+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Testing electroweak baryogenesis with future colliders

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 24 November 2014
  • Volume 2014, article number 127, (2014)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Testing electroweak baryogenesis with future colliders
Download PDF
  • David Curtin1,
  • Patrick Meade1 &
  • Chiu-Tien Yu1 
  • 980 Accesses

  • 231 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Electroweak Baryogenesis (EWBG) is a compelling scenario for explaining the matter-antimatter asymmetry in the universe. Its connection to the electroweak phase transition makes it inherently testable. However, completely excluding this scenario can seem difficult in practice, due to the sheer number of proposed models. We investigate the possibility of postulating a “no-lose” theorem for testing EWBG in future e + e − or hadron colliders. As a first step we focus on a factorized picture of EWBG which separates the sources of a stronger phase transition from those that provide new sources of CP violation. We then construct a “nightmare scenario” that generates a strong first-order phase transition as required by EWBG, but is very difficult to test experimentally. We show that a 100 TeV hadron collider is both necessary and possibly sufficient for testing the parameter space of the nightmare scenario that is consistent with EWBG.

Article PDF

Download to read the full article text

Similar content being viewed by others

Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

Article Open access 13 March 2017

High-temperature electroweak baryogenesis with composite Higgs

Article Open access 19 December 2023

Lepton-mediated electroweak baryogenesis, gravitational waves and the 4τ final state at the collider

Article Open access 10 February 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Experimental Particle Physics
  • Experimental Nuclear Physics
  • Genetic testing
  • Particle Physics
  • Software Testing
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991)392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  2. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  3. F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  4. P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].

    ADS  Google Scholar 

  5. P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev. D 37 (1988) 1020 [INSPIRE].

    ADS  Google Scholar 

  6. S.Y. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].

  8. M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Riotto, Theories of baryogenesis, hep-ph/9807454 [INSPIRE].

  10. A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].

  12. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].

    ADS  Google Scholar 

  14. M.S. Carena, M. Quirós and C.E.M. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Laine, Electroweak phase transition beyond the standard model, hep-ph/0010275 [INSPIRE].

  17. J.R. Espinosa, Dominant two loop corrections to the MSSM finite temperature effective potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M.S. Carena, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys. B 524 (1998) 3 [hep-ph/9710401] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.J. Huber, P. John and M.G. Schmidt, Bubble walls, CP-violation and electroweak baryogenesis in the MSSM, Eur. Phys. J. C 20 (2001) 695 [hep-ph/0101249] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.M. Cline and K. Kainulainen, A new source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M.S. Carena, M. Quirós, M. Seco and C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys. B 650 (2003) 24 [hep-ph/0208043] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].

    ADS  Google Scholar 

  23. V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM baryogenesis and electric dipole moments: an update on the phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The effective theory of the light stop scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Quirós and M. Seco, Electroweak baryogenesis in the MSSM, Nucl. Phys. Proc. Suppl. 81 (2000) 63 [hep-ph/9903274] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Delepine, J.M. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Cohen and A. Pierce, Electroweak baryogenesis and colored scalars, Phys. Rev. D 85 (2012) 033006 [arXiv:1110.0482] [INSPIRE].

    ADS  Google Scholar 

  30. T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev. D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE].

    ADS  Google Scholar 

  31. G.D. Moore, Electroweak bubble wall friction: analytic results, JHEP 03 (2000) 006 [hep-ph/0001274] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. John and M.G. Schmidt, Do stops slow down electroweak bubble walls?, Nucl. Phys. B 598 (2001) 291 [Erratum ibid. B 648 (2003) 449] [hep-ph/0002050] [INSPIRE].

  33. P. John and M.G. Schmidt, Bubble wall velocity in the MSSM, hep-ph/0012077 [INSPIRE].

  34. A. Megevand and A.D. Sanchez, Velocity of electroweak bubble walls, Nucl. Phys. B 825 (2010) 151 [arXiv:0908.3663] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J.M. Moreno, M. Quirós and M. Seco, Bubbles in the supersymmetric standard model, Nucl. Phys. B 526 (1998) 489 [hep-ph/9801272] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Riotto, The more relaxed supersymmetric electroweak baryogenesis, Phys. Rev. D 58 (1998) 095009 [hep-ph/9803357] [INSPIRE].

    ADS  Google Scholar 

  37. V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].

    ADS  Google Scholar 

  38. D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa interactions and supersymmetric electroweak baryogenesis, Phys. Rev. Lett. 102 (2009) 061301 [arXiv:0808.1144] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. B 448 (1999) 321] [hep-ph/9708393] [INSPIRE].

  41. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys. B 716 (2005) 373 [hep-ph/0410135] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Konstandin, T. Prokopec and M.G. Schmidt, Axial currents from CKM matrix CP-violation and electroweak baryogenesis, Nucl. Phys. B 679 (2004) 246 [hep-ph/0309291] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Kozaczuk, S. Profumo, M.J. Ramsey-Musolf and C.L. Wainwright, Supersymmetric electroweak baryogenesis via resonant sfermion sources, Phys. Rev. D 86 (2012) 096001 [arXiv:1206.4100] [INSPIRE].

    ADS  Google Scholar 

  45. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D.J.H. Chung, A.J. Long and L.-T. Wang, The 125 GeV Higgs and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].

    ADS  Google Scholar 

  47. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].

    Article  ADS  Google Scholar 

  49. P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on new physics from baryogenesis and Large Hadron Collider data, Phys. Rev. Lett. 111 (2013) 221804 [arXiv:1305.4362] [INSPIRE].

    Article  ADS  Google Scholar 

  50. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  51. J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition, Phys. Rev. D 78 (2008) 063518 [arXiv:0711.3018] [INSPIRE].

    ADS  Google Scholar 

  53. J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].

    ADS  Google Scholar 

  55. T. Alanne, K. Tuominen and V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, arXiv:1407.0688 [INSPIRE].

  56. J.R. Espinosa and M. Quirós, Novel effects in electroweak breaking from a hidden sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].

    ADS  Google Scholar 

  57. S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs studies, arXiv:1407.5342 [INSPIRE].

  58. K. Fuyuto and E. Senaha, Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended SM, Phys. Rev. D 90 (2014) 015015 [arXiv:1406.0433] [INSPIRE].

    ADS  Google Scholar 

  59. M. Fairbairn and R. Hogan, Singlet fermionic dark matter and the electroweak phase transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Pietroni, The electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B 402 (1993) 27 [hep-ph/9207227] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A.T. Davies, C.D. Froggatt and R.G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett. B 372 (1996) 88 [hep-ph/9603388] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].

    ADS  Google Scholar 

  64. S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Baryogenesis in the MSSM, NMSSM and NMSSM, Nucl. Phys. A 785 (2007) 206 [hep-ph/0608017] [INSPIRE].

    Article  ADS  Google Scholar 

  65. W. Huang, Z. Kang, J. Shu, P. Wu and J.M. Yang, New insights of electroweak phase transition in NMSSM, arXiv:1405.1152 [INSPIRE].

  66. J. Kozaczuk, S. Profumo, L.S. Haskins and C.L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, arXiv:1407.4134 [INSPIRE].

  67. D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  69. S.P. Martin, Taming the Goldstone contributions to the effective potential, Phys. Rev. D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].

    ADS  Google Scholar 

  70. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  71. C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Katz and M. Perelstein, Higgs couplings and electroweak phase transition, JHEP 07 (2014) 108 [arXiv:1401.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  74. N. Craig, M. McCullough and A. Thalapillil, Probing the high-mass Higgs portal at the LHC and future colliders, to appear.

  75. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  77. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  78. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  79. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

    Article  Google Scholar 

  81. J. Anderson et al., Snowmass energy frontier simulations, arXiv:1309.1057 [INSPIRE].

  82. A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].

  83. A. Avetisyan et al., Snowmass energy frontier simulations using the open science grid (a Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].

  84. Energy frontier fast simulation webpage, http://www.snowmass2013.org/tiki-index.php?page=Energy Frontier FastSimulation, accessed 2014.

  85. X. Zhang and B.L. Young, Effective Lagrangian approach to electroweak baryogenesis: Higgs mass limit and electric dipole moments of fermion, Phys. Rev. D 49 (1994) 563 [hep-ph/9309269] [INSPIRE].

    ADS  Google Scholar 

  86. C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

    ADS  Google Scholar 

  87. ATLAS collaboration, Studies of the ATLAS potential for Higgs self-coupling measurements at a high luminosity LHC, ATL-PHYS-PUB-2013-001, CERN, Geneva Switzerland (2013).

  88. J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    Article  ADS  Google Scholar 

  89. F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].

    Article  ADS  Google Scholar 

  90. V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].

    Article  ADS  Google Scholar 

  91. W. Yao, Studies of measuring Higgs self-coupling with \( HH\to b\overline{b}\gamma \gamma \) at the future hadron colliders, arXiv:1308.6302 [INSPIRE].

  92. D.M. Asner et al., ILC Higgs white paper, arXiv:1310.0763 [INSPIRE].

  93. ILD collaboration, J. Tian and K. Fujii, Measurement of Higgs couplings and self-coupling at the ILC, PoS(EPS-HEP 2013)316 [arXiv:1311.6528] [INSPIRE].

  94. N. Craig, C. Englert and M. McCullough, New probe of naturalness, Phys. Rev. Lett. 111 (2013) 121803 [arXiv:1305.5251] [INSPIRE].

    Article  ADS  Google Scholar 

  95. C. Englert and M. McCullough, Modified Higgs sectors and NLO associated production, JHEP 07 (2013) 168 [arXiv:1303.1526] [INSPIRE].

    Article  ADS  Google Scholar 

  96. M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements, arXiv:1207.2516 [INSPIRE].

  97. A. Blondel et al., LEP3: a high luminosity e + e − collider to study the Higgs boson, arXiv:1208.0504 [INSPIRE].

  98. E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  99. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].

  100. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

    Article  ADS  Google Scholar 

  101. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].

    Article  Google Scholar 

  102. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  103. G.F. Giudice and A. Kusenko, A strongly interacting phase of the minimal supersymmetric model, Phys. Lett. B 439 (1998) 55 [hep-ph/9805379] [INSPIRE].

    Article  ADS  Google Scholar 

  104. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  105. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  106. L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Google Scholar 

  107. S. Weinberg, Gauge and global symmetries at high temperature, Phys. Rev. D 9 (1974) 3357 [INSPIRE].

    ADS  Google Scholar 

  108. D. Comelli and J.R. Espinosa, Bosonic thermal masses in supersymmetry, Phys. Rev. D 55 (1997) 6253 [hep-ph/9606438] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, 11794-3800, U.S.A.

    David Curtin, Patrick Meade & Chiu-Tien Yu

Authors
  1. David Curtin
    View author publications

    Search author on:PubMed Google Scholar

  2. Patrick Meade
    View author publications

    Search author on:PubMed Google Scholar

  3. Chiu-Tien Yu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Chiu-Tien Yu.

Additional information

ArXiv ePrint: 1409.0005

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtin, D., Meade, P. & Yu, CT. Testing electroweak baryogenesis with future colliders. J. High Energ. Phys. 2014, 127 (2014). https://doi.org/10.1007/JHEP11(2014)127

Download citation

  • Received: 18 September 2014

  • Revised: 21 October 2014

  • Accepted: 02 November 2014

  • Published: 24 November 2014

  • DOI: https://doi.org/10.1007/JHEP11(2014)127

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective field theories
  • Renormalization Group
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载