+

Potkonjak et al., 2002 - Google Patents

Multiple constant multiplications: Efficient and versatile framework and algorithms for exploring common subexpression elimination

Potkonjak et al., 2002

View PS
Document ID
10434438329440299579
Author
Potkonjak M
Srivastava M
Chandrakasan A
Publication year
Publication venue
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

External Links

Snippet

Many applications in DSP, telecommunications, graphics, and control have computations that either involve a large number of multiplications of one variable with several constants, or can easily be transformed to that form. A proper optimization of this part of the computation …
Continue reading at ftp.cs.ucla.edu (PS) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/147Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • G06F8/41Compilation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology

Similar Documents

Publication Publication Date Title
Potkonjak et al. Multiple constant multiplications: Efficient and versatile framework and algorithms for exploring common subexpression elimination
Efstathiou et al. Fast parallel-prefix modulo 2/sup n/+ 1 adders
Bhardwaj et al. Power-and area-efficient approximate wallace tree multiplier for error-resilient systems
Pasko et al. A new algorithm for elimination of common subexpressions
Jayashree et al. Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier
Kuang et al. Low-cost high-performance VLSI architecture for Montgomery modular multiplication
Potkonjak et al. Efficient substitution of multiple constant multiplications by shifts and additions using iterative pairwise matching
Peymandoust et al. Application of symbolic computer algebra in high-level data-flow synthesis
Verma et al. Data-flow transformations to maximize the use of carry-save representation in arithmetic circuits
Kumm et al. Optimization of constant matrix multiplication with low power and high throughput
Bisheh Niasar et al. Efficient hardware implementations for elliptic curve cryptography over Curve448
Shieh et al. Word-based Montgomery modular multiplication algorithm for low-latency scalable architectures
Imran et al. A versatile and flexible multiplier generator for large integer polynomials
Pinckney et al. Parallelized radix-4 scalable Montgomery multipliers
US7155473B2 (en) High-speed parallel-prefix modulo 2n-1 adders
Quan et al. High-level synthesis for large bit-width multipliers on FPGAs: a case study
Lu et al. Design and logic synthesis of a scalable, efficient quantum number theoretic transform
Peymandoust et al. Symbolic algebra and timing driven data-flow synthesis
Potkonjak et al. Pipelining: Just another transformation
Jeong et al. VLSI array synthesis for polynomial GCD computation and application to finite field division
Bernard Scalable hardware implementing high-radix Montgomery multiplication algorithm
Tawalbeh et al. A radix-4 scalable design
De Dinechin et al. Reconfigurable Arithmetic for High-Performance Computing
Ifrim et al. BPAP: FPGA Design of a RISC-like Processor for Elliptic Curve Cryptography Using Task-Level Parallel Programming in High-Level Synthesis
Benaissa et al. CMOS VLSI design of a high-speed Fermat number transform based convolver/correlator using three-input adders
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载