CN104711260B - Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress - Google Patents
Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress Download PDFInfo
- Publication number
- CN104711260B CN104711260B CN201310684154.2A CN201310684154A CN104711260B CN 104711260 B CN104711260 B CN 104711260B CN 201310684154 A CN201310684154 A CN 201310684154A CN 104711260 B CN104711260 B CN 104711260B
- Authority
- CN
- China
- Prior art keywords
- promoter
- nitrogen
- rice
- expression
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 172
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 86
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 59
- 235000009566 rice Nutrition 0.000 title claims abstract description 59
- 230000014509 gene expression Effects 0.000 title claims abstract description 54
- 240000007594 Oryza sativa Species 0.000 title claims description 56
- 230000001939 inductive effect Effects 0.000 claims abstract description 6
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 abstract description 40
- 230000007812 deficiency Effects 0.000 abstract description 33
- 241000196324 Embryophyta Species 0.000 abstract description 28
- 239000013598 vector Substances 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 13
- 239000012634 fragment Substances 0.000 abstract description 10
- 101150054900 gus gene Proteins 0.000 abstract description 10
- 230000006698 induction Effects 0.000 abstract description 10
- 238000010353 genetic engineering Methods 0.000 abstract description 8
- 230000004927 fusion Effects 0.000 abstract description 7
- 238000011144 upstream manufacturing Methods 0.000 abstract description 7
- 238000012795 verification Methods 0.000 abstract description 7
- 230000033228 biological regulation Effects 0.000 abstract description 4
- 238000012775 microarray technology Methods 0.000 abstract description 2
- 241000209094 Oryza Species 0.000 abstract 4
- 238000011084 recovery Methods 0.000 abstract 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 39
- 239000002609 medium Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000012153 distilled water Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 21
- 241000589158 Agrobacterium Species 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 230000009466 transformation Effects 0.000 description 15
- 239000011550 stock solution Substances 0.000 description 14
- 230000009261 transgenic effect Effects 0.000 description 13
- 206010020649 Hyperkeratosis Diseases 0.000 description 12
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 9
- 229960003669 carbenicillin Drugs 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000004069 differentiation Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- 239000003617 indole-3-acetic acid Substances 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 239000010413 mother solution Substances 0.000 description 6
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 4
- 235000021186 dishes Nutrition 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000011573 trace mineral Substances 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 4
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229940027138 cambia Drugs 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000000618 nitrogen fertilizer Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 2
- 240000008467 Oryza sativa Japonica Group Species 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000012881 co-culture medium Substances 0.000 description 2
- 230000000408 embryogenic effect Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 2
- 229960001669 kinetin Drugs 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 239000006870 ms-medium Substances 0.000 description 2
- 239000003375 plant hormone Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000012882 rooting medium Substances 0.000 description 2
- 239000012879 subculture medium Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HXKWSTRRCHTUEC-UHFFFAOYSA-N 2,4-Dichlorophenoxyaceticacid Chemical compound OC(=O)C(Cl)OC1=CC=C(Cl)C=C1 HXKWSTRRCHTUEC-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-DOMIDYPGSA-N 2-(2,4-dichlorophenoxy)acetic acid Chemical compound OC(=O)[14CH2]OC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-DOMIDYPGSA-N 0.000 description 1
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical compound [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- 239000005972 6-Benzyladenine Substances 0.000 description 1
- 101710197633 Actin-1 Proteins 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102100039338 Aminomethyltransferase, mitochondrial Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 108050001492 Ammonium transporters Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 101150092880 DREB1A gene Proteins 0.000 description 1
- 108010005054 Deoxyribonuclease BamHI Proteins 0.000 description 1
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 1
- 101900109689 Escherichia coli Glutamine synthetase Proteins 0.000 description 1
- 108020000311 Glutamate Synthase Proteins 0.000 description 1
- 101001015612 Halomonas elongata (strain ATCC 33173 / DSM 2581 / NBRC 15536 / NCIMB 2198 / 1H9) Glutamate synthase [NADPH] large chain Proteins 0.000 description 1
- 101001040070 Halomonas elongata (strain ATCC 33173 / DSM 2581 / NBRC 15536 / NCIMB 2198 / 1H9) Glutamate synthase [NADPH] small chain Proteins 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 108090000836 Nitrate Transporters Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000002582 Oryza sativa Indica Group Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 101000888131 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Glutamate synthase [NADH] Proteins 0.000 description 1
- 101100043638 Solanum tuberosum SS3 gene Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- -1 glutamate amine Chemical class 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 108010064177 glutamine synthetase I Proteins 0.000 description 1
- 238000003895 groundwater pollution Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明属于植物基因工程技术领域。具体涉及一种水稻缺氮后恢复供氮特异性诱导表达启动子Y8A及应用。利用芯片技术,得到了启动子Y8A下游基因供氮诱导表达的信息,通过不同水稻品种验证了Y8A下游基因供氮诱导的表达模式。通过PCR方法,扩增出启动子Y8A全长及其5`端截短的片段Y8B,连接到载体DX2181b上,构建得到启动子融合GUS表达的载体。再将构建好的载体转化水稻品种中花11,在转化阳性植株中验证该启动子对GUS基因表达的调控,通过Realtime表达量验证,进一步确证Y8A及Y8B属于缺氮后恢复供氮特异性诱导表达的启动子,其功能区段在ATG上游982bp。本发明为水稻提供了新的启动子资源。The invention belongs to the technical field of plant genetic engineering. In particular, it relates to a specific inducible expression promoter Y8A for restoring nitrogen supply after nitrogen deficiency in rice and its application. Using microarray technology, the information on nitrogen-supply-induced expression of promoter Y8A downstream genes was obtained, and the nitrogen-supply-induced expression patterns of Y8A downstream genes were verified by different rice varieties. The full length of the promoter Y8A and its truncated fragment Y8B at the 5' end were amplified by PCR method, and connected to the vector DX2181b to construct a vector expressing the fusion of the promoter and GUS. Then the constructed vector was transformed into the rice variety Zhonghua 11, and the regulation of the promoter on the expression of the GUS gene was verified in the transformed positive plants. Through the Realtime expression verification, it was further confirmed that Y8A and Y8B belonged to the specific induction of nitrogen supply recovery after nitrogen deficiency. The expressed promoter has a functional segment at 982bp upstream of ATG. The invention provides a new promoter resource for rice.
Description
技术领域technical field
本发明涉及植物基因工程技术领域。具体涉及一种水稻缺氮后恢复供氮特异诱导表达的启动子Y8A及应用The invention relates to the technical field of plant genetic engineering. In particular, it relates to a promoter Y8A that specifically induces the expression of nitrogen supply after nitrogen deficiency in rice and its application
背景技术Background technique
目前转基因研究主要以组成型启动子驱动目的基因表达,最典型的是花椰菜花叶病毒中分离的CaMV35S启动子(Hirt et al.,1990;Battraw et al.,1990),以及近年来一些植物来源的启动子,如从水稻中克隆的肌动蛋白基因Actin1的启动子和玉米中克隆的泛素基因ubiquitin启动子(Schledzewski et al.,1994)。但是外源基因的组成型表达往往会造成资源的非必要浪费,同时大量异源蛋白的积累也会打破植物原有的代谢平衡,阻碍植物的正常生长(聂丽娜等,2008;Rai et al.,2009)。Kasuga等(1999)在研究中发现,使用强的组成型表达启动子CaMV35S启动DREB1A的表达时,对植物的生长可能起到某种程度的阻碍作用,而用诱导型的启动子可以减轻这种状况。诱导型的启动子可以快速有效地诱导转录基因的“开、关”:可根据需要在植物特定发育阶段、组织器官或生长环境下接受诱导信号,诱导基因表达,也可以随时解除胁迫,停止表达(李杰等,2006)。因此,获得水稻在氮饥饿状态下诱导表达的启动子,不仅可以减少外源基因大量表达带来的负面影响,更能为基因工程改良水稻提供安全有效的调控。At present, transgenic research mainly uses constitutive promoters to drive the expression of target genes, the most typical is the CaMV35S promoter isolated from cauliflower mosaic virus (Hirt et al., 1990; Battraw et al., 1990), and some plant sources in recent years promoters, such as the promoter of the actin gene Actin1 cloned from rice and the ubiquitin gene promoter cloned from maize (Schledzewski et al., 1994). However, the constitutive expression of exogenous genes often causes unnecessary waste of resources, and the accumulation of a large number of heterologous proteins will also break the original metabolic balance of plants and hinder the normal growth of plants (Nie Lina et al., 2008; Rai et al., 2009). Kasuga et al. (1999) found in their research that when the strong constitutive expression promoter CaMV35S is used to promote the expression of DREB1A, it may hinder the growth of plants to some extent, while the use of an inducible promoter can alleviate this effect. situation. The inducible promoter can quickly and effectively induce the "on and off" of the transcribed gene: according to the needs of the specific developmental stage of the plant, the tissue organ or the growth environment, the induction signal can be induced to induce gene expression, and the stress can also be relieved at any time to stop the expression (Li Jie et al., 2006). Therefore, obtaining a promoter that induces expression in rice under nitrogen starvation can not only reduce the negative impact of massive expression of exogenous genes, but also provide safe and effective regulation for genetic engineering improvement of rice.
在植物生长所需的各种大量元素中,氮素是限制植物生长和形成植物产量的首要因素。氮不仅是遗传物质的基础,更是蛋白质、核酸、叶绿素、酶、维生素、生物碱和植物激素等的重要组成部分(陆景陵,1994)。近半个世纪以来,世界各国都把增施氮肥作为增加水稻产量的重要农业措施,特别是第一次绿色革命之后,随着高产耐肥品种推广应用,农田氮肥施用量迅猛增长,极大提高了水稻的产量(钟代斌等,2001)。农田氮肥的过量施用,随之而来的便是氮素利用率降低以及一系列的环境问题。氮素的大量流失直接导致地下水污染和江河湖泊的富营养化作用(王光火等,2003)。Among the various macroelements required for plant growth, nitrogen is the primary factor that limits plant growth and forms plant yield. Nitrogen is not only the basis of genetic material, but also an important component of proteins, nucleic acids, chlorophyll, enzymes, vitamins, alkaloids and plant hormones (Lu Jingling, 1994). For nearly half a century, countries all over the world have regarded increasing nitrogen fertilizer as an important agricultural measure to increase rice production. Especially after the first green revolution, with the popularization and application of high-yield and fertilizer-tolerant varieties, the amount of nitrogen fertilizer application in farmland has increased rapidly, greatly improving Increased the yield of rice (Zhong Daibin et al., 2001). The excessive application of nitrogen fertilizer in farmland is followed by the reduction of nitrogen use efficiency and a series of environmental problems. The massive loss of nitrogen directly leads to groundwater pollution and eutrophication of rivers and lakes (Wang Guanghuo et al., 2003).
随着分子生物学和基因工程在植物领域的迅速发展,植物对氮吸收转运的分子机制也越来越清晰。大量的铵盐转运子、硝酸盐转运子被发现,GS/GOGAT(谷氨酸胺合成酶/谷氨酸合成酶)循环同化铵机理被揭示,为基因工程改良水稻氮的吸收利用提供大量的研究素材。虽然通过突变体或者吸收实验等验证了不少基因的吸收转运功能,但是这些基因在水稻体内的超量表达并未达到提高吸收转运铵的目的。Mohammad等(2006)用玉米ubiquitin启动子超量表达水稻中的铵盐转运子OsAMT1-1,提高了水稻中铵的吸收能力以及根中总铵含量,但同时产生了铵的毒害,导致地上部生物量大量减少。如果改为缺氮诱导启动子驱动,就有可能根据植株的需要,适当控制铵的吸收,避免毒害。GS是参与NH4+同化合成谷氨酰胺(Gln)的主要酶,Cai等(2009)用35S启动子在水稻品种中花11中超量表达水稻谷氨酰胺合成酶基因GS1;1、GS1;2和大肠杆菌谷氨酰胺合成酶基因glnA,GS活性、总氮含量、氨基酸含量、可溶性蛋白等都得到了显著提高,但是单株生物学产量及籽粒产量都显著下降了。如果改为供氮诱导启动子驱动,不仅可以降低组成型表达造成的“浪费”,更可以保证仅在供氮充足的情况下促进GS的同化,避免单株因氮源不足而造成生物学产量降低。With the rapid development of molecular biology and genetic engineering in the field of plants, the molecular mechanism of nitrogen uptake and transport in plants is becoming more and more clear. A large number of ammonium salt transporters and nitrate transporters were discovered, and the mechanism of GS/GOGAT (glutamate amine synthase/glutamate synthase) cycle assimilation of ammonium was revealed, providing a large amount of resources for genetic engineering to improve rice nitrogen uptake and utilization. research material. Although the absorption and transport functions of many genes have been verified by mutants or absorption experiments, the overexpression of these genes in rice has not achieved the purpose of improving the absorption and transport of ammonium. Mohammad et al. (2006) overexpressed the ammonium transporter OsAMT1-1 in rice with the maize ubiquitin promoter, which improved the ammonium absorption capacity in rice and the total ammonium content in roots, but at the same time produced ammonium poisoning, resulting in Biomass is greatly reduced. If it is driven by a nitrogen deficiency-induced promoter, it is possible to properly control the absorption of ammonium according to the needs of the plant and avoid poisoning. GS is the main enzyme involved in the synthesis of glutamine (Gln) by NH4 + assimilation. Cai et al. (2009) used the 35S promoter to overexpress rice glutamine synthetase genes GS1;1, GS1;2 and Escherichia coli glutamine synthetase gene glnA, GS activity, total nitrogen content, amino acid content, soluble protein, etc. have all been significantly improved, but the biological yield and grain yield per plant have been significantly decreased. If it is driven by a nitrogen-supply-induced promoter, it can not only reduce the "waste" caused by constitutive expression, but also ensure that the assimilation of GS is only promoted under the condition of sufficient nitrogen supply, avoiding the biological yield of a single plant due to insufficient nitrogen source reduce.
本发明通过芯片发掘了一个供氮诱导基因表达的启动子,用实时定量realtimePCR在三个不同品种中进行了验证,同时通过水稻稳定转化进一步确定了该启动子是一个供氮诱导的启动子,为基因工程改良水稻对氮的吸收利用提供了新的材料。The present invention excavated a nitrogen-supply-induced gene expression promoter through chips, verified it in three different varieties by realtime quantitative realtime PCR, and further confirmed that the promoter was a nitrogen-supply-induced promoter through stable transformation of rice. It provides a new material for the genetic engineering improvement of rice's absorption and utilization of nitrogen.
发明内容Contents of the invention
本发明的目的在于克服现有的技术缺陷,提供了一种在水稻缺氮后恢复供氮特异性诱导表达的启动子及应用。该启动子为Y8A及其截断的片段Y8B,所述的启动子在水稻中供氮诱导基因表达的用途如下:芯片结果显示,日本晴和珍汕97在缺氮胁迫7d后再供氮时,启动子Y8A控制的下游基因在根中均诱导表达20倍左右,而在地上部组织中不诱导表达。在其它四个常规水稻品种:中花11、华粳295、9311、MH63中,通过realtime PCR验证(RealtimePCR的方法参见TAKARA商业试剂盒的使用说明书,货号:code:DRR041A)发现启动子Y8A控制的下游基因在缺氮7d后再恢复供氮2h时亦可诱导表达20倍以上。从中花11(或称ZH11)材料中扩增启动子Y8A全长序列融合GUS基因稳定转化水稻,并构建系列5`端缺失载体,将转基因阳性材料进行缺氮胁迫后供氮处理,发现供氮前后GUS基因在根中表达量显著诱导表达。进一步验证了启动子Y8A供氮诱导表达的特性,并且功能区段在ATG上游982bp内。The purpose of the present invention is to overcome the existing technical defects and provide a promoter for restoring nitrogen-supply-specific inducible expression after nitrogen deficiency in rice and its application. The promoter is Y8A and its truncated fragment Y8B. The use of the promoter in rice for nitrogen-supply-induced gene expression is as follows: chip results show that Nipponbare and Zhenshan 97 start when nitrogen is supplied after 7 days of nitrogen deficiency stress. The downstream genes controlled by sub-Y8A were all induced to express about 20 times in roots, but not in shoot tissues. In the other four conventional rice varieties: Zhonghua 11, Huajing 295, 9311, and MH63, it was found that the promoter Y8A controlled Downstream genes can also be induced to express more than 20 times after nitrogen deficiency for 7 days and then nitrogen supply for 2 hours. Amplify the full-length promoter Y8A sequence from Zhonghua 11 (or ZH11) materials and fuse the GUS gene to stably transform rice, and construct a series of 5'-end deletion vectors, and treat the transgenic positive materials with nitrogen deficiency stress and nitrogen supply. Before and after the GUS gene expression in the root was significantly induced expression. Further verified the nitrogen-inducible expression of the promoter Y8A, and the functional segment was within 982bp upstream of ATG.
本发明是这样实现的:The present invention is achieved like this:
本发明以水稻品种日本晴(英文名称:Nipponbare,一个公知公用的水稻品种材料,且已经完成全基因组测序的水稻品种)和珍汕97(一个公知公用的水稻品种,来自江西省农业科学院)作为基础材料,水培幼苗至5叶期,分不同时间点缺氮胁迫处理取样(缺氮1h、缺氮1d、缺氮3d、缺氮7d、缺氮7d后恢复供氮2h、恢复供氮1d),以持续正常植物栽培营养液(为常规报道的植物栽培营养液)培养的幼苗作为对照,利用全基因组cDNA芯片表达谱作为技术手段(杨蓉等,1999),得到了一个在两种材料的根中供氮2h后都高倍诱导表达的基因,根据这些基因的信息在NCBI网站(www.ncbi.nlm.nih.gov)获得了基因上游序列即其启动子序列,同时,申请人按同样的处理方法处理了其它四个常规品种:中花11、华粳295、9311、MH63,并通过realtime PCR验证了该基因供氮诱导的表达模式。将启动子序列融合GUS报告基因构建到启动子载体DX2181b(载体DX2181b是申请人所在作物遗传国家重点实验室研究人员在商业载体pCAMBIA1381,一个来自澳大利亚公开报道和使用的质粒的基础上改造得到的,见图2)上,再进行农杆菌介导的遗传转化,转化水稻品种中花11,得到阳性转化植株。检测转化阳性植株的GUS基因表达量发现,缺氮处理7d后供氮2h的GUS基因的表达量显著上升。The present invention is based on the rice variety Nipponbare (English name: Nipponbare, a well-known and public rice variety material, and a rice variety that has completed genome sequencing) and Zhenshan 97 (a well-known and public rice variety, from Jiangxi Academy of Agricultural Sciences) Materials, from hydroponic seedlings to the 5-leaf stage, samples were taken under nitrogen deficiency stress at different time points (nitrogen deficiency for 1 hour, nitrogen deficiency for 1 day, nitrogen deficiency for 3 days, nitrogen deficiency for 7 days, nitrogen deficiency for 7 days, nitrogen supply for 2 hours, and nitrogen supply for 1 day) , with the seedlings cultured in continuous normal plant cultivation nutrient solution (the conventionally reported plant cultivation nutrient solution) as a control, using the whole genome cDNA chip expression profile as a technical means (Yang Rong et al., 1999), obtained a comparison between the two materials According to the information of these genes, the upstream sequence of the gene, namely its promoter sequence, was obtained from the NCBI website (www.ncbi.nlm.nih.gov) after 2 hours of nitrogen supply in the root. At the same time, the applicant followed the same procedure Treatment methods Four other conventional varieties: Zhonghua 11, Huajing 295, 9311, and MH63 were treated, and the nitrogen-induced expression pattern of the gene was verified by realtime PCR. The promoter sequence was fused with the GUS reporter gene to construct the promoter vector DX2181b (the vector DX2181b was transformed by the researchers of the applicant's State Key Laboratory of Crop Genetics on the basis of the commercial vector pCAMBIA1381, a plasmid publicly reported and used in Australia, See Fig. 2), and then carry out Agrobacterium-mediated genetic transformation to transform the rice variety Zhonghua 11, and obtain positive transformed plants. Detecting the expression of GUS gene in the transformed positive plants found that the expression of GUS gene after nitrogen deficiency for 7 days increased significantly after nitrogen supply for 2 hours.
本发明的优点在于:The advantages of the present invention are:
(1)本发明提供了一种在水稻中供氮诱导基因表达启动子的应用。在六个不同的品种中验证了该启动子下游基因的表达量缺氮处理后恢复供氮高倍诱导的表达模式。启动子融合GUS基因稳定转化水稻阳性植株中,GUS表达量供氮处理后均显著上升。(1) The present invention provides an application of a nitrogen supply-induced gene expression promoter in rice. The expression level of genes downstream of the promoter was verified in six different cultivars after nitrogen deficiency treatment, and the expression pattern induced by high-fold nitrogen supply was restored. In positive rice plants stably transformed with promoter fusion GUS gene, the expression of GUS increased significantly after nitrogen treatment.
(2)本发明首次发现了启动子Y8A是一个在水稻各品种中广泛供氮高倍诱导基因表达的启动子,并且功能区段在ATG上游982bp内,为基因工程改良水稻中如何有效控制氮素的吸收同化提供了新的材料。(2) The present invention discovered for the first time that the promoter Y8A is a promoter widely induced by nitrogen supply and high-magnification gene expression in various rice varieties, and the functional segment is within 982bp upstream of ATG, which is how to effectively control nitrogen in genetic engineering improved rice The assimilation of absorption provides new materials.
(3)本发明中应用的启动子及其下游基因可以为水稻等禾谷类作物以及其它作物的营养代谢研究提供支持。(3) The promoter and its downstream genes used in the present invention can provide support for the research on nutritional metabolism of cereal crops such as rice and other crops.
附图说明Description of drawings
SEQ ID NO:1是启动子Y8A的核苷酸序列,序列全长为1936bp。SEQ ID NO: 1 is the nucleotide sequence of the promoter Y8A, and the full length of the sequence is 1936bp.
SEQ ID NO:2是启动子Y8A的其中一个截短的启动子区段Y8B的核苷酸序列,序列全长为982bp。SEQ ID NO: 2 is the nucleotide sequence of one of the truncated promoter segments Y8B of the promoter Y8A, and the full length of the sequence is 982bp.
SEQ ID NO:3是启动子Y8A的CDS区序列,序列全长为414bp,编码137个氨基酸。SEQ ID NO: 3 is the sequence of the CDS region of the promoter Y8A, the full length of the sequence is 414bp, encoding 137 amino acids.
SEQ ID NO:4是启动子Y8A的蛋白质的序列。SEQ ID NO: 4 is the sequence of the protein of the promoter Y8A.
图1.是本发明的总体技术路线图。Fig. 1. is the overall technical roadmap of the present invention.
图2.是载体DX2181b的结构示意图。图2a是DX2181b改造前载体pCAMBIA1381载体结构图;图2b是载体DX2181b的结构示意图;图2c是载体DX2181b的多克隆位点结构。Figure 2 is a schematic diagram of the structure of the vector DX2181b. Figure 2a is a structural diagram of the vector pCAMBIA1381 before DX2181b transformation; Figure 2b is a schematic structural diagram of the vector DX2181b; Figure 2c is the structure of the multiple cloning site of the vector DX2181b.
图3.是启动子融合GUS表达载体稳定转化水稻片段的结构示意图。其中:图3a为Y8A融合GUS表达载体的构建示意图;图3b为Y8B融合GUS表达载体的构建示意图。Figure 3 is a schematic diagram of the structure of the rice fragment stably transformed with the promoter fusion GUS expression vector. Among them: Figure 3a is a schematic diagram of the construction of the Y8A fusion GUS expression vector; Figure 3b is a schematic diagram of the construction of the Y8B fusion GUS expression vector.
图4.启动子Y8A下游基因在芯片材料中的表达模式。图4中a是芯片数据,显示在日本晴(nip)和珍汕97(ZS)两个品种的芯片数据中该基因供氮强烈诱导;图4中b是以芯片同批珍汕97材料重新抽提RNA做realtime验证表达量结果,同样显示供氮强烈诱导。Figure 4. Expression patterns of genes downstream of promoter Y8A in chip materials. A in Figure 4 is the microarray data, which shows that the gene is strongly induced by nitrogen supply in the microarray data of two varieties of Nipponbare (nip) and Zhenshan 97 (ZS); RNA was extracted for realtime verification of expression results, which also showed strong induction by nitrogen supply.
图5.是启动子Y8A下游基因用realtime验证水稻品种中花11中的表达量的结果。Figure 5 shows the results of realtime verification of the expression level in the rice variety Zhonghua 11 of the downstream genes of the promoter Y8A.
图6.是本发明的实施例中另外选择的3个常规水稻品种中的Y8A下游基因表达模式的Realtime验证结果。Fig. 6 is the Realtime verification result of Y8A downstream gene expression patterns in three conventional rice varieties selected in the embodiment of the present invention.
图7.启动子Y8A融合GUS稳定转化水稻后,各个截短模式的不同阳性单株中GUS基因表达量随供氮前后的变化。其中:图7a、图7b从左至右依次为启动子全长Y8A及启动子截短区段Y8B的表达量检测结果,line后面的不同数字编号代表不同的水稻转基因阳性株系。Fig. 7. After stably transforming rice with promoter Y8A fusion GUS, the expression level of GUS gene in different positive individual plants of each truncation pattern changes with nitrogen supply before and after. Among them: Fig. 7a and Fig. 7b are, from left to right, the expression detection results of full-length promoter Y8A and promoter truncated segment Y8B, and different numbers behind the line represent different rice transgenic positive lines.
具体实施方式detailed description
以下实施例进一步定义本发明,并描述了启动子Y8A及其截短片段Y8B调节基因表达的模式、遗传转化、以及表达水平和GUS活性的测定方法和该启动子在水稻中的调控表达的模式。根据以下的描述和这些实施事例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。The following examples further define the present invention, and describe the mode of regulation of gene expression by the promoter Y8A and its truncated fragment Y8B, genetic transformation, and the assay method of expression level and GUS activity and the mode of regulation and expression of the promoter in rice . According to the following description and these examples, those skilled in the art can determine the basic features of the present invention, and without departing from the spirit and scope of the present invention, various changes and modifications can be made to the present invention, so that it is applicable to various uses and conditions.
下面结合附图对本发明作进一步具体描述。The present invention will be further specifically described below in conjunction with the accompanying drawings.
实施例1:Y8基因启动子的调控模式的确定和序列的获得Example 1: Determination of the regulatory mode of the Y8 gene promoter and acquisition of the sequence
为发掘水稻中缺氮或供氮高倍诱导基因表达的启动子,为基因工程改良水稻氮素吸收提供新的启动子材料,申请人设计了图1中的技术路线,并选用了两种公知公用的常规水稻品种作为实验材料:即日本晴和珍汕97。应用芯片技术,挑选对氮胁迫有明显反应的新基因,该技术可用于定量检测大量基因在不同时间表达水平(杨蓉等,1999)。In order to discover the promoters of nitrogen deficiency or high nitrogen supply inducing gene expression in rice, and to provide new promoter materials for improving rice nitrogen uptake by genetic engineering, the applicant designed the technical route in Figure 1 and selected two known and commonly used The conventional rice varieties of Nipponbare and Zhenshan 97 were used as experimental materials. Apply microarray technology to select new genes that have obvious responses to nitrogen stress. This technology can be used to quantitatively detect the expression levels of a large number of genes at different times (Yang Rong et al., 1999).
将日本晴和珍汕97的种子37℃浸种3天,催芽2天,沙培一周出苗,移苗于水稻全营养液水培(水培营养液成分:1.44mM NH4NO3,0.3mM NaH2PO4,0.5mM K2SO4,1.0mM CaCl2,1.6mM MgSO4,0.17mMNaSiO3,50μM Fe-EDTA,0.06μM(NH4)6Mo7O24,15μM H3BO3,8μM MnCl2,0.12μM CuSO4,0.12μMZnSO4,29μM FeCl3,40.5μM Citric acid,pH值5.5,具体参见Yoshidaet al.,1976),培养至5叶期,将部分水稻苗移至缺氮的营养液(上述营养液中不加NH4NO3即可)中进行氮胁迫处理,以继续用全营养液培养的苗做为对照。根据实验需要,处理时间点设计如下:缺氮1h、缺氮1d、缺氮3d、缺氮7d、缺氮7d后恢复供氮2h、恢复供氮1d。取样时地上部和根部分开,分别用锡箔纸包好,置于液氮中保存。抽提样品RNA并反转录成cDNA(具体步骤参见invitrogen公司的SSIII反转录试剂盒说明书,货号:Cat.No.18080-093),将各个时间点的样品送至北京博奥生物有限公司制作全基因组cDNA芯片(杨蓉等,1999),对反馈的芯片数据进行分析,从芯片结果中发现,由启动子Y8A启动的下游基因在这两个品种中缺氮7d后恢复供氮2h根部有高倍诱导,而地上部则无此反应(见图4中a、图4中b)。为了确信该基因对氮的反应,申请人用中花11种了一批胁迫材料,验证这些基因对氮的反应。Realtime验证结果(Realtime PCR的方法参见TAKARA商业试剂盒的使用说明书,货号code:DRR041A)显示:在中花11的根中,缺氮 7d后恢复供氮2h诱导Y8A下游基因上调表达约20倍,随着继续供氮,表达量逐渐回复到正常水平(见图5)。为进一步验证该基因是否在不同品种中拥有类似的表达模式,申请人又用另外3个水稻品种华粳295、9311和MH63中种了一批胁迫材料(其中华粳295为一个公知公用的水稻粳稻品种,9311和MH63为公知公用的籼稻品种),结果与中花11结果类似(见图6)。申请人将该基因序列输入RGAP网站(//rice.plantbiology.msu.edu/)进行Blast得到该基因的全基因序列及登录号LOC_Os09g30490。在softberry网站上,预测全长ORF,从而得到Y8A下游基因的全长基因组序列及启动子序列。该基因位于水稻9号染色体,全长基因组序列为750bp,全长cDNA为414bp,编码137个氨基酸(见序列表SEQ ID NO:3)。申请人取该基因ATG上游1936bp为该基因的启动子全长(即Y8A,见序列表SEQ ID NO:1)。Soak the seeds of Nipponbare and Zhenshan 97 at 37°C for 3 days, accelerate the germination for 2 days, and transplant the seedlings to the rice full nutrient solution for hydroponic cultivation (the composition of the hydroponic nutrient solution: 1.44mM NH 4 NO 3 , 0.3mM NaH 2 PO4, 0.5mM K 2 SO 4 , 1.0mM CaCl 2 , 1.6mM MgSO 4 , 0.17mM NaSiO 3 , 50μM Fe-EDTA, 0.06μM(NH 4 ) 6Mo 7 O 24 , 15μM H 3 BO 3 , 8μM MnCl 2 , 0.12 μM CuSO 4 , 0.12 μM ZnSO 4 , 29 μM FeCl 3 , 40.5 μM Citric acid, pH 5.5, see Yoshida et al., 1976 for details), culture to the 5-leaf stage, and move part of the rice seedlings to a nitrogen-deficient nutrient solution (above The nutrient solution does not need to add NH 4 NO 3 ) to carry out the nitrogen stress treatment, and the seedlings that continue to be cultured with the full nutrient solution are used as the control. According to the needs of the experiment, the treatment time points were designed as follows: nitrogen deficiency for 1 hour, nitrogen deficiency for 1 day, nitrogen deficiency for 3 days, nitrogen deficiency for 7 days, nitrogen deficiency for 2 hours after nitrogen deficiency, and nitrogen supply for 1 day. When sampling, the shoots and roots were separated, wrapped in tinfoil, and stored in liquid nitrogen. Extract the sample RNA and reverse transcribe it into cDNA (for specific steps, please refer to the SSIII reverse transcription kit manual of Invitrogen Company, Cat. Genome-wide cDNA chips were made (Yang Rong et al., 1999), and the feedback chip data were analyzed. From the chip results, it was found that the downstream genes activated by the promoter Y8A resumed nitrogen supply for 2 hours in the roots of these two varieties after 7 days of nitrogen deficiency. There is a high-power induction, but there is no such response in the shoot (see Figure 4 a, Figure 4 b). In order to confirm the response of the gene to nitrogen, the applicant used Zhonghua 11 to plant a batch of stress materials to verify the response of these genes to nitrogen. Realtime verification results (Realtime PCR method can be found in the instruction manual of the TAKARA commercial kit, article number code: DRR041A) showed that in the roots of Zhonghua 11, nitrogen deficiency for 7 days and nitrogen supply restored for 2 hours induced Y8A downstream genes to up-regulate about 20 times. As the nitrogen supply continued, the expression levels gradually returned to normal levels (see Figure 5). In order to further verify whether the gene has a similar expression pattern in different varieties, the applicant used another three rice varieties Huajing 295, 9311 and MH63 to plant a batch of stress materials (Huajing 295 is a well-known and public rice variety Japonica rice varieties, 9311 and MH63 are well-known indica rice varieties), the results were similar to those of Zhonghua 11 (see Figure 6). The applicant entered the gene sequence into the RGAP website (//rice.plantbiology.msu.edu/) to perform Blast to obtain the full gene sequence of the gene and accession number LOC_Os09g30490. On the softberry website, the full-length ORF is predicted to obtain the full-length genome sequence and promoter sequence of the downstream gene of Y8A. The gene is located on chromosome 9 of rice, the full-length genome sequence is 750bp, the full-length cDNA is 414bp, and encodes 137 amino acids (see the sequence table SEQ ID NO: 3). The applicant took the 1936 bp upstream of the ATG of the gene as the full length of the promoter of the gene (ie Y8A, see the sequence listing SEQ ID NO: 1).
实施例2:启动子表达转化载体的构建Embodiment 2: Construction of promoter expression transformation vector
本发明是通过PCR方法,以水稻品种中花11的总DNA为模板,扩增得到了Y8A启动子全长的序列,为便于应用并且缩小该启动子对氮反应调控元件的范围,申请人又同时将该启动子全长序列按5`端截短模式截短至ATG上游982bp,命名为:Y8B(见序列表SEQ ID NO:1),并用PCR的方法得到截短的片段。具体如下:根据已知启动子Y8A全长序列(1936bp,见序列表SEQ ID NO:1)及其截短的启动子区段Y8B(见序列表SEQ ID NO:2),设计两对引物对(引物对的序列见表1),以水稻品种中花11的总DNA为模板,扩增分别得到启动子Y8A全长序列(1936bp)及截短的Y8B(982bp)。扩增Y8A及Y8B时,在两对引物的5`端均添加了相同的限制性内切酶位点BamHI(引物对的序列见表1-1),因此扩增得到的片段可以用限制性核酸内切酶BamHI进行酶切,然后将酶切得到的Y8A和Y8B的片段分别连接到启动子载体DX2181b上(载体DX2181b是申请人所在作物遗传国家重点实验室研究人员在商业载体pCAMBIA1381,一个来自澳大利亚公开报道和使用的质粒的基础上改造得到的。该载体包含有潮霉素的筛选基因:hygromycin(R),载体DX2181b的结构参见图2所述),这两个载体构建的基本示意图见图3所示(图3a和图3b分别对应Y8A和Y8B融合DX2181b的构建),我们将构建的载体分别命名为DX2181b-Y8A和DX2181b-Y8B。然后再用表1-2所示的引物对对得到的克隆进行测序,确定启动子Y8A及Y8B均按正确的方向连接到DX2181b载体上(见图3所示)。The present invention uses the total DNA of rice variety Zhonghua 11 as a template to amplify the full-length sequence of the Y8A promoter through the PCR method. At the same time, the full-length sequence of the promoter was truncated to 982 bp upstream of the ATG according to the 5'-end truncation mode, named: Y8B (see SEQ ID NO: 1 in the sequence listing), and the truncated fragment was obtained by PCR. The details are as follows: According to the known full-length sequence of the promoter Y8A (1936bp, see SEQ ID NO: 1 in the sequence listing) and its truncated promoter segment Y8B (see SEQ ID NO: 2 in the sequence listing), design two pairs of primers (The sequence of the primer pair is shown in Table 1). Using the total DNA of rice variety Zhonghua 11 as a template, the full-length sequence of promoter Y8A (1936bp) and the truncated Y8B (982bp) were amplified respectively. When amplifying Y8A and Y8B, the same restriction endonuclease site BamHI was added to the 5' ends of the two pairs of primers (see Table 1-1 for the sequence of the primer pair), so the amplified fragments can be used for restriction The endonuclease BamHI was digested, and then the fragments of Y8A and Y8B obtained by the enzyme digestion were respectively connected to the promoter vector DX2181b (the vector DX2181b is a commercial vector pCAMBIA1381 developed by researchers at the State Key Laboratory of Crop Genetics where the applicant works, a source from Transformed on the basis of the plasmids publicly reported and used in Australia. The vector contains the screening gene for hygromycin: hygromycin (R), the structure of the vector DX2181b is described in Figure 2), and the basic schematic diagram of the construction of these two vectors is shown in As shown in Figure 3 (Figure 3a and Figure 3b correspond to the construction of Y8A and Y8B fusion DX2181b, respectively), we named the constructed vectors as DX2181b-Y8A and DX2181b-Y8B, respectively. Then use the primer pairs shown in Table 1-2 to sequence the obtained clones, and confirm that the promoters Y8A and Y8B are connected to the DX2181b vector in the correct direction (see Figure 3).
利用经典的农杆菌介导的转化方法(农杆菌EHA105,来自澳大利亚CAMBIA实验室,转化的具体操作方法参见:Elizabeth et.al.,1993),在水稻品种中花11中用Y8A及其截短启动子启动GUS基因的表达。考察转基因阳性植株,发现缺氮7d后供氮处理会导致GUS表达量显著上升。Using the classic Agrobacterium-mediated transformation method (Agrobacterium EHA105, from CAMBIA Laboratory, Australia, for the specific operation method of transformation, see: Elizabeth et.al., 1993), Y8A and its truncation were used in the rice variety Zhonghua 11 The promoter drives the expression of the GUS gene. Investigating the transgenic positive plants, it was found that nitrogen supply after 7 days of nitrogen deficiency would lead to a significant increase in the expression of GUS.
表1-1 本发明设计的PCR引物对Table 1-1 PCR primer pair designed by the present invention
表1-2 本发明设计的测序引物Table 1-2 Sequencing primers designed by the present invention
实施例3:启动子Y8A全长及其截短启动子片段融合GUS后的水稻转化实验Example 3: Rice transformation experiments after the full-length promoter Y8A and its truncated promoter fragments are fused to GUS
用启动子Y8A全长及截短片段Y8B分别连接到载体DX2181b上后,利用农杆菌介导的转基因的方法,得到转化的水稻阳性植株,具体转化步骤如下:After connecting the full-length promoter Y8A and the truncated fragment Y8B to the vector DX2181b, the transformed rice positive plants were obtained by using the method of Agrobacterium-mediated transgenesis. The specific transformation steps are as follows:
将得到的正确克隆的质粒(DX2181b-Y8A、DX2181b-Y8B)通过农杆菌(EHA105由澳大利亚CAMBIA实验室提供)介导的水稻遗传转化体系导入到水稻品种中花11中,经过预培养、侵染、共培养、筛选具有潮霉素抗性的愈伤、分化、生根、练苗移栽,得到转化植株。农杆菌介导的水稻(粳稻亚种)遗传转化体系主要采用Hiei等人(1994)报道基础上进一步优化的方法。The obtained correctly cloned plasmids (DX2181b-Y8A, DX2181b-Y8B) were introduced into the rice variety Zhonghua 11 through the rice genetic transformation system mediated by Agrobacterium (EHA105 provided by CAMBIA Laboratory, Australia), and pre-cultivated, infected , co-cultivation, selection of hygromycin-resistant calli, differentiation, rooting, training and transplanting of seedlings to obtain transformed plants. The Agrobacterium-mediated genetic transformation system of rice (subspecies japonica) mainly adopts the further optimized method based on the report of Hiei et al. (1994).
本发明的遗传转化的主要步骤、培养基及其配制的方法如下所述:The main steps of the genetic transformation of the present invention, the culture medium and the preparation method thereof are as follows:
(1)试剂和溶液缩写(1) Abbreviations for reagents and solutions
本发明中培养基所用到的植物激素的缩写表示如下:6-BA(6-BenzylaminoPurine,6-苄基腺嘌呤);CN(Carbenicillin,羧苄青霉素);KT(Kinetin,激动素);NAA(Napthalene acetic acid,萘乙酸);IAA(Indole-3-acetic acid,吲哚乙酸);2,4-D(2,4-Dichlorophenoxyacetic acid,2,4-二氯苯氧乙酸);AS(Acetosringone,乙酰丁香酮);CH(Casein Enzymatic Hydrolysate,水解酪蛋白);HN(Hygromycin B,潮霉素);DMSO(Dimethyl Sulfoxide,二甲基亚砜);N6max(N6大量元素成分溶液);N6mix(N6微量元素成分溶液);MSmax(MS大量元素成分溶液);MSmix(MS微量元素成分溶液)。The abbreviation of the plant hormone used in the culture medium among the present invention is as follows: 6-BA (6-BenzylaminoPurine, 6-benzyl adenine); CN (Carbenicillin, carbenicillin); KT (Kinetin, kinetin); NAA ( Napthalene acetic acid, naphthalene acetic acid); IAA (Indole-3-acetic acid, indole acetic acid); 2,4-D (2,4-Dichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid); AS (Acetosringone, Acetosyringone); CH (Casein Enzymatic Hydrolysate, hydrolyzed casein); HN (Hygromycin B, hygromycin); DMSO (Dimethyl Sulfoxide, dimethyl sulfoxide); N6max (N6 macroelement solution); N6mix (N6 trace element composition solution); MSmax (MS macroelement composition solution); MSmix (MS trace element composition solution).
(2)溶液配方(2) Solution formula
1)N6培养基大量元素母液(按照10倍浓缩液(10X)配制):1) N6 medium macroelement mother solution (prepared according to 10 times concentrated solution (10X)):
将上述试剂逐一溶解,然后用蒸馏水定容至1000毫升。Dissolve the above reagents one by one, and then dilute to 1000 ml with distilled water.
2)N6培养基微量元素母液(按照100倍浓缩液(100X)配制2) N6 medium trace element mother solution (prepared according to 100 times concentrated solution (100X)
将上述试剂在20-25摄氏度下溶解并用蒸馏水定容至1000毫升。Dissolve the above reagents at 20-25 degrees Celsius and dilute to 1000 ml with distilled water.
3)铁盐(Fe2EDTA)贮存液(按照100X浓缩液配制)3) Iron salt (Fe 2 EDTA) stock solution (prepared according to 100X concentrated solution)
将3.73克乙二铵四乙酸二钠(Na2EDTA·2H2O)和2.78克FeSO4□7H2O分别溶解,混合并用蒸馏水定容至1000毫升,至70℃温浴2小时,4℃保存备用。Dissolve 3.73 g disodium edetate (Na 2 EDTA·2H 2 O) and 2.78 g FeSO 4 □7H 2 O respectively, mix and dilute to 1000 ml with distilled water, incubate at 70°C for 2 hours, store at 4°C spare.
4)维生素贮存液(按照100X浓缩液配制)4) Vitamin storage solution (prepared according to 100X concentrated solution)
加蒸馏水定容至1000毫升,4℃保存备用。Add distilled water to make up to 1000 ml, and store at 4°C for later use.
5)MS培养基大量元素母液(MSmax母液)(按照10X浓缩液配制)5) MS medium macroelement mother solution (MSmax mother solution) (prepared according to 10X concentrated solution)
将上述试剂在20-25℃温度下溶解,并用蒸馏水定容至1000毫升。Dissolve the above reagents at a temperature of 20-25°C, and dilute to 1000 ml with distilled water.
6)MS培养基微量元素母液(MSmin母液)(按照100X浓缩液配制)6) MS medium trace element mother solution (MSmin mother solution) (prepared according to 100X concentrated solution)
将上述试剂在20-25℃温度下溶解,并用蒸馏水定容至1000毫升。Dissolve the above reagents at a temperature of 20-25°C, and dilute to 1000 ml with distilled water.
7)2,4--D贮存液(1毫克/毫升)的配制:7) Preparation of 2,4--D stock solution (1 mg/ml):
秤取2,4-D100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,于20-25℃温度下保存。Weigh 100 mg of 2,4-D, dissolve it in 1 ml of 1N potassium hydroxide for 5 minutes, then add 10 ml of distilled water to dissolve completely, then set the volume to 100 ml, and store at 20-25°C.
8)6-BA贮存液(1毫克/毫升)的配制:8) Preparation of 6-BA stock solution (1 mg/ml):
秤取6-BA100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,20-25℃温度保存。Weigh 100 mg of 6-BA, dissolve it in 1 ml of 1N potassium hydroxide for 5 minutes, then add 10 ml of distilled water to dissolve completely, then set the volume to 100 ml, and store at 20-25°C.
9)萘乙酸(NAA)贮存液(1毫克/毫升)的配制:9) Preparation of naphthaleneacetic acid (NAA) stock solution (1 mg/ml):
秤取NAA100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。Weigh 100 mg of NAA, dissolve it in 1 ml of 1N potassium hydroxide for 5 minutes, then add 10 ml of distilled water to dissolve it completely, then dilute it to 100 ml, and store it at 4°C for later use.
10)吲哚乙酸(IAA)贮存液(1毫克/毫升)的配制:10) Preparation of indole acetic acid (IAA) stock solution (1 mg/ml):
秤取IAA100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。Weigh 100 mg of IAA, dissolve it in 1 ml of 1N potassium hydroxide for 5 minutes, then add 10 ml of distilled water to dissolve completely, then dilute to 100 ml, and store at 4°C for later use.
11)葡萄糖贮存液(0..5克/毫升)的配制:11) Preparation of glucose stock solution (0..5 g/ml):
秤取葡萄糖125克,然后用蒸馏水溶解定容至250毫升,灭菌后4℃保存备用。Weigh 125 grams of glucose, then dissolve it in distilled water to 250 ml, and store it at 4°C after sterilization.
12)AS贮存液的配制:12) Preparation of AS stock solution:
秤取AS0.392克,加入DMSO10毫升溶解,分装至1.5毫升离心管内,4℃保存备用。Weigh 0.392 g of AS, add 10 ml of DMSO to dissolve, dispense into 1.5 ml centrifuge tubes, and store at 4°C for later use.
13)1N氢氧化钾贮存液13) 1N potassium hydroxide stock solution
秤取氢氧化钾5.6克,用蒸馏水溶解定容至100毫升,20-25℃温度保存备用。Weigh 5.6 grams of potassium hydroxide, dissolve it in distilled water to 100 ml, and store it at 20-25°C for later use.
(3)用于水稻遗传转化的培养基配方(3) Medium formula for genetic transformation of rice
1)诱导培养基1) Induction medium
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口后按常规方法灭菌(121℃下灭菌25分钟,下述的培养基灭菌方法与本培养基的灭菌方法相同)。Add distilled water to 900ml, adjust the pH value to 5.9 with 1N potassium hydroxide, boil and adjust the volume to 1000ml, dispense into 50ml Erlenmeyer flasks (25ml/bottle), seal and sterilize according to conventional methods (sterilized at 121°C) Sterilize for 25 minutes, the sterilization method of the following medium is the same as the sterilization method of this medium).
2)继代培养基2) Subculture medium
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口,按上述方法灭菌。Add distilled water to 900 ml, adjust the pH value to 5.9 with 1N potassium hydroxide, boil and adjust the volume to 1000 ml, dispense into 50 ml Erlenmeyer flasks (25 ml/bottle), seal, and sterilize as above.
3)预培养基3) Pre-medium
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。Add distilled water to 250 ml, adjust the pH value to 5.6 with 1N potassium hydroxide, seal, and sterilize as above.
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/ 皿)。Heat to dissolve the medium before use, add 5 ml of glucose stock solution and 250 microliters of AS stock solution, and pour them into petri dishes (25 ml/dish).
4)共培养基4) Co-culture medium
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。Add distilled water to 250 ml, adjust the pH value to 5.6 with 1N potassium hydroxide, seal, and sterilize as above.
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/每皿)。Heat to dissolve the medium before use, add 5 ml of glucose stock solution and 250 microliters of AS stock solution, and pour them into petri dishes (25 ml/dish).
5)悬浮培养基5) Suspension medium
加蒸馏水至100毫升,调节pH值到5.4,分装到两个100毫升的三角瓶中,封口,按上述方法灭菌。Add distilled water to 100 ml, adjust the pH value to 5.4, divide into two 100 ml Erlenmeyer flasks, seal, and sterilize as above.
使用前加入1毫升无菌葡萄糖贮存液和100微升AS贮存液。Add 1 ml of sterile glucose stock solution and 100 µl of AS stock solution just before use.
6)选择培养基6) Select medium
加蒸馏水至250毫升,调节pH值到6.0,封口,按上述方法灭菌。Add distilled water to 250 ml, adjust the pH to 6.0, seal, and sterilize as above.
使用前溶解培养基,加入250微升HN(50毫克/毫升)和400微升CN(250毫克/毫升)分装倒入培养皿中(25毫升/皿)。(注:第一次选择培养基羧苄青霉素浓度为400毫克/升,第二次及以后选择培养基羧苄青霉素浓度为250毫克/升)。Dissolve the medium before use, add 250 μl HN (50 mg/ml) and 400 μl CN (250 mg/ml) and aliquot into Petri dishes (25 ml/dish). (Note: The concentration of carbenicillin in the first selection medium is 400 mg/L, and the concentration of carbenicillin in the second and subsequent selection medium is 250 mg/L).
7)预分化培养基7) Pre-differentiation medium
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.9,封口,按上述方法灭菌。Add distilled water to 250 ml, adjust the pH value to 5.9 with 1N potassium hydroxide, seal, and sterilize as above.
使用前溶解培养基,250微升HN(50毫克/毫升)250微升CN(250毫克/毫升),分装倒入培养皿中(25毫升/皿)。Dissolve the medium before use, 250 μl HN (50 mg/ml) and 250 μl CN (250 mg/ml), aliquot into Petri dishes (25 ml/dish).
8)分化培养基8) Differentiation medium
加蒸馏水至900毫升,1N氢氧化钾调节pH值到6.0。Add distilled water to 900 ml, and adjust the pH to 6.0 with 1N potassium hydroxide.
煮沸并用蒸馏水定容至1000毫升,分装到50毫升三角瓶(50毫升/瓶),封口,按上述方法灭菌。Boil and dilute to 1000ml with distilled water, dispense into 50ml Erlenmeyer flasks (50ml/bottle), seal, and sterilize as above.
9)生根培养基9) Rooting medium
加蒸馏水至900毫升,用1N氢氧化钾调节pH值到5.8。Add distilled water to make up to 900 ml, and adjust the pH to 5.8 with 1N potassium hydroxide.
煮沸并用蒸馏水定容至1000毫升,分装到生根管中(25毫升/管),封口,按上述方法灭菌。Boil and dilute to 1000ml with distilled water, dispense into rooting tubes (25ml/tube), seal, and sterilize as above.
(4)农杆菌介导的遗传转化步骤(4) Agrobacterium-mediated genetic transformation step
愈伤诱导callus induction
1)将成熟的中花11水稻种子去壳,然后依次用70%的乙醇处理1分钟,0.15%氯化汞(HgCl2)种子表面消毒15分钟;1) Shell the mature Zhonghua 11 rice seeds, then treat them with 70% ethanol for 1 minute, and disinfect the surface of the seeds with 0.15% mercury chloride (HgCl 2 ) for 15 minutes;
2)用灭菌水洗种子4-5次;2) Wash the seeds 4-5 times with sterilized water;
3)将种子放在诱导培养基上;3) seeds are placed on the induction medium;
4)将接种后的培养基置于黑暗处培养4周,温度25±1℃。4) Culture the inoculated medium in a dark place for 4 weeks at a temperature of 25±1°C.
3..2愈伤继代3..2 Callus subculture
挑选亮黄色、紧实且相对干燥的胚性愈伤,放于继代培养基上黑暗下培养2周,温度25±1℃。Select bright yellow, compact and relatively dry embryogenic calli, and place them on the subculture medium for 2 weeks in the dark at a temperature of 25±1°C.
3..3预培养3..3 Pre-cultivation
挑选紧实且相对干燥的胚性愈伤,放于预培养基上黑暗下培养2周,温度25±1℃。Select compact and relatively dry embryogenic callus, put it on the pre-medium and culture it in the dark for 2 weeks at a temperature of 25±1°C.
3..4农杆菌培养3..4 Agrobacterium culture
1)在带有对应抗性选择的LA培养基(LA培养基的配制参照J.萨姆布鲁克等,1998)上预培养农杆菌EHA105(该菌株来自CAMBIA公司公开使用的农杆菌菌株)两天,温度28℃;1) Pre-cultivate Agrobacterium EHA105 (this strain comes from the Agrobacterium strain publicly used by CAMBIA Company) on LA medium with corresponding resistance selection (LA medium preparation refers to J. Sambrook et al., 1998) for two days , temperature 28°C;
2)将农杆菌转移至悬浮培养基里,28℃摇床上培养2-3小时。2) Transfer the Agrobacterium to the suspension medium and culture on a shaker at 28°C for 2-3 hours.
3..5农杆菌侵染3..5 Agrobacterium infection
1)将预培养的愈伤转移至灭好菌的瓶子内;1) transfer the pre-cultured callus to a sterilized bottle;
2)调节农杆菌的悬浮液至OD6000.8-1.0;2) adjust the suspension of Agrobacterium to OD 600 0.8-1.0;
3)将愈伤在农杆菌悬浮液中浸泡30分钟;3) Soak the callus in the Agrobacterium suspension for 30 minutes;
4)转移愈伤至灭菌好的滤纸上吸干;然后放置在共培养基上培养3天,温度19-20℃。4) Transfer the callus to a sterilized filter paper and blot dry; then place it on a co-culture medium for 3 days at a temperature of 19-20°C.
3..6愈伤洗涤和选择培养3..6 Callus washing and selection culture
1)灭菌水洗涤愈伤至看不见农杆菌;1) Wash the callus with sterilized water until the Agrobacterium cannot be seen;
2)浸泡在含400毫克/L羧苄青霉素(CN)的灭菌水中30分钟;2) Soak in sterilized water containing 400 mg/L carbenicillin (CN) for 30 minutes;
3)转移愈伤至灭菌好的滤纸上吸干;3) transfer the callus to the sterilized filter paper and blot dry;
4)转移愈伤至选择培养基上选择培养2-3次,每次2周。4) Transfer the callus to the selection medium for selection and culture for 2-3 times, each time for 2 weeks.
3..7分化3..7 Differentiation
1)将抗性愈伤转移至预分化培养基上于黑暗处培养5-7天;1) Transfer the resistant callus to the pre-differentiation medium and cultivate it in the dark for 5-7 days;
2)转移预分化培养的愈伤至分化培养基上,光照下培养,温度26℃。2) Transfer the pre-differentiation cultured callus to the differentiation medium, culture under light, and the temperature is 26°C.
3..8生根3..8 Rooting
1)剪掉分化时产生的根;1) cutting off the roots produced during differentiation;
然后将其转移至生根培养基中光照下培养2-3周,温度26℃。Then transfer it to the rooting medium and cultivate it under light for 2-3 weeks at a temperature of 26°C.
3..9移栽3..9 Transplanting
洗掉根上的残留培养基,将具有良好根系的幼苗转入温室,同时在最初的几天保持水分湿润。Wash off the residual medium on the roots and transfer the seedlings with a good root system to the greenhouse while keeping them moist for the first few days.
转化粳稻品种中花11,得到转基因单株T0代植株(Y8A得到阳性株系28株,Y8B得到阳性株系24株)。将T0代阳性株系收种,为T1代转基因材料。The japonica rice variety Zhonghua 11 was transformed to obtain transgenic single plant T 0 generation plants (28 positive lines were obtained for Y8A, and 24 positive lines were obtained for Y8B). The T 0 generation positive lines were harvested as T 1 generation transgenic materials.
实施例4:启动子Y8A及其截短Y8B转基因植株的调控模式的验证Example 4: Verification of the regulation mode of the promoter Y8A and its truncated Y8B transgenic plants
分别测定T0代转基因植株根的Y8启动子Y8A全长和截短的启动子Y8B调节GUS基因的表达量和编码的GUS蛋白的活性,发现T0代各个片段的转基因植株,都表现出与芯片相符的诱导模式,即GUS基因的表达量和GUS活性在恢复供氮2小时后受到明显诱导。同时测定了T1代转基因植株,也测到了相同诱导结果。这同时也证明了这个启动子可以通过遗传转化来改良水稻品质。The full length of the Y8 promoter Y8A and the truncated promoter Y8B of the roots of the transgenic plants of the T 0 generation were measured to regulate the expression of the GUS gene and the activity of the encoded GUS protein. It was found that the transgenic plants of each segment of the T 0 generation showed similar The induction mode consistent with the chip, that is, the expression level of GUS gene and the activity of GUS were obviously induced 2 hours after nitrogen supply was restored. At the same time, the transgenic plants of the T1 generation were measured, and the same induction results were also detected. This also proves that this promoter can improve rice quality through genetic transformation.
Realtime PCR验证方法Realtime PCR verification method
Realtime PCR的方法参见宝生物工程(大连)有限公司即TAKARA商业试剂盒的使用说明书(货号: DRR041A)。实验中采用10μl的反应体系,包含:cDNA模板1.5μl(待检测表达量的水稻材料样品),基因左右引物各0.2μM(本实验中GUS检测所用的左右引物分别为qGUS-F和qGUS-R,内参基因Ubi的左右引物分别为qUbi-F和qUbi-R,具体参见表3)和1U TaqDNA聚合酶。PCR扩增的条件为:95℃预变性30s;95℃5s,60℃34s,45个循环;信号收集在60℃。For the method of Realtime PCR, please refer to the instruction manual of TAKARA commercial kit (product number: DRR041A) of Takara Bioengineering (Dalian) Co., Ltd. In the experiment, a 10 μl reaction system was used, including: 1.5 μl of cDNA template (rice material sample whose expression level is to be detected), 0.2 μM each of the left and right primers of the gene (the left and right primers used for GUS detection in this experiment are qGUS-F and qGUS-R respectively , the left and right primers of the internal reference gene Ubi are qUbi-F and qUbi-R, respectively, see Table 3) and 1U TaqDNA polymerase. The conditions of PCR amplification were: pre-denaturation at 95°C for 30s; 45 cycles at 95°C for 5s and 60°C for 34s; signals were collected at 60°C.
表3realtime表达量检测引物表Table 3 Realtime expression detection primer list
检测结果中(如图7),在缺氮胁迫7天后恢复供氮2h时,随机选取每个启动子片段转化的各4个阳性株系都显示在缺氮后恢复供氮有明显的诱导反应,证明该启动子系列确实为调控基因缺氮后供氮诱导表达的启动子。且缺氮诱导的调控元件在ATG上游982bp内。In the test results (as shown in Figure 7), when the nitrogen supply was restored for 2 hours after 7 days of nitrogen deficiency stress, each of the 4 positive lines randomly selected for transformation of each promoter fragment showed a significant induction response to the restoration of nitrogen supply after nitrogen deficiency , proving that the promoter series are indeed promoters that regulate the expression of genes induced by nitrogen supply after nitrogen deficiency. And the regulatory element induced by nitrogen deficiency is within 982bp upstream of ATG.
注:图7a(Y8A不同转基因株系的GUS表达量检测)、图7b(Y8B不同转基因株系的GUS表达量检测)所示,其中不同数字编号代表不同的转基因株系,CK表示正常营养液培养,-N7d表示缺氮处理7d,+N2h表示缺氮处理7d后供氮2h,+N1d表示缺氮处理7d后供氮1d。所有数据均为根部样品的结果。Note: Figure 7a (GUS expression detection of different transgenic strains of Y8A) and Figure 7b (GUS expression detection of different Y8B transgenic strains), in which different numbers represent different transgenic strains, and CK represents normal nutrient solution For cultivation, -N7d means 7 days of nitrogen deficiency treatment, +N2h means 2 hours of nitrogen supply after 7 days of nitrogen deficiency treatment, +N1d means 1 day of nitrogen supply after 7 days of nitrogen deficiency treatment. All data are results from root samples.
参考文献:references:
1.李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展.生物技术通讯,2006,17:658-6611. Li Jie, Zhang Fucheng, Wang Wenquan, Huang Liyun. Advances in research on promoters in higher plants. Biotechnology Communications, 2006, 17:658-661
2.陆景陵.植物营养学(上部).北京:中国农业大学出版社.1994,1-362. Lu Jingling. Plant Nutrition (Part 1). Beijing: China Agricultural University Press. 1994, 1-36
3.聂丽娜,夏兰琴,徐兆师,高东尧,李琳,于卓,陈明,李连城,马有志.植物基因启动子的克隆及其功能研究进展.植物遗传资源学报,2008,9:385-3913. Nie Lina, Xia Lanqin, Xu Zhaoshi, Gao Dongyao, Li Lin, Yu Zhuo, Chen Ming, Li Liancheng, Ma Youzhi. Research progress on cloning and function of plant gene promoters. Journal of Plant Genetic Resources, 2008, 9:385-391
4.王光火,张奇春,黄昌勇.提高氮肥利用率,控制氮肥污染的新途径-SSNM.浙江大学学报,2003,29:67-704. Wang Guanghuo, Zhang Qichun, Huang Changyong. A New Way to Improve Nitrogen Fertilizer Utilization Efficiency and Control Nitrogen Fertilizer Pollution-SSNM. Journal of Zhejiang University, 2003,29:67-70
5.杨蓉,谢文章,张亮,朱小山,王国青,董赫,李志明,陈恳,陈德朴,程京.生物芯片研究进展.生物工程进展,1999,19:33-375. Yang Rong, Xie Wenwen, Zhang Liang, Zhu Xiaoshan, Wang Guoqing, Dong He, Li Zhiming, Chen Ken, Chen Depu, Cheng Jing. Biochip Research Progress. Bioengineering Progress, 1999,19:33-37
6.钟代斌,陆雅海,郭龙彪.植物遗传资源科学.2001,2:16-206. Zhong Daibin, Lu Yahai, Guo Longbiao. Plant Genetic Resources Science. 2001, 2:16-20
7.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆指南(第二版).金冬燕等(译).北京:科学出版社.1998,908-9087. J. Sambrook, E.F. Fritsch, T. Maniartis. A Guide to Molecular Cloning (Second Edition). Jin Dongyan et al. (translated). Beijing: Science Press. 1998, 908-908
8.Battraw M J,Hall T C.Histochemical analysis of CaMV35S promoter-beta-glucuronidase gene expression in transgenic rice plants.Plant Mol Biol,1990,15:527-5388. Battraw M J, Hall T C. Histochemical analysis of CaMV35S promoter-beta-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol, 1990, 15:527-538
9.Cai HM,Zhou Y,Xiao JH,Li XH,Zhang QF,Lian XM.2009.Overexpressedglutamine synthetase gene modifies nitrogen metabolism and abiotic stressresponses in rice.Plant Cell Reports,28:527-5379. Cai HM, Zhou Y, Xiao JH, Li XH, Zhang QF, Lian XM. 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Reports, 28:527-537
10.Elizabeth E.,Stanton B.,Leo S.and Andre H.NewAgrobacterium helperplasmids for gene transfer to plants.Transgenic Res2,1993,208-21810. Elizabeth E., Stanton B., Leo S. and Andre H. New Agrobacterium helper plasmamids for gene transfer to plants. Transgenic Res2, 1993, 208-218
11.Hiei Y,Ohta S,Komari T,Kumashiro T.Efficient transformation ofrice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of theboundaries of the T-DNA.The Plant Journal,1994,6(2):271-28211. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271- 282
12.Hirt H,Kogl M,Murbacher T,Heberle-Bors E.Evolutionary conservationof transcriptional machinery between yeast and plants as shown by theefficient expression from the CaMV35S promoter and35Sterminator.Curr Genet,1990,17:473-47912. Hirt H, Kogl M, Murbacher T, Heberle-Bors E. Evolutionary conservation of transcriptional machinery between yeast and plants as shown by the efficient expression from the CaMV35S promoter and 35Sterminator. Curr Genet, 1990, 17:473-479
13.Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Improvingplant drought salt and freezing tolerance by gene transfer of a singlestress-inducible transcription factor.Nat Biotechnol,1999,17:287-29113. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought salt and freezing tolerance by gene transfer of a singlestress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287-291
14.Mohammad.S H,Josette M,Michael K.U,Peter R.R,Narayana M.U.Over-expression of the rice OsAMT1-1gene increases ammonium uptake and content,butimpairs growth and development of plants under high ammoniumnutrition.Functional Plant Biology,2006,33:153-16314. Mohammad.S H, Josette M, Michael K.U, Peter R.R, Narayana M.U. Over-expression of the rice OsAMT1-1gene increases ammonium uptake and content, but impairs growth and development of plants under high ammoniumnutrition. Functional Plant Biology, 2006, 33: 153-163
15.Rai M,He C,Wu R.Comparative functional analysis of three abioticstress-inducible promoters in transgenic rice.Transgenic Res,2009,[Epub aheadof print]15. Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009, [Epub ahead of print]
16.Schledzewski K and Mendel R R.Quantitative transient geneexpression:Comparison of the promoters for maize polyubiquitin1,rice actin1,maize-derived Emu and CaMV35S in cells of barley,maize and tobacco.TransgenicRes,1994,3:249-25516. Schledzewski K and Mendel R R. Quantitative transient gene expression: Comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV35S in cells of barley, maize and tobacco. TransgenicRes, 1994, 3: 249-255
17.Yoshida S,Forno DA,Cook JH,Gomez KA.Laboratory manual forphysiological studies of rice,3rd ed.International Rice Research Institute,Manila,1976。17. Yoshida S, Forno DA, Cook JH, Gomez KA. Laboratory manual forphysiological studies of rice, 3rd ed. International Rice Research Institute, Manila, 1976.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310684154.2A CN104711260B (en) | 2013-12-13 | 2013-12-13 | Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310684154.2A CN104711260B (en) | 2013-12-13 | 2013-12-13 | Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104711260A CN104711260A (en) | 2015-06-17 |
| CN104711260B true CN104711260B (en) | 2017-07-07 |
Family
ID=53410978
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310684154.2A Expired - Fee Related CN104711260B (en) | 2013-12-13 | 2013-12-13 | Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104711260B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110257419A (en) * | 2019-06-06 | 2019-09-20 | 中国科学院南京土壤研究所 | It is a kind of improve nitrogen utilization efficiency gene tandem overexpression vector and its application |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2385347A1 (en) * | 1999-10-04 | 2001-04-12 | Medicago Inc. | Method for regulating transcription of foreign genes |
| CN103255141A (en) * | 2012-02-21 | 2013-08-21 | 华中农业大学 | Paddy rice nitrogen deficiency specific induced expression promoter Y5 and application thereof |
| CN103255140A (en) * | 2012-02-21 | 2013-08-21 | 华中农业大学 | Nitrogen supply recovery specific induced expression promoter Y2 after paddy rice nitrogen deficiency, and application thereof |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080141390A1 (en) * | 2006-12-08 | 2008-06-12 | Iowa State University Research Foundation, Inc. | Plant genes involved in nitrate uptake and metabolism |
-
2013
- 2013-12-13 CN CN201310684154.2A patent/CN104711260B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2385347A1 (en) * | 1999-10-04 | 2001-04-12 | Medicago Inc. | Method for regulating transcription of foreign genes |
| EP1222292A2 (en) * | 1999-10-04 | 2002-07-17 | Medicago Inc. | Method for regulating transcription of foreign genes in the presence of nitrogen |
| CN103255141A (en) * | 2012-02-21 | 2013-08-21 | 华中农业大学 | Paddy rice nitrogen deficiency specific induced expression promoter Y5 and application thereof |
| CN103255140A (en) * | 2012-02-21 | 2013-08-21 | 华中农业大学 | Nitrogen supply recovery specific induced expression promoter Y2 after paddy rice nitrogen deficiency, and application thereof |
Non-Patent Citations (1)
| Title |
|---|
| Genbank:AC108761.2;Genbank;《Genbank》;20041030;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104711260A (en) | 2015-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101378651B (en) | Nitrogen-efficient monocot plants | |
| US7560626B2 (en) | Promoter sequence obtained from rice and methods of use | |
| Brooks et al. | Plant promoters and terminators for high-precision bioengineering | |
| Han et al. | Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation | |
| CN100445384C (en) | Identification and utilization of a rice promoter CPIP with bidirectional expression activity specifically induced by stress | |
| CN102834517A (en) | Polynucleotides encoding nf-yb originating in jatropha and utilization thereof | |
| Erpen et al. | Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters | |
| CN109825501B (en) | Long-chain non-coding RNA T5120 from arabidopsis thaliana and application thereof | |
| Wei et al. | OsPIN1a gene participates in regulating negative phototropism of rice roots | |
| CN104928318A (en) | Application of rice OsLEA5c-1 gene in heavy metal resisting rice variety cultivation | |
| Wang et al. | Agrobacterium–mediated Transformation of Kalanchoe laxiflora | |
| CN118620940A (en) | Application of a rice transcription factor OsRF2b in negatively regulating rice nitrogen absorption | |
| CN104711260B (en) | Recover the promoter Y8A for the special induced expression of nitrogen and application after paddy rice nitrogen stress | |
| CN103255141B (en) | Paddy rice nitrogen deficiency specific induced expression promoter Y5 and application thereof | |
| CN114805508B (en) | Rice heading stage gene DHD3 function and application | |
| CN107365772B (en) | A plant pollen specific promoter PSP1 and its application | |
| CN103255140B (en) | Nitrogen supply recovery specific induced expression promoter Y2 after paddy rice nitrogen deficiency, and application thereof | |
| CN114644698B (en) | Application of rice gene OsREM20 in regulation of spike number and yield | |
| CN104402982A (en) | Rice histone lysine-modified recognition protein and encoding gene and application thereof | |
| CN102558321B (en) | Protein AtLPT4 related to plant tolerance to low phosphorus stress and its encoding gene and application | |
| US7208654B2 (en) | Plant regulatory sequences for selective control of gene expression | |
| CN107338249B (en) | Separation and application of seed specific expression promoter | |
| CN116064642B (en) | Application of TaDOF5.6 gene in efficient genetic transformation of wheat | |
| CN113151273B (en) | Abiotic stress inducible promoter and its application | |
| CN104098663B (en) | Soybean protein and encoding gene application in regulating plant drought resistance thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170707 Termination date: 20171213 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |