Patronik et al., 2014 - Google Patents
Design of Reverse Converters for General RNS Moduli Sets $\{2^{k}, 2^{n}-1, 2^{n}+ 1, 2^{n+ 1}-1\} $ and $\{2^{k}, 2^{n}-1, 2^{n}+ 1, 2^{n-1}-1\} $($ n $ even)Patronik et al., 2014
- Document ID
- 11735942077719192018
- Author
- Patronik P
- Piestrak S
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
This paper presents the design methods of residue-to-binary (reverse) converters for two 4- moduli sets {2 k, 2 n-1, 2 n+ 1, 2 n+ 1-1} and {2 k, 2 n-1, 2 n+ 1, 2 n-1-1} for the pairs of positive integers n (n even) and arbitrary k> 0, which provide flexible dynamic ranges for the …
- 230000015572 biosynthetic process 0 abstract description 9
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5332—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by skipping over strings of zeroes or ones, e.g. using the Booth Algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/729—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic using representation by a residue number system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/147—Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/68—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using pulse rate multipliers or dividers pulse rate multipliers or dividers per se
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/3804—Details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/535—Indexing scheme relating to groups G06F7/535 - G06F7/5375
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/483—Indexing scheme relating to group G06F7/483
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Patronik et al. | Design of Reverse Converters for General RNS Moduli Sets $\{2^{k}, 2^{n}-1, 2^{n}+ 1, 2^{n+ 1}-1\} $ and $\{2^{k}, 2^{n}-1, 2^{n}+ 1, 2^{n-1}-1\} $($ n $ even) | |
| Ding et al. | High-speed ECC processor over NIST prime fields applied with Toom–Cook multiplication | |
| Kuang et al. | Low-cost high-performance VLSI architecture for Montgomery modular multiplication | |
| Bisheh Niasar et al. | Efficient hardware implementations for elliptic curve cryptography over Curve448 | |
| Doröz et al. | Evaluating the hardware performance of a million-bit multiplier | |
| Liu et al. | High performance modular multiplication for SIDH | |
| Su et al. | ReMCA: A reconfigurable multi-core architecture for full RNS variant of BFV homomorphic evaluation | |
| Javeed et al. | FPGA based high speed SPA resistant elliptic curve scalar multiplier architecture | |
| Adikari et al. | A fast hardware architecture for integer to\taunaf conversion for koblitz curves | |
| Kalaiyarasi et al. | Design of an efficient high speed radix-4 booth multiplier for both signed and unsigned numbers | |
| Patronik et al. | Design of Reverse Converters for the New RNS Moduli Set $\{2^{n}+ 1, 2^{n}-1, 2^{n}, 2^{n-1}+ 1\} $($ n $ odd) | |
| Pan et al. | Efficient digit‐serial modular multiplication algorithm on FPGA | |
| Balajishanmugam | High-performance computing based on residue number system: a review | |
| Paludo et al. | Number theoretic transform architecture suitable to lattice-based fully-homomorphic encryption | |
| Hiasat | Sign detector for the extended four‐moduli set | |
| Azarderakhsh et al. | FPGA-SIDH: High-performance implementation of supersingular isogeny Diffie-Hellman key-exchange protocol on FPGA | |
| Parihar et al. | Fast Montgomery modular multiplier for rivest–shamir–adleman cryptosystem | |
| Asif et al. | 65‐nm CMOS low‐energy RNS modular multiplier for elliptic‐curve cryptography | |
| Piestrak | Design of multi-residue generators using shared logic | |
| Guo et al. | Area-efficient modular reduction structure and memory access scheme for NTT | |
| Thampi et al. | Montgomery multiplier for faster cryptosystems | |
| Valencia et al. | The design space of the number theoretic transform: A survey | |
| Patronik et al. | Design of RNS reverse converters with constant shifting to residue datapath channels | |
| Patronik et al. | Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2 k, 2 n-1, 2 n+ 1, 2 n+ 1-1, 2 n-1-1}(n Even) | |
| Wang et al. | A novel fast modular multiplier architecture for 8,192-bit RSA cryposystem |