Perotti et al., 2023 - Google Patents
Yun: An open-source, 64-bit RISC-V-based vector processor with multi-precision integer and floating-point support in 65-nm CMOSPerotti et al., 2023
View PDF- Document ID
- 12459820834589471413
- Author
- Perotti M
- Cavalcante M
- Ottaviano A
- Liu J
- Benini L
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems II: Express Briefs
External Links
Snippet
The nature and heterogeneity of modern workloads force hardware designers to choose between general-purpose processors, which come with superior flexibility, and highly- tailored accelerators that boost performance and power efficiency at the cost of extreme …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/3001—Arithmetic instructions
- G06F9/30014—Arithmetic instructions with variable precision
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3889—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
- G06F9/3891—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute organised in groups of units sharing resources, e.g. clusters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/30036—Instructions to perform operations on packed data, e.g. vector operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3893—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator
- G06F9/3895—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros
- G06F9/3897—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros with adaptable data path
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/32—Address formation of the next instruction, e.g. incrementing the instruction counter, jump
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/499—Denomination or exception handling, e.g. rounding, overflow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
- G06F7/505—Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/3804—Details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/80—Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
- G06F15/8007—Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/68—Processors
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mach et al. | FPnew: An open-source multiformat floating-point unit architecture for energy-proportional transprecision computing | |
| Gautschi et al. | Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices | |
| Mach et al. | A transprecision floating-point architecture for energy-efficient embedded computing | |
| Lee et al. | Double MAC on a DSP: Boosting the performance of convolutional neural networks on FPGAs | |
| Perotti et al. | Yun: An open-source, 64-bit RISC-V-based vector processor with multi-precision integer and floating-point support in 65-nm CMOS | |
| Liu et al. | HReA: An energy-efficient embedded dynamically reconfigurable fabric for 13-dwarfs processing | |
| Koenig et al. | A hardware accelerator for computing an exact dot product | |
| Conti et al. | Marsellus: A heterogeneous RISC-V AI-IoT end-node SoC with 2–8 b DNN acceleration and 30%-boost adaptive body biasing | |
| Ottavi et al. | Dustin: A 16-cores parallel ultra-low-power cluster with 2b-to-32b fully flexible bit-precision and vector Lockstep execution mode | |
| Gonzalez et al. | A 16mm 2 106.1 GOPS/W heterogeneous RISC-V multi-core multi-accelerator SoC in low-power 22nm FinFET | |
| Calicchia et al. | Digital signal processing accelerator for RISC-V | |
| Dasika et al. | PEPSC: A power-efficient processor for scientific computing | |
| Mach et al. | A 0.80 pJ/flop, 1.24 Tflop/sW 8-to-64 bit transprecision floating-point unit for a 64 bit RISC-V processor in 22nm FD-SOI | |
| Yu et al. | CNN specific ISA extensions based on RISC-V processors | |
| Islam et al. | Resource-efficient RISC-V vector extension architecture for FPGA-based accelerators | |
| Tong et al. | Minimizing floating-point power dissipation via bit-width reduction | |
| Sethia et al. | A customized processor for energy efficient scientific computing | |
| Chien et al. | 10x10: A case study in highly-programmable and energy-efficient heterogeneous federated architecture | |
| Fornt et al. | Mix-GEMM: extending RISC-V CPUs for energy-efficient mixed-precision DNN inference using binary segmentation | |
| Hussain et al. | Effects of scaling a coarse-grain reconfigurable array on power and energy consumption | |
| Ratković et al. | Vector processing-aware advanced clock-gating techniques for low-power fused multiply-add | |
| Schmidt et al. | RVVe: A Minimal RISC-V Vector Processor for Embedded AI Acceleration | |
| Tan et al. | Performance evaluation and tuning of an opencl based matrix multiplier | |
| Wu et al. | Exploring the Performance Improvement of Tensor Processing Engines through Transformation in the Bit-weight Dimension of MACs | |
| Gilani et al. | Virtual floating-point units for low-power embedded processors |