Tokan, 2014 - Google Patents
Optimization-based matching layer design for broadband dielectric lens antennasTokan, 2014
View PDF- Document ID
- 11420722649913152840
- Author
- Tokan F
- Publication year
- Publication venue
- Applied Computational Electromagnetics Society Journal (ACES)
External Links
Snippet
Dielectric lens antennas fabricated with a dense dielectric material, allow good power transfer efficiency through the lens and enable fabrication of low-cost and compact-size lens antennas. On the contrary, using dense dielectric material causes strong multiple internal …
- 238000005457 optimization 0 abstract description 22
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot aerials
- H01Q13/18—Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/30—Resonant aerials with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/26—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot aerials
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line aerials; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting aerial units or systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mukherjee et al. | A review of the recent advances in dielectric resonator antennas | |
| Afoakwa et al. | Wideband microstrip comb-line linear array antenna using stubbed-element technique for high sidelobe suppression | |
| Gharbi et al. | Design of patch array antennas for future 5G applications | |
| Fartookzadeh et al. | Efficiency improvement and cross-polarization reduction of single-fed frequency-scan leaky wave microstrip antennas by using an M-shape metasurface as the WAIM layer | |
| Tewari et al. | A novel reconfigurable H-plane Horn leaky wave Substrate Integrated Waveguide MIMO antenna for K band | |
| Ahmed et al. | Design of a compact patch antenna with bandwidth and efficiency improvement for UWB applications | |
| Kabiri et al. | Gain-bandwidth enhancement of 60GHz single-layer Fabry-Perot cavity antennas using sparse-array | |
| Tokan | Optimization-based matching layer design for broadband dielectric lens antennas | |
| Lakrit et al. | Design of a new high-gain multiband and wideband rectangular patch antenna for C, X, and Ku band applications | |
| Abdulhameed et al. | Enhancement of elevation angle for an array leaky-wave antenna. | |
| Kim et al. | A new coplanar waveguide continuous transverse stub (CPW-CTS) antenna for wireless communications | |
| Shelar et al. | Microstrip patch antenna with partial ground plane and parasitic patch for K band application in 5G | |
| Parthasarathy et al. | Design of linear 2× 2 array using substrate-integrated-waveguide patch antenna for 28GHz mm-wave applications | |
| Honari et al. | Design and analysis of a series-fed aperture-coupled antenna array with wideband and high-efficient characteristics | |
| Kushwaha et al. | Slot loaded electromagnetically coupled microstrip line fed microstrip patch antenna for wideband applications | |
| Chen et al. | Design of a low profile and low sidelobe metasurface antenna array for millimeter-wave application | |
| Kayithi et al. | Design and simulation of smart planar array antenna for sub (6 GHz) and 5G applications | |
| Yıldız et al. | A gain enhancement study on a vivaldi antenna for radar applications | |
| Zhang et al. | 45 linearly polarized substrate integrated waveguide-fed slot array antennas | |
| Wang et al. | Design of broadband phased array antenna at X-band | |
| Razavi et al. | Design investigation of a leaky wave antenna using HMSIW technique | |
| Zong et al. | A novel center-fed siw inclined slot antenna for active phased array | |
| Lee et al. | A study on the enhancement of gain and axial ratio bandwidth of the multilayer CP-DRA | |
| Keerthana et al. | High Isolation Compact Four Port MIMO Antenna with Slotted Ground for UWB Applications | |
| Rehman et al. | A novel high gain two port antenna for licensed and unlicensed millimeter-wave communication |