+

Petrlík et al., 2019 - Google Patents

Coverage optimization in the cooperative surveillance task using multiple micro aerial vehicles

Petrlík et al., 2019

Document ID
13100696947380644680
Author
Petrlík M
Vonásek V
Saska M
Publication year
Publication venue
2019 IEEE international conference on systems, man and cybernetics (SMC)

External Links

Snippet

In the task of cooperative surveillance using Micro Aerial Vehicles (MAVs), MAVs cooperatively observe a given set of Areas of Interest (AoI). The missions are usually prepared in a decoupled manner: first, the sensing locations are found, followed by …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0044Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0027Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2201/00Application
    • G05D2201/02Control of position of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target

Similar Documents

Publication Publication Date Title
Petrlík et al. Coverage optimization in the cooperative surveillance task using multiple micro aerial vehicles
Basiri et al. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture
Saunders et al. Static and dynamic obstacle avoidance in miniature air vehicles
Mujumdar et al. Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles
Alejo et al. Collision-free 4D trajectory planning in unmanned aerial vehicles for assembly and structure construction
Bernardini et al. Planning the behaviour of low-cost quadcopters for surveillance missions
Alejo et al. Particle swarm optimization for collision-free 4d trajectory planning in unmanned aerial vehicles
Pritzl et al. Cooperative navigation and guidance of a micro-scale aerial vehicle by an accompanying UAV using 3D LiDAR relative localization
Lau et al. Real-time path planning algorithm for autonomous border patrol: design, simulation, and experimentation
Ahmed et al. An energy efficient IoD static and dynamic collision avoidance approach based on gradient optimization
Andert et al. Mapping and path planning in complex environments: An obstacle avoidance approach for an unmanned helicopter
Lei et al. A bio-inspired neural network approach to robot navigation and mapping with nature-inspired algorithms
Albaker et al. Unmanned aircraft collision detection and resolution: Concept and survey
Goricanec et al. Collision-free trajectory following with augmented artificial potential field using UAVs
Huang et al. A pesticide spraying mission allocation and path planning with multicopters
Zhang et al. A formation cooperative reconnaissance strategy for multi-UGVs in partially unknown environment
Izhboldina et al. Approach to UAV swarm control and collision-free reconfiguration
Zhang et al. Decentralized motion planning for multi quadrotor with obstacle and collision avoidance
Howlett et al. Learning real-time A* path planner for unmanned air vehicle target sensing
Sanchez-Lopez et al. A robust real-time path planner for the collision-free navigation of multirotor aerial robots in dynamic environments
CN118672252A (en) Method for autonomous assistance of aerial robot to ground blind vehicle cluster navigation
Marek et al. General Concepts in Swarm of Drones Control: Analysis and Implementation
Lebedev et al. Analysis of «Leader–Followers» Algorithms in Problem of Trajectory Planning for a Group of Multi-rotor UAVs
Wzorek et al. A framework for safe navigation of unmanned aerial vehicles in unknown environments
Lu et al. Autonomous flight for multi-UAV in GPS-denied environment
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载