分解后的单个秩一张量采用二阶段方法提取显著换乘模式:候选模式选择和候选模式排序,分别考虑到在每一个因式向量中的区域和λr的重要性。候选模式选择即将秩一张量的空间因式向量进行大小排序,引入阈值ω表示值下降幅度大小以及限制模式数量,利用公式选出显著候选区域Ri代表O区域,按同样方法获得显著T、D区域。候选模式排序即每个秩一张量经过候选模式选择选出O、T、D对应的显著区域,假设O选出了m1个区域,T选出了m2个区域,D选出了m3个区域,则共得到显著模式的个数为m1*m2*m3个。根据选出的群体换乘模式还原换乘模式群体人数,作进一步筛选,保证显著换乘模式的大客流特征。The optimal projection matrix is obtained by ALS algorithm. Among them, a two-stage method is used to extract the significant transfer mode for the decomposed single rank tensor: candidate mode selection and candidate mode ranking, considering the importance of the area and λ r in each factor vector, respectively. Candidate mode selection is to sort the spatial factor vectors of the rank tensor by size, introduce a threshold ω to indicate the magnitude of the value drop and limit the number of modes, using the formula Select the salient candidate region R i to represent the O region, and obtain the salient T and D regions in the same way. Candidate mode sorting means that each rank tensor selects significant regions corresponding to O, T, and D through candidate mode selection. Suppose O selects m 1 regions, T selects m 2 regions, and D selects m 3 regions, the total number of significant modes obtained is m 1 *m 2 *m 3 . According to the selected group transfer mode, the number of people in the transfer mode group is restored, and further screening is performed to ensure the large passenger flow characteristics of the significant transfer mode.

本发明与现有技术相比的优点在于:通过一卡通数据处理获得个人完整出行轨迹,以往的研究中往往忽略了换乘只针对OD进行分析;另外,提出了基于客流密度的聚类方法而不只是基于地理位置聚类,保证了热点区域发现的有效性;提出高维时空建模及张量分解方法挖掘显著换乘模式,代表换乘需求极大的群体及其换乘时空特征,为公共交通线路优化以及动态车辆调度提供了数据支撑和合理建议。Compared with the prior art, the present invention has the advantages of obtaining the complete personal travel trajectory through the one-card data processing, and the transfer is often ignored in previous studies and only analyzed for OD; in addition, a clustering method based on passenger flow density is proposed instead of Only based on geographical location clustering, the effectiveness of hotspot area discovery is guaranteed; high-dimensional spatio-temporal modeling and tensor decomposition methods are proposed to mine significant transfer modes, which represent groups with great transfer needs and their transfer spatio-temporal characteristics. Traffic route optimization and dynamic vehicle scheduling provide data support and reasonable suggestions.

附图说明Description of drawings

图1为本发明的整体流程图;Fig. 1 is the overall flowchart of the present invention;

图2为北京市热点区域分布图;Figure 2 is the distribution map of hot spots in Beijing;

图3为非负张量分解示意图;Figure 3 is a schematic diagram of non-negative tensor decomposition;

图4为显著换乘模式时空分布图。Figure 4 is the spatio-temporal distribution diagram of significant transfer modes.

具体实施方式detailed description

本发明提出的一种基于交通OD数据(“O”来源于英文ORIGIN,指出行的出发地点,“D”来源于英文DESTINATION,指出行的目的地)的城市居民群体换乘模式发现系统包括数据预处理模块、换乘轨迹识别模块、换乘热点区域发现模块和群体换乘模式挖掘模块。为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的各个模块作进一步的详细描述。The present invention proposes an urban residents group transfer mode discovery system based on traffic OD data ("O" comes from English ORIGIN, pointing out the starting point of the trip, and "D" comes from English DESTINATION, pointing out the destination of the trip) including data Preprocessing module, transfer trajectory identification module, transfer hotspot area discovery module and group transfer mode mining module. In order to make the object, technical solution and advantages of the present invention clearer, each module of the present invention will be further described in detail below in conjunction with the accompanying drawings.

如图1所示,本发明具体实现如下:As shown in Figure 1, the specific implementation of the present invention is as follows:

1.数据预处理模块1. Data preprocessing module

输入数据为公交一卡通刷卡数据、地铁一卡通刷卡数据等多种数据源,首先提取有效字段、剔除异常数据,然后通过对上下车时间、位置及相关信息进行填补,并标记出行方式;最后经过按卡号合并及时间序列化等步骤,得到公交OD数据;The input data is bus card swiping data, subway card swiping data and other data sources. Firstly, valid fields are extracted, abnormal data are eliminated, and then the time of getting on and off the bus, location and related information are filled, and the travel mode is marked; finally, by card number Steps such as merging and time serialization to obtain bus OD data;

将不同数据源的OD数据按卡号合并,并按上车时间排序得到个人完整公交出行时空OD数据,主要包括上下车时间信息、上下车站点空间位置信息等。The OD data from different data sources are merged by card number, and sorted by boarding time to obtain personal complete bus travel spatio-temporal OD data, which mainly includes boarding and boarding time information, spatial location information of boarding and boarding stations, etc.

2.换乘轨迹识别模块2. Transfer trajectory recognition module

所涉及的定义:The definitions involved:

(1)个人转移(1) Personal Transfer

个人转移Tr是指一个旅客在时间hO出发于站点SO,在时间hD到达站点SD,形成一个OD记录:Tr={SO,hO,SD,hD}(hO<hD)。Personal transfer T r means that a passenger departs from station S O at time h O and arrives at station S D at time h D , forming an OD record: T r = {S O , h O , S D , h D }(h O < hD ).

(2)个人轨迹(2) Personal trajectory

个人轨迹TR是个人转移在一天内的集合:每一个Tr都是具有时序的。An individual trajectory TR is a collection of individual transfers over a day: Each T r has timing.

(3)换乘轨迹(3) Transfer trajectory

如果一个人的某一段轨迹包含两个相邻的转移,If a certain trajectory of a person contains two adjacent transitions,

with

即前一次下车时间和后一次上车时间间隔小于Th,Th=30min,前一次下车地点和后一次上车地点间距离是否小于Td,Td=1km,符合上述两个条件即判断为一次换乘轨迹。That is, if the time interval between the previous alighting time and the next boarding time is less than Th, Th=30min, whether the distance between the previous alighting point and the next boarding point is less than Td, Td=1km, if the above two conditions are met, it is judged as one trip Change track.

3.换乘热点区域发现模块3. Discovery module of transfer hotspot area

所涉及的定义:The definitions involved:

(1)客流聚集密度(1) Passenger flow density

定义站点Sx,以其为中心,半径为r的单位密度聚类区域K指落在该区域的站点总数,若该区域只有一个站点Sx,则Ax=Sx,K=1。Sx站点客流向量其中t为时间切片数,是该站点在第i个时间分片下的站点客流强度。扫描区域Ax内的所有站点,定义是区域Ax内在第i个时间分片下的客流密度,此时区域Ax的客流密度 Define the site S x , take it as the center, and a unit density clustering area with a radius of r K refers to the total number of stations falling in this area, if there is only one station S x in this area, then A x =S x , K=1. S x site traffic vector where t is the number of time slices, is the site passenger flow intensity of the site in the i-th time slice. To scan all stations within the area A x , define is the passenger flow density in the area A x in the i-th time slice, and the passenger flow density in the area A x at this time

如果满足即单位时间片的区域聚集强度阈值则在该维度上将区域Ax作为备选热点区域Hx,否则将站点Sx标记为离群点。取区域Ax中的其他任意站点Sy生成的新区域Ay同样按照上述方法计算区域Ay中的如果在任意一个维度有则将Ay所包含站点添加到Hx中,有Hx=Hy=Hx∪Hy,否则标记Sy为离群站点。如此迭代直至所有站点均被处理,最终获得构成热点区域的集合Hx={Sk}。if Satisfy That is, the regional aggregation intensity threshold per unit time slice In this dimension, the area A x is taken as a candidate hotspot area H x , otherwise, the site S x is marked as an outlier. Take the new area A y generated by any other station S y in the area A x and calculate the area A y in the same way as above If in any dimension there is Then add the sites contained in A y to H x , H x =H y =H x ∪H y , otherwise mark S y as an outlier site. Iterate in this way until all stations are processed, and finally obtain the set H x ={S k } constituting the hotspot area.

通过交通小区数据对热点区域进行二次合并与划分得到热点交通小区,划分方法:a.若聚类完的热点区域内的站点中某两个站点的距离(地表距离)大于阈值1km,则需要进行切分。b.若热点区域的站点一半以上都分布在某交通小区内,则将其划入此交通小区。重复上述步骤直到所有热点区域全部处理完,得到热点交通小区作为换乘热点区域,如图2所示。Carry out secondary merging and division of the hotspot area through the traffic area data to obtain the hotspot traffic area. The division method: a. If the distance (surface distance) between two stations in the clustered hotspot area is greater than the threshold 1km, then need to split. b. If more than half of the sites in the hotspot area are distributed in a certain traffic area, it will be included in this traffic area. Repeat the above steps until all the hotspot areas are processed, and the hot traffic area is obtained as the transfer hotspot area, as shown in Figure 2.

4.群体换乘模式挖掘模块4. Group transfer mode mining module

所涉及的定义:The definitions involved:

(1)群体换乘模式(1) Group transfer mode

对于换乘轨迹RO→RT→RD出发热点区域为RO,经过热点换乘区域RT,到达热点区域为RD,群体换乘模式定义为一个n维向量每一个元素代表出发时间在第i个时间片,换乘轨迹为RO→RT→RD的客流量。For the transfer trajectory R O → R T → R D , the departure hotspot area is R O , passes through the hotspot transfer area R T , and arrives at the hotspot area R D , the group transfer mode is defined as an n-dimensional vector each element Represents the passenger flow whose departure time is in the i-th time slice and the transfer trajectory is R O → R T → R D.

(2)显著群体换乘模式(2) Significant group transfer mode

若在某一时间片内若群体换乘模式是显著的,则其客流值在所有模式中占主导地位。If the group transfer mode is significant in a certain time slice, its passenger flow value is dominant among all modes.

建立四维张量模型描述群体换乘模式时空特性,其中包括一维时间信息,三维空间信息,即出发、换乘、到达区域。张量的第(i,j,k,l)个元素的值等于针对交通数据的时空分布不平衡特性,将数据做log平滑处理,即 Build a 4D tensor model Describe the spatio-temporal characteristics of the group transfer mode, including one-dimensional time information and three-dimensional space information, that is, departure, transfer, and arrival areas. tensor The value of the (i,j,k,l)th element of is equal to In view of the unbalanced spatio-temporal distribution of traffic data, log smoothing is performed on the data, that is,

采用非负张量因式分解(CP分解)将四阶张量X分解为有限的R个秩一张量X(r)之和,分解如下:如图3所示,每个维度的投影矩阵O、T、D、H由秩一张量的向量组合而成,O=[o1o2...oR],同样方法得到T、D、H。Using non-negative tensor factorization (CP decomposition) to decompose the fourth-order tensor X into a finite sum of R rank tensors X (r) , the decomposition is as follows: As shown in Figure 3, the projection matrices O, T, D, and H of each dimension are composed of vectors of rank tensors, O=[o 1 o 2 ...o R ], and T, D are obtained by the same method , H.

每个X(r)带有权重,向量λ(λ123,...,λR)代表了每一个分解后X(r)的权重向量。分解元素化表示为 Each X (r) has a weight, and the vector λ(λ 123 ,...,λ R ) represents the weight vector of each decomposed X (r) . The decomposed elementalization is expressed as

秩一张量表示为X(r)=λr or οtr οdr οhr。通过ALS算法求解公式:The rank tensor is expressed as X (r) = λ r o r οt r οd r οh r . Solve the formula by ALS algorithm:

添加非负约束O≥0,T≥0,D≥0,H≥0,对于张量其中Frobenius范数为得到由最优投影矩阵组成的秩一张量。 Add non-negative constraints O≥0, T≥0, D≥0, H≥0, for tensors where the Frobenius norm is Get a rank tensor consisting of the optimal projection matrix.

其中对分解后的每个秩一张量采用二阶段方法提取显著换乘模式P′:候选模式选择和候选模式排序,分别考虑到在每一个因式向量中的区域和λr的重要性。Among them, a two-stage method is used to extract the significant transfer pattern P' for each rank tensor after decomposition: candidate pattern selection and candidate pattern sorting, respectively considering the importance of the area and λ r in each factor vector.

将秩一张量的空间因式向量进行大小排序,引入阈值ω表示值下降幅度大小以及限制模式数量,利用公式:Sort the spatial factor vectors of the rank tensor by size, introduce the threshold ω to indicate the magnitude of the value drop and limit the number of modes, using the formula:

选出显著候选区域Ri代表O区域,同理获得显著T、D区域。Select the salient candidate region R i to represent the O region, and obtain the salient T and D regions in the same way.

经过上述步骤选出O、T、D对应的显著区域,假设O选出了m1个区域,T选出了m2个区域,D选出了m3个区域,则共得到显著模式的个数为m1*m2*m3个。根据选出的群体换乘模式还原群体换乘人数,After the above steps, the significant regions corresponding to O, T, and D are selected, assuming that O selects m1 regions, T selects m2 regions, and D selects m3 regions, then the total number of significant patterns obtained is m1 *m2*m3 pieces. Restore the number of group transfers according to the selected group transfer mode,

筛选出客流大的显著换乘模式集合为:The set of significant transfer modes with large passenger flow is filtered out as follows:

P′=P′1∪P′2∪...P′r P′=P′ 1 ∪P′ 2 ∪...P′ r

其时空特性举例如图4所示,时间分布可以看出是早高峰特征,空间分布表示此群体模式由编号为R50和R20的区域出发经过R2区域换乘最终到达R4区域,两条换乘路径对应的群体人数分别为300和240人。An example of its spatio-temporal characteristics is shown in Figure 4. The time distribution can be seen to be the characteristics of the morning peak, and the spatial distribution shows that this group pattern starts from the areas numbered R 50 and R 20 , transfers to the R 2 area, and finally arrives at the R 4 area. The groups corresponding to each transfer route are 300 and 240 people respectively.

至此,完成了基于交通OD数据的城市居民群体换乘模式发现系统的构建及方法的实现。So far, the construction and implementation of the method for discovering the transfer mode of urban residents based on traffic OD data has been completed.

Claims (10)

1.一种基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:包括数据预处理模块、换乘轨迹识别模块、换乘热点区域发现模块、群体换乘模式挖掘模块;1. A system for discovering transfer patterns of urban residents based on traffic OD data, characterized in that: it includes a data preprocessing module, a transfer trajectory identification module, a transfer hotspot area discovery module, and a group transfer pattern mining module; 数据预处理模块:用于处理公交、地铁一卡通刷卡数据,以得到城市居民公交出行的OD数据,作为换乘轨迹识别模块的基础输入数据;Data preprocessing module: used to process bus and subway card swiping data to obtain OD data of urban residents' bus travel, which is used as the basic input data of the transfer track identification module; 换乘轨迹识别模块:基于城市居民公交出行的OD数据,按照时间阈值参数和空间阈值参数获得城市居民出行的换乘轨迹数据;Transfer trajectory identification module: Based on the OD data of urban residents' bus travel, the transfer trajectory data of urban residents' travel is obtained according to the time threshold parameters and space threshold parameters; 换乘热点区域发现模块:定义站点客流密度,以站点客流作为密度,以站点间平均距离作为半径,通过密度聚类,得到热点区域,并通过交通小区数据对热点区域进行二次合并与划分得到热点交通小区;Transfer hotspot area discovery module: define the station passenger flow density, take the station passenger flow as the density, take the average distance between stations as the radius, obtain the hotspot area through density clustering, and use the traffic area data to merge and divide the hotspot area twice to obtain Hot traffic area; 群体换乘模式挖掘模块:根据换乘轨迹识别模块获得城市居民出行的换乘轨迹数据和换乘热点区域发现模块获得的热点交通小区,得到群体换乘轨迹数据,定义群体换乘模式,交通数据本身具有高维特性,建立高维张量模型,并利用降维分解方法挖掘出热点区域间的大客流量的群体换乘模式。Group transfer mode mining module: According to the transfer trajectory identification module to obtain the transfer trajectory data of urban residents and the hot traffic districts obtained by the transfer hotspot area discovery module, obtain group transfer trajectory data, define group transfer mode, and traffic data It has high-dimensional characteristics, establishes a high-dimensional tensor model, and uses the dimensionality reduction decomposition method to dig out the group transfer mode of large passenger flow between hotspot areas. 2.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述数据预处理模块具体实现如下:2. the urban resident group transfer pattern discovery system based on traffic OD data according to claim 1, is characterized in that: described data preprocessing module is concretely realized as follows: 输入数据为公交一卡通刷卡数据、地铁一卡通刷卡数据多种数据源,首先提取有效字段、剔除异常数据,然后通过对上下车时间、位置进行填补,并标记出行方式;最后经过按卡号合并及时间序列化步骤,得到个人OD数据;将不同数据源的OD数据按卡号合并,并按上车时间排序得到个人完整出行时空OD数据,主要包括上下车时间信息、上下车站点空间位置信息。The input data is bus card swiping data and subway card swiping data from multiple data sources. Firstly, valid fields are extracted, abnormal data are eliminated, and then the time and location of getting on and off the bus are filled, and the travel mode is marked; finally, the card number is merged and time series The personal OD data is obtained through the steps of simplification; the OD data from different data sources are combined by card number, and sorted by the boarding time to obtain the complete personal travel time and space OD data, which mainly includes the time information of boarding and boarding, and the spatial location information of boarding and boarding stations. 3.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述换乘轨迹识别模块实现为:基于城市居民公交出行的OD数据,按照同一卡号提取,判断连续两条OD数据,设定换乘识别时间阈值Th和空间阈值Td,时间阈值判断连续两条OD数据前一次下车时间和后一次上车时间间隔是否小于Th,空间阈值判断连续两条OD数据前一次下车地点和后一次上车地点间距离是否小于Td,符合上述两个条件即判断为一次换乘轨迹,依次递推,判断出连续多次换乘轨迹,即城市居民出行的换乘轨迹数据。3. The urban resident group transfer mode discovery system based on traffic OD data according to claim 1, characterized in that: the transfer trajectory identification module is implemented as: based on the OD data of urban resident bus travel, extracting according to the same card number , to determine two consecutive OD data, set the transfer recognition time threshold Th and space threshold Td, the time threshold judges whether the time interval between the previous alighting time and the next boarding time of two consecutive OD data is less than Th, and the spatial threshold judges whether two consecutive OD data Whether the distance between the previous alighting point and the next boarding point of the OD data is less than Td, if the above two conditions are met, it is judged as a transfer trajectory, and it is recursively deduced in turn to determine the continuous multiple transfer trajectories, that is, the travel of urban residents transfer trajectory data. 4.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述换乘热点区域发现模块中划分热点交通小区的方法为:a.若聚类完的热点区域内的站点中某两个站点的距离大于阈值dis,则需要进行切分;b.若热点区域的站点一半以上都分布在某交通小区内,则将其划入此交通小区;重复上述步骤直到所有热点区域全部处理完,得到热点交通小区作为换乘热点区域。4. the urban resident group transfer mode discovery system based on traffic OD data according to claim 1, is characterized in that: the method for dividing hot spot traffic sub-district in the described transfer hotspot area discovery module is: a. if clustering is complete If the distance between two stations in the hotspot area is greater than the threshold dis, it needs to be divided; b. If more than half of the stations in the hotspot area are distributed in a certain traffic area, it will be classified into this traffic area; repeat The above steps are performed until all the hotspot areas are processed, and the hot traffic area is obtained as the transfer hotspot area. 5.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述群体换乘模式挖掘模块中的定义的群体换乘模式如下:对于换乘轨迹RO→RT→RD出发热点区域为RO,经过换乘热点区域RT,到达热点区域为RD,群体换乘模式定义为一个n维向量:5. the urban resident group transfer pattern discovery system based on traffic OD data according to claim 1, is characterized in that: the defined group transfer pattern in the described group transfer pattern mining module is as follows: for transfer track R O → R T → R D The departure hotspot area is R O , after passing through the transfer hotspot area R T , the arrival hotspot area is R D , and the group transfer mode is defined as an n-dimensional vector: <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>(</mo> <mrow> <msubsup> <mi>v</mi> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> </mrow> </msubsup> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msubsup> <mi>v</mi> <mi>n</mi> <mrow> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> </mrow> </msubsup> </mrow> <mo>)</mo> <mo>,</mo> </mrow> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>(</mo> <mrow> <msubsup> <mi>v</mi> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> </mrow> </msubsup> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msubsup> <mi>v</mi> <mi>n</mi> <mrow> <msub> <mi>R</mi> <mi>O</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&amp;RightArrow;</mo> <msub> <mi>R</mi> <mi>D</mi> </msub> </mrow> </msubsup> </mrow> <mo>)</mo> <mo>,</mo> </mrow> 每一个元素代表出发时间在第i个时间片,换乘轨迹为RO→RT→RD的客流量。each element Represents the passenger flow whose departure time is in the i-th time slice and the transfer trajectory is R O → R T → R D. 6.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述群体换乘模式挖掘模块中建立的高维张量模型为:6. The urban resident group transfer pattern discovery system based on traffic OD data according to claim 1, characterized in that: the high-dimensional tensor model set up in the group transfer pattern mining module is: 其中,I(i)表示第i个维度的元素个数,N表示最大维度,高维张量模型X包含时空信息,时间信息和空间信息分别是多维的,时间维度以小时、天、星期为单位,空间维度包括出发地和到达地,考虑换乘则包括换乘地三个信息。Among them, I (i) represents the number of elements in the i-th dimension, and N represents the largest dimension. The high-dimensional tensor model X contains spatio-temporal information. The unit, the spatial dimension includes the place of departure and the place of arrival, and the three information of the place of transfer is included when transfer is considered. 7.根据权利要求6所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述模型小于等于四维。7. The system for discovering transfer modes of urban residents based on traffic OD data according to claim 6, characterized in that: said model is less than or equal to four dimensions. 8.根据权利要求1或6所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:针对交通数据的时空分布不平衡特性,将高维张量模型数据作平滑处理。8. The system for discovering transfer modes of urban residents based on traffic OD data according to claim 1 or 6, characterized in that: aiming at the unbalanced spatio-temporal distribution of traffic data, the high-dimensional tensor model data is smoothed. 9.根据权利要求1所述的基于交通OD数据的城市居民群体换乘模式发现系统,其特征在于:所述利用降维分解的方法获得大客流的显著群体换乘模式的过程为:9. The urban resident group transfer mode discovery system based on traffic OD data according to claim 1, characterized in that: the process of obtaining the significant group transfer mode of large passenger flow by the method of dimension reduction and decomposition is: (1)采用非负张量因式分解将高阶张量X分解为带权重λr的有限的R个秩一张量X(r)之和,R是一个正整数,每一个秩一张量隐含着独立于其它模式的显著换乘模式,分解如下:(1) Use non-negative tensor factorization to decompose the high-order tensor X into a finite sum of R rank tensors X (r) with weight λ r , R is a positive integer, and each rank tensor implicitly Contains significant transfer modes independent of other modes, broken down as follows: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>X</mi> <mo>&amp;ap;</mo> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>;</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&amp;equiv;</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;equiv;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </munderover> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>&amp;times;</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>&amp;times;</mo> <mn>...</mn> <mo>&amp;times;</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>X</mi> <mo>&amp;ap;</mo> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>;</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>A</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&amp;equiv;</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;equiv;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </munderover> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>&amp;times;</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>&amp;times;</mo> <mn>...</mn> <mo>&amp;times;</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> 其中,向量通过ALS算法找到最优投影矩阵A(r)Among them, the vector Find optimal projection matrix A (r) by ALS algorithm; (2)对分解后的单个秩一张量X(r)采用二阶段方法提取显著换乘模式:候选模式选择和候选模式排序,分别考虑到在每一个因式向量中的区域Ri和权重λr的重要性;候选模式选择即将秩一张量的空间因式向量进行大小排序,引入阈值ω表示值下降幅度大小以及限制模式数量,利用公式选出显著候选区域Ri代表O区域,按同样方法获得显著T、D区域,T代表换乘;候选模式排序即每个秩一张量经过候选模式选择选出O、T、D对应的显著区域,假设O选出了m1个区域,T选出了m2个区域,D选出了m3个区域,则共得到显著模式的个数为m1*m2*m3个,根据选出的群体换乘模式还原换乘模式群体人数,作进一步筛选,保证显著换乘模式的大客流特征。(2) For the decomposed single rank tensor X (r), a two-stage method is used to extract significant transfer modes: candidate mode selection and candidate mode ranking, respectively considering the region R i and weight in each factor vector The importance of λ r ; candidate mode selection is about the spatial factor vector of the rank tensor Sorting by size, introducing the threshold ω to indicate the magnitude of the value drop and limiting the number of modes, using the formula Select the salient candidate region R i to represent the O region, and obtain the salient T and D regions in the same way, and T represents the transfer; the candidate mode sorting means that each rank tensor selects the salient points corresponding to O, T and D through candidate mode selection. region, assuming that O selects m 1 regions, T selects m 2 regions, and D selects m 3 regions, then the total number of significant patterns obtained is m 1 *m 2 *m 3 , according to The selected group transfer mode restores the number of groups in the transfer mode for further screening to ensure the large passenger flow characteristics of the significant transfer mode. 10.一种基于交通OD数据的城市居民群体换乘模式发现方法,其特征在于:实现步骤如下:10. A method for discovering transfer patterns of urban residents based on traffic OD data, characterized in that: the implementation steps are as follows: (1)对于一卡通刷卡数据,通过有效字段提取、异常数据清洗、上车时间填补、站点基础信息填补、按卡号和上车时间排序步骤获得城市居民公交出行的OD数据;(1) For the one-card swiping data, the OD data of urban residents' bus travel are obtained through the steps of effective field extraction, abnormal data cleaning, boarding time filling, station basic information filling, and sorting by card number and boarding time; (2)基于城市居民出行OD数据进行换乘轨迹识别,按照时间阈值参数和空间阈值参数获得换乘轨迹数据;(2) Carry out transfer trajectory identification based on urban resident travel OD data, and obtain transfer trajectory data according to time threshold parameters and space threshold parameters; (3)定义站点客流密度,以站点客流作为密度,以站点间平均距离作为半径,通过密度聚类,得到热点区域,并通过交通小区数据对热点区域进行二次合并与划分得到热点交通小区;(3) Define the passenger flow density of the station, take the passenger flow at the station as the density, take the average distance between the stations as the radius, obtain the hotspot area through density clustering, and use the traffic area data to merge and divide the hotspot area twice to obtain the hot traffic area; (4)根据步骤(1)得到的城市居民出行的换乘轨迹数据和步骤(2)获得的热点交通小区,得到基于区域间的具有相同换乘轨迹的群体,由此给出群体换乘模式定义,并建立高维张量模型描述换乘模式的时空特性;(4) According to the transfer trajectory data of urban residents travel obtained in step (1) and the hot traffic area obtained in step (2), the group with the same transfer trajectory based on the region is obtained, and the group transfer mode is given Define and establish a high-dimensional tensor model to describe the spatio-temporal characteristics of the transfer mode; (5)基于步骤(4)的高维张量模型,并利用降维分解方法获得大客流显著群体换乘模式。(5) Based on the high-dimensional tensor model of step (4), and using the dimensionality reduction decomposition method to obtain the significant group transfer mode of large passenger flow.
CN201510746766.9A 2015-11-05 2015-11-05 A system and method for discovering transfer modes of urban resident groups based on traffic OD data Active CN105206048B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510746766.9A CN105206048B (en) 2015-11-05 2015-11-05 A system and method for discovering transfer modes of urban resident groups based on traffic OD data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510746766.9A CN105206048B (en) 2015-11-05 2015-11-05 A system and method for discovering transfer modes of urban resident groups based on traffic OD data

Publications (2)

Publication Number Publication Date
CN105206048A CN105206048A (en) 2015-12-30
CN105206048B true CN105206048B (en) 2017-09-19

Family

ID=54953690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510746766.9A Active CN105206048B (en) 2015-11-05 2015-11-05 A system and method for discovering transfer modes of urban resident groups based on traffic OD data

Country Status (1)

Country Link
CN (1) CN105206048B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454729A (en) * 2016-10-09 2017-02-22 广州杰赛科技股份有限公司 Station planning method and device for urban rail transit
CN107341956A (en) * 2016-11-15 2017-11-10 中兴软创科技股份有限公司 A kind of bus trip time extracting method and system based on traffic zone
CN106874432B (en) * 2017-01-24 2019-08-20 华南理工大学 A method for extracting time-space trajectories of public transport passengers
CN106919953B (en) * 2017-02-23 2021-03-16 北京工业大学 An abnormal travel group identification method based on rail transit data analysis
CN107067356A (en) * 2017-03-29 2017-08-18 太仓鸿策腾达网络科技有限公司 A kind of city bus changes to management system
CN106951999A (en) * 2017-03-29 2017-07-14 北京航空航天大学 A Modeling and Analysis Method for Joint Selection of Transportation Mode and Departure Time
CN106875686B (en) * 2017-04-16 2020-05-08 北京工业大学 A car OD extraction method based on signaling and floating car data
CN107656987B (en) * 2017-09-13 2020-07-14 大连理工大学 A function mining method of subway station based on LDA model
CN107622467B (en) * 2017-10-09 2020-12-22 北京航空航天大学 A commuter travel mode extraction method and device
CN107845026B (en) * 2017-11-20 2021-09-14 四川闪充新能科技股份有限公司 Mobile batch zero-outlet vehicle renting, selling, transporting and managing system and method
CN107729938B (en) * 2017-12-11 2020-06-09 北方工业大学 Rail station classification method based on bus connection radiation zone characteristics
CN109978215B (en) * 2017-12-28 2021-09-14 杭州橙鹰数据技术有限公司 Patrol management method and device
CN108492608A (en) * 2018-03-12 2018-09-04 北京航空航天大学 A kind of analysis method and system of the bus passenger flow volume based on cloud model
CN109508750A (en) * 2018-12-03 2019-03-22 斑马网络技术有限公司 The clustering method of user origin and destination, device and storage medium
CN109684604B (en) * 2018-12-06 2020-06-30 北京航空航天大学 An urban dynamic analysis method based on context-aware non-negative tensor decomposition
CN109871874A (en) * 2019-01-21 2019-06-11 华南理工大学 Subway transfer bus behavior identification method, system, computer equipment and storage medium
CN109905289B (en) * 2019-01-23 2019-12-06 中国人民解放军32801部队 network service credible attribute dynamic prediction method
CN109785610A (en) * 2019-01-24 2019-05-21 桂林远望智能通信科技有限公司 A kind of intelligent bus management method and system based on big data
CN110111578B (en) * 2019-05-25 2021-06-01 东南大学 A sporadic traffic jam detection method based on tensor recovery
CN110428614B (en) * 2019-07-11 2021-02-05 银江股份有限公司 Traffic jam heat degree space-time prediction method based on non-negative tensor decomposition
CN110909037B (en) * 2019-10-09 2024-02-13 中国人民解放军战略支援部队信息工程大学 A method and device for mining frequent trajectory patterns
CN111366160B (en) * 2020-05-25 2020-10-27 深圳市城市交通规划设计研究中心股份有限公司 Path planning method, path planning device and terminal equipment
CN112508425B (en) * 2020-12-14 2024-03-15 东南大学 A method for constructing an urban travel user portrait system for flexible public transportation systems
CN113160560B (en) * 2021-03-29 2022-06-17 东南大学 Multi-mode transfer matrix measuring and calculating method based on nest type-cross nest type
CN113780674A (en) * 2021-09-23 2021-12-10 北京交研智慧科技有限公司 Method and device for researching travel path and readable storage medium
CN115861014A (en) * 2022-11-03 2023-03-28 北京红山信息科技研究院有限公司 Urban resident group transfer mode discovery system based on traffic OD data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847322B (en) * 2010-05-21 2011-12-14 中国科学院地理科学与资源研究所 Method for confirming bus transfer lines
EP2637148B1 (en) * 2012-03-08 2022-06-01 LTG Rastatt GmbH Transportation system arrival and departure time calculation and display system
CN103136933B (en) * 2013-01-14 2015-07-01 东南大学 Transferring coordination control method of conventional buses and subway stations

Also Published As

Publication number Publication date
CN105206048A (en) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105206048B (en) A system and method for discovering transfer modes of urban resident groups based on traffic OD data
Liu et al. Exploring urban rail transit station-level ridership growth with network expansion
CN105206046B (en) The addressing of tax services station and feasibility assessment method based on big data
CN110298500A (en) A kind of urban transportation track data set creation method based on taxi car data and city road network
CN104809112B (en) A kind of city bus development level integrated evaluating method based on multi-source data
CN108053062A (en) A kind of customization public bus network generation method based on multi-source data
CN100547625C (en) A typical driving route analysis method in urban traffic
CN109614458B (en) Method and Device for Mining Urban Community Structure Based on Navigation Data
CN102521965B (en) Effect evaluation method of traffic demand management measures based on identification data of license plates
CN107656987B (en) A function mining method of subway station based on LDA model
CN110555544B (en) A Traffic Demand Estimation Method Based on GPS Navigation Data
CN103198104A (en) Bus station origin-destination (OD) obtaining method based on urban advanced public transportation system
CN115062873B (en) Traffic travel mode prediction method and device, storage medium and electronic device
CN109949574A (en) A data-driven multi-level division method of urban road network traffic cells
CN105258704A (en) Multi-scale space-time hot point path detection method based on rapid road network modeling
CN105427001A (en) Optimal route of school bus of regional middle and primary school
Liu et al. Understanding the route choice behaviour of metro-bikeshare users
CN111507879A (en) A method for identifying urban spatial structure
CN116504050B (en) Special event city partitioning method based on multi-mode public transport trip data
Fidanoglu et al. Integrating shared autonomous vehicles in Last-Mile public transportation
CN111460598A (en) Bus trunk line network generation method based on machine learning
Du et al. Transit pattern detection using tensor factorization
Cui et al. Usage demand forecast and quantity recommendation for urban shared bicycles
CN106157657A (en) Motion state recognition system and method for mobile user
CN116933958A (en) Subway transfer station transfer passenger flow estimation method based on card swiping data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载