+

Liu, 1984 - Google Patents

Architecture for VLSI design of Reed-Solomon decoders

Liu, 1984

View PDF
Document ID
18208299725231740808
Author
Liu K
Publication year
Publication venue
IEEE Transactions on computers

External Links

Snippet

In this paper, the known decoding procedures for Reed-Solomon (RS) codes are modified to obtain a repetitive and recursive decoding technique which is suitable for VLSI implementation and pipelining. The chip architectures of two basic building blocks for VLSI …
Continue reading at ntrs.nasa.gov (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/158Finite field arithmetic processing
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1525Determination and particular use of error location polynomials
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7209Calculation via subfield, i.e. the subfield being GF(q) with q a prime power, e.g. GF ((2**m)**n) via GF(2**m)
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/147Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits

Similar Documents

Publication Publication Date Title
Liu Architecture for VLSI design of Reed-Solomon decoders
Wang et al. VLSI architectures for computing multiplications and inverses in GF (2 m)
US4873688A (en) High-speed real-time Reed-Solomon decoder
US6571368B1 (en) Systolic Reed-Solomon decoder
US4868828A (en) Architecture for time or transform domain decoding of reed-solomon codes
Wei A systolic power-sum circuit for GF (2/sup m/)
US5323402A (en) Programmable systolic BCH decoder
Shao et al. On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays
US4845713A (en) Method and apparatus for determining the coefficients of a locator polynomial
Wei VLSI architectures for computing exponentiations, multiplicative inverses, and divisions in GF (2/sup m/)
US20030192007A1 (en) Code-programmable field-programmable architecturally-systolic Reed-Solomon BCH error correction decoder integrated circuit and error correction decoding method
US5130990A (en) VLSI architecture for a Reed-Solomon decoder
US4797848A (en) Pipelined bit-serial Galois Field multiplier
Kwon et al. An area-efficient VLSI architecture of a Reed-Solomon decoder/encoder for digital VCRs
JP2000124813A (en) Reed-Solomon encoding device and method, and Reed-Solomon decoding device and method
US7089276B2 (en) Modular Galois-field subfield-power integrated inverter-multiplier circuit for Galois-field division over GF(256)
JPH10135848A (en) Reed-Solomon encoding apparatus and method
Fenn et al. Dual basis systolic multipliers for GF (2m)
US6052704A (en) Exponentiation circuit and inverter based on power-sum circuit for finite field GF(2m)
Skavantzos An efficient residue to weighted converter for a new residue number system
US5964826A (en) Division circuits based on power-sum circuit for finite field GF(2m)
US5971607A (en) Polynomial evaluator for use in a Reed-Solomon decoder
US5931894A (en) Power-sum circuit for finite field GF(2m)
Wang New bit-serial VLSI implementation of RNS FIR digital filters
Maki et al. VLSI Reed Solomon decoder design
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载