Song et al., 2021 - Google Patents
Grover on SM3Song et al., 2021
View PDF- Document ID
- 12930785448556243687
- Author
- Song G
- Jang K
- Kim H
- Lee W
- Hu Z
- Seo H
- Publication year
- Publication venue
- International Conference on Information Security and Cryptology
External Links
Snippet
Grover's search algorithm accelerates the key search on the symmetric key cipher and the pre-image attack on the hash function. To perform Grover's search algorithm, the target algorithm should be implemented in a quantum circuit. For this reason, we propose an …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/60—Digital content management, e.g. content distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Song et al. | Grover on SM3 | |
| Baksi et al. | Quantum implementation and resource estimates for rectangle and knot | |
| US8411855B1 (en) | Size optimization for large elliptic curve cryptography scalar multiplication acceleration tables | |
| Grassi et al. | Quantum Algorithms for the-xor Problem | |
| Aubry et al. | Faster homomorphic encryption is not enough: Improved heuristic for multiplicative depth minimization of boolean circuits | |
| JP2017515195A (en) | Solve digital logic constraint problems via adiabatic quantum computation | |
| Banegas et al. | Low-communication parallel quantum multi-target preimage search | |
| Kashefi et al. | Comparison of quantum oracles | |
| Jang et al. | Parallel quantum addition for Korean block ciphers | |
| Meuli et al. | Xor-and-inverter graphs for quantum compilation | |
| Hou et al. | Quantum hash function based on controlled alternate lively quantum walks | |
| EP4016506B1 (en) | Softmax function secret calculation system, softmax function secret calculation device, softmax function secret calculation method, neural network secret calculation system, neural network secret learning system, and program | |
| Qassim et al. | Clifford recompilation for faster classical simulation of quantum circuits | |
| Jang et al. | Optimized implementation of quantum binary field multiplication with toffoli depth one | |
| Pereira | Efficient AGCD-based homomorphic encryption for matrix and vector arithmetic | |
| Jang et al. | Improved quantum analysis of SPECK and lowmc | |
| Yadav et al. | A practical-quantum differential attack on block ciphers | |
| Biasse et al. | A framework for reducing the overhead of the quantum oracle for use with Grover’s algorithm with applications to cryptanalysis of SIKE | |
| Peelam et al. | Enhancing security using quantum computing (ESUQC) | |
| Mosca et al. | On speeding up factoring with quantum SAT solvers | |
| Denisenko | Quantum differential cryptanalysis | |
| Kim et al. | Finding shortest vector using quantum NV Sieve on Grover | |
| Wang et al. | Quantum rotational cryptanalysis for preimage recovery of round-reduced keccak | |
| Wang et al. | Allocating rotational cryptanalysis-based preimage attack on 4-round Keccak-224 for quantum setting | |
| Lee et al. | Toffoli-depth reduction method preserving in-place quantum circuits and its application to SHA3-256. |