+
X
Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Improved opacity expansion at NNLO for medium induced gluon radiation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 October 2020
  • Volume 2020, article number 176, (2020)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Improved opacity expansion at NNLO for medium induced gluon radiation
Download PDF
  • João Barata1,2 &
  • Yacine Mehtar-Tani1,3 
  • 457 Accesses

  • 39 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

When an energetic parton propagates in a hot and dense QCD medium it loses energy by elastic scatterings or by medium-induced gluon radiation. The gluon radiation spectrum is suppressed at high frequency due to the LPM effect and encompasses two regimes that are known analytically: at high frequencies \( \omega >{\omega}_c=\hat{q}{L}^2 \), where \( \hat{q} \) is the jet quenching transport coefficient and L the length of the medium, the spectrum is dominated by a single hard scattering, whereas the regime ω < ωc is dominated by multiple low momentum transfers. In this paper, we extend a recent approach (dubbed the Improved Opacity Expansion (IOE)), which allows an analytic (and systematic) treatment beyond the multiple soft scattering approximation, matching this result with the single hard emission spectrum. We calculate in particular the NNLO correction analytically and numerically and show that it is strongly suppressed compared to the NLO indicating a fast convergence of the IOE scheme and thus, we conclude that it is sufficient to truncate the series at NLO. We also propose a prescription to compare the GW and the HTL potentials and relate their parameters for future phenomenological works.

Article PDF

Download to read the full article text

Similar content being viewed by others

Medium-induced radiative kernel with the Improved Opacity Expansion

Article Open access 23 September 2021

Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions

Article Open access 17 July 2020

Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma

Article Open access 15 March 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Biophotonics
  • Experimental Nuclear Physics
  • Multiphoton ionisation
  • Nuclear Physics
  • Photoacoustics
  • Theoretical Nuclear Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. PHENIX collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \( \sqrt{s_{NN}} \) = 130-GeV, Phys. Rev. Lett. 88 (2002) 022301 [nucl-ex/0109003] [INSPIRE].

  2. STAR collaboration, Centrality dependence of high pT hadron suppression in Au+Au collisions at \( \sqrt{s_{NN}} \) = 130-GeV, Phys. Rev. Lett. 89 (2002) 202301 [nucl-ex/0206011] [INSPIRE].

  3. ALICE collaboration, Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [INSPIRE].

  4. CMS collaboration, Study of high-pT charged particle suppression in PbPb compared to pp collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945 [arXiv:1202.2554] [INSPIRE].

  5. ATLAS collaboration, Measurement of charged-particle spectra in Pb+Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with the ATLAS detector at the LHC, JHEP 09 (2015) 050 [arXiv:1504.04337] [INSPIRE].

  6. J.-P. Blaizot and Y. Mehtar-Tani, Jet Structure in Heavy Ion Collisions, Int. J. Mod. Phys. E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].

    Article  ADS  Google Scholar 

  8. U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: Equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  14. B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L.D. Landau and I. Pomeranchuk, Electron cascade process at very high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735 [INSPIRE].

    Google Scholar 

  16. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].

    Article  ADS  Google Scholar 

  18. X. Feal and R. Vazquez, Intensity of gluon bremsstrahlung in a finite plasma, Phys. Rev. D 98 (2018) 074029 [arXiv:1811.01591] [INSPIRE].

    Article  ADS  Google Scholar 

  19. W. Ke, Y. Xu and S.A. Bass, Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region, Phys. Rev. C 100 (2019) 064911 [arXiv:1810.08177] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Y. Mehtar-Tani and K. Tywoniuk, Improved opacity expansion for medium-induced parton splitting, JHEP 06 (2020) 187 [arXiv:1910.02032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Mehtar-Tani, Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation, JHEP 07 (2019) 057 [arXiv:1903.00506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Andres, L. Apolinário and F. Dominguez, Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions, JHEP 07 (2020) 114 [arXiv:2002.01517] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Aurenche, F. Gelis and H. Zaraket, A simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York, U.S.A. (1965).

    MATH  Google Scholar 

  25. L. Apolinário, N. Armesto, J.G. Milhano and C.A. Salgado, Medium-induced gluon radiation and colour decoherence beyond the soft approximation, JHEP 02 (2015) 119 [arXiv:1407.0599] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P.B. Arnold, Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C.A. Salgado and U.A. Wiedemann, A dynamical scaling law for jet tomography, Phys. Rev. Lett. 89 (2002) 092303 [hep-ph/0204221] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Medium-induced gluon branching, JHEP 01 (2013) 143 [arXiv:1209.4585] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, USA

    João Barata & Yacine Mehtar-Tani

  2. Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, E-15782, Galicia, Spain

    João Barata

  3. RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973, USA

    Yacine Mehtar-Tani

Authors
  1. João Barata
    View author publications

    Search author on:PubMed Google Scholar

  2. Yacine Mehtar-Tani
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to João Barata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.02323

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barata, J., Mehtar-Tani, Y. Improved opacity expansion at NNLO for medium induced gluon radiation. J. High Energ. Phys. 2020, 176 (2020). https://doi.org/10.1007/JHEP10(2020)176

Download citation

  • Received: 07 April 2020

  • Revised: 27 August 2020

  • Accepted: 21 September 2020

  • Published: 27 October 2020

  • Version of record: 27 October 2020

  • DOI: https://doi.org/10.1007/JHEP10(2020)176

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy Ion Phenomenology
  • Jets
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载