+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 August 2019
  • Volume 2019, article number 122, (2019)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings
Download PDF
  • Motoi Endo1,2 &
  • Wen Yin3 
  • 610 Accesses

  • 92 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We propose a SUSY scenario to explain the current electron and muon g − 2 discrepancies without introducing lepton flavor mixings. Threshold corrections to the Yukawa couplings can enhance the electron g − 2 and flip the sign of the SUSY contributions. The mechanism predicts a flavor-dependent slepton mass spectrum. We show that it is compatible with the Higgs mediation scenario.

Article PDF

Download to read the full article text

Similar content being viewed by others

Lepton flavor violations in SUSY models for muon g − 2 with right-handed neutrinos

Article Open access 18 January 2021

Muon g − 2 in Higgs-anomaly mediation

Article Open access 25 June 2020

Flavor- and CP-safe explanation of gμ − 2 anomaly

Article Open access 03 March 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Chromosome abnormality
  • Elementary Particles, Quantum Field Theory
  • Gene Mutation
  • Particle Physics
  • Quantum Physics
  • Rare variants
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and \( \alpha \left({m}_Z^2\right) \)using newest hadronic cross-section data, Eur. Phys. J.C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].

  2. A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({m}_Z^2\right) \): a new data-based analysis, Phys. Rev.D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

    ADS  Google Scholar 

  3. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  4. B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys.C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].

  5. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett.100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

  6. D. Hanneke, S.F. Hoogerheide and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment, Phys. Rev.A 83 (2011) 052122 [arXiv:1009.4831] [INSPIRE].

  7. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order electron anomalous magnetic moment — Contribution of diagrams without closed lepton loops, Phys. Rev.D 91 (2015) 033006 [Erratum ibid.D 96 (2017) 019901] [arXiv:1412.8284] [INSPIRE].

  8. R.H. Parker et al., Measurement of the fine-structure constant as a test of the Standard Model, Science360 (2018) 191 [arXiv:1812.04130] [INSPIRE].

  9. H. Davoudiasl and W.J. Marciano, Tale of two anomalies, Phys. Rev.D 98 (2018) 075011 [arXiv:1806.10252] [INSPIRE].

  10. A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,eand implications for a large muon EDM, Phys. Rev.D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].

  11. J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, JHEP03 (2019) 008 [arXiv:1810.11028] [INSPIRE].

  12. B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett.B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].

  13. X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev.D 99 (2019) 095034 [arXiv:1812.02449] [INSPIRE].

  14. M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model, PTEP2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].

  15. M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t} \)bH +interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys.B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

  16. S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev.D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].

  17. L. Hofer, U. Nierste and D. Scherer, Resummation of tan-beta-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP10 (2009) 081 [arXiv:0907.5408] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Girrbach, S. Mertens, U. Nierste and S. Wiesenfeldt, Lepton flavour violation in the MSSM, JHEP05 (2010) 026 [arXiv:0910.2663] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys.B 555 (1999) 53 [hep-ph/9902443] [INSPIRE].

  20. M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g − 2, JHEP11(2013) 013 [arXiv:1309.3065] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Bach, J.-h. Park, D. Stöckinger and H. Stöckinger-Kim, Large muon (g − 2) with TeV-scale SUSY masses for tan β → ∞, JHEP10 (2015) 026 [arXiv:1504.05500] [INSPIRE].

  22. H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g − 2 and LHC results at \( \sqrt{s}=13 \)TeV, Phys. Rev. D99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].

  23. J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)μin SU(5) × U(1) supergravity models, Phys. Rev.D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].

  24. U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g−2 experiment, Phys. Rev.D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

  25. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid.D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  26. P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY two-loop corrections to the muon magnetic moment, Phys. Rev.D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].

  27. G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev.D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].

  28. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun.183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Endo, T. Moroi, M.M. Nojiri and Y. Shoji, Renormalization-scale uncertainty in the decay rate of false vacuum, JHEP01 (2016) 031 [arXiv:1511.04860] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan β, Phys. Lett.B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].

  31. K.S. Babu and C.F. Kolda, Higgs mediated B 0→ μ +μ −in minimal supersymmetry, Phys. Rev. Lett.84 (2000) 228 [hep-ph/9909476] [INSPIRE].

  32. M. Endo, T. Moroi and M.M. Nojiri, Footprints of supersymmetry on Higgs decay, JHEP04 (2015) 176 [arXiv:1502.03959] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev.D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].

  34. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett.65 (1990) 2939 [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to B→X sγ in supersymmetry, Nucl. Phys. B 534(1998) 3 [hep-ph/9806308] [INSPIRE].

  36. A.J. Buras et al., Universal unitarity triangle and physics beyond the standard model, Phys Lett.B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

  37. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  38. P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Running minimal flavor violation, Phys. Lett.B 668 (2008) 202 [arXiv:0805.3989] [INSPIRE].

  39. Y. Shimizu and W. Yin, Natural split mechanism for sfermions: N = 2 supersymmetry in phenomenology, Phys. Lett.B 754 (2016) 118 [arXiv:1509.04933] [INSPIRE].

  40. W. Yin, Fixed point and anomaly mediation in partially N = 2 supersymmetric standard models, Chin. Phys.C 42 (2018) 013104 [arXiv:1609.03527] [INSPIRE].

  41. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev.D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

  42. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].

  43. Y. Hamada, R. Kitano and W. Yin, Leptogenesis via neutrino oscillation magic, JHEP10 (2018) 178 [arXiv:1807.06582] [INSPIRE].

    Article  ADS  Google Scholar 

  44. T.T. Yanagida, W. Yin and N. Yokozaki, Flavor-safe light squarks in Higgs-anomaly mediation, JHEP04 (2018) 012 [arXiv:1801.05785] [INSPIRE].

    Article  Google Scholar 

  45. W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett.B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].

  46. T.T. Yanagida, W. Yin and N. Yokozaki, Nambu-Goldstone boson hypothesis for squarks and sleptons in pure gravity mediation, JHEP09 (2016) 086 [arXiv:1608.06618] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP07 (2015) 159 [arXiv:1504.05200] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Theory Center, IPNS, KEK, Tsukuba, Ibaraki, 305-0801, Japan

    Motoi Endo

  2. The Graduate University of Advanced Studies (Sokendai), Tsukuba, Ibaraki, 305-0801, Japan

    Motoi Endo

  3. Department of Physics, KAIST, Daejeon, 34141, Korea

    Wen Yin

Authors
  1. Motoi Endo
    View author publications

    Search author on:PubMed Google Scholar

  2. Wen Yin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Wen Yin.

Additional information

ArXiv ePrint: 1906.08768

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, M., Yin, W. Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings. J. High Energ. Phys. 2019, 122 (2019). https://doi.org/10.1007/JHEP08(2019)122

Download citation

  • Received: 02 July 2019

  • Revised: 22 July 2019

  • Accepted: 06 August 2019

  • Published: 22 August 2019

  • Version of record: 22 August 2019

  • DOI: https://doi.org/10.1007/JHEP08(2019)122

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载