Zhiyuli et al., 2019 - Google Patents
Hsem: highly scalable node embedding for link prediction in very large-scale social networksZhiyuli et al., 2019
- Document ID
- 17103927569915345613
- Author
- Zhiyuli A
- Liang X
- Chen Y
- Publication year
- Publication venue
- World Wide Web
External Links
Snippet
Very large-scale social networks are typically sparse and dynamic and often have millions of nodes and billions of links. Link prediction in very large-scale networks is a challenging task for most existing methods. This paper investigates the link prediction problem in very large …
- 238000005295 random walk 0 abstract description 35
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
- G06F17/30321—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
- G06F17/30864—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
- G06F17/30867—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
- G06F17/30958—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation | |
| Moosavi et al. | Community detection in social networks using user frequent pattern mining | |
| Tagarelli et al. | Ensemble-based community detection in multilayer networks | |
| Sun et al. | When will it happen? relationship prediction in heterogeneous information networks | |
| Wang et al. | A perturbation-based framework for link prediction via non-negative matrix factorization | |
| Chen et al. | Exploiting structural and temporal evolution in dynamic link prediction | |
| Pan et al. | Clustering of designers based on building information modeling event logs | |
| Kumar et al. | Community-enhanced link prediction in dynamic networks | |
| Zhao et al. | Identifying advisor-advisee relationships from co-author networks via a novel deep model | |
| Wang et al. | Toward fair graph neural networks via real counterfactual samples | |
| Pei et al. | struc2gauss: Structural role preserving network embedding via Gaussian embedding | |
| Zhang et al. | Polarity-based graph neural network for sign prediction in signed bipartite graphs | |
| Liang et al. | Supervised ranking framework for relationship prediction in heterogeneous information networks | |
| Zhang et al. | Adaptive similarity function with structural features of network embedding for missing link prediction | |
| Zhiyuli et al. | Hsem: highly scalable node embedding for link prediction in very large-scale social networks | |
| Shakibian et al. | Multi-kernel one class link prediction in heterogeneous complex networks | |
| Li et al. | Self-training gnn-based community search in large attributed heterogeneous information networks | |
| Li et al. | Efficient community detection in heterogeneous social networks | |
| Lu et al. | Social network alignment: a bi-layer graph attention neural networks based method | |
| Zhu et al. | Multi-graph aggregated graph neural network for heterogeneous graph representation learning | |
| Zhang et al. | Development of FriendLink similarity metric for link prediction in weighted multiplex networks | |
| Hajiseyedjavadi et al. | Learning embeddings for multiplex networks using triplet loss | |
| Sajjadi et al. | A hybrid clustering approach for link prediction in heterogeneous information networks | |
| Liu et al. | Study on discovery method of cooperative research team based on improved Louvain algorithm | |
| Tan et al. | A novel fuzzy knowledge graph structure for decision making of multimodal big data |