+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

aMCfast: automation of fast NLO computations for PDF fits

  • Open access
  • Published: 28 August 2014
  • Volume 2014, article number 166, (2014)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
aMCfast: automation of fast NLO computations for PDF fits
Download PDF
  • Valerio Bertone1,
  • Rikkert Frederix1,
  • Stefano Frixione1,
  • Juan Rojo1,2 &
  • …
  • Mark Sutton3 
  • 725 Accesses

  • 59 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present the interface between MadGraph5_aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPLgrid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMCfast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix-element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface.

Article PDF

Download to read the full article text

Similar content being viewed by others

Speeding up MadGraph5_aMC@NLO

Article Open access 20 May 2021

The automation of next-to-leading order electroweak calculations

Article Open access 31 July 2018

NLO PDFs from the ABMP16 fit

Article Open access 11 June 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Ab Initio Calculations
  • Computational Physics and Simulations
  • Computational Complexity
  • Open Reading Frames
  • Open Source
  • Structure Prediction
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Forte and G. Watt, Progress in the determination of the partonic structure of the proton, Ann. Rev. Nucl. Part. Sci. 63 (2013) 291 [arXiv:1301.6754] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125 [arXiv:1211.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  3. E. Perez and E. Rizvi, The quark and gluon structure of the proton, Rep. Prog. Phys. 76 (2013) 046201 [arXiv:1208.1178] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Forte, Parton distributions at the dawn of the LHC, Acta Phys. Polon. B 41 (2010) 2859 [arXiv:1011.5247] [INSPIRE].

    Google Scholar 

  5. A. De Roeck and R.S. Thorne, Structure functions, Prog. Part. Nucl. Phys. 66 (2011) 727 [arXiv:1103.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  6. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  7. LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., On the relation of the LHeC and the LHC, arXiv:1211.5102 [INSPIRE].

  8. G. Bozzi, J. Rojo and A. Vicini, The impact of PDF uncertainties on the measurement of the W boson mass at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 113008 [arXiv:1104.2056] [INSPIRE].

    ADS  Google Scholar 

  9. J. Rojo, PDF uncertainties in the determination of the W boson mass and of the effective lepton mixing angle at the LHC, arXiv:1305.4833 [INSPIRE].

  10. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Gao et al., The CT10 NNLO global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].

    ADS  Google Scholar 

  13. S. Alekhin, J. Bluemlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].

    ADS  Google Scholar 

  14. ZEUS and H1 collaborations, A.M. Cooper-Sarkar, PDF fits at HERA, PoS(EPS-HEP2011)320 [arXiv:1112.2107] [INSPIRE].

  15. ATLAS collaboration, Measurement of the inclusive W ± and Z/γ cross sections in the electron and muon decay channels in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].

    ADS  Google Scholar 

  16. CMS collaboration, Measurement of the muon charge asymmetry in inclusive pp → W X production at \( \sqrt{s} \) = 7 TeV and an improved determination of light parton distribution functions, Phys. Rev. D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE].

    ADS  Google Scholar 

  17. ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].

    ADS  Google Scholar 

  18. CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].

    ADS  Google Scholar 

  19. ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].

    ADS  Google Scholar 

  20. ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s} \) = 2.76 TeV and comparison to the inclusive jet cross section at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].

    ADS  Google Scholar 

  21. B.J.A. Watt, P. Motylinski and R.S. Thorne, The effect of LHC jet data on MSTW PDFs, Eur. Phys. J. C 74 (2014) 2934 [arXiv:1311.5703] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. d’Enterria and J. Rojo, Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data, Nucl. Phys. B 860 (2012) 311 [arXiv:1202.1762] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].

    Article  ADS  Google Scholar 

  24. CMS collaboration, Measurement of associated W + charm production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 02 (2014) 013 [arXiv:1310.1138] [INSPIRE].

    ADS  Google Scholar 

  25. CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].

    ADS  Google Scholar 

  26. S.A. Malik and G. Watt, Ratios of W and Z cross sections at large boson p T as a constraint on PDFs and background to new physics, JHEP 02 (2014) 025 [arXiv:1304.2424] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.L. Mangano and J. Rojo, Cross section ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G.P. Salam and J. Rojo, A higher order perturbative parton evolution toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Botje, QCDNUM: fast QCD evolution and convolution, Comput. Phys. Commun. 182 (2011) 490 [arXiv:1005.1481] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: fast pQCD calculations for PDF fits, hep-ph/0609285 [INSPIRE].

  32. fastNLO collaboration, M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz and F. Stober, Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310 [INSPIRE].

  33. T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Guzzi, K. Lipka and S.-O. Moch, Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop, arXiv:1406.0386 [INSPIRE].

  36. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  37. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  38. L. Del Debbio, N.P. Hartland and S. Schumann, MCgrid: projecting cross section calculations on grids, Comput. Phys. Commun. 185 (2014) 2115 [arXiv:1312.4460] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  46. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.K. Ellis and J.C. Sexton, QCD radiative corrections to parton parton scattering, Nucl. Phys. B 269 (1986) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  50. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  51. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  53. D. Bourilkov, R.C. Group and M.R. Whalley, LHAPDF: PDF use from the Tevatron to the LHC, hep-ph/0605240 [INSPIRE].

  54. M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α 4 S ), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].

    Article  ADS  Google Scholar 

  55. ATLAS collaboration, Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 71 (2011) 1577 [arXiv:1012.1792] [INSPIRE].

    ADS  Google Scholar 

  56. CMS collaboration, Measurement of the tt production cross section in the dilepton channel in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 02 (2014) 024 [arXiv:1312.7582] [INSPIRE].

    ADS  Google Scholar 

  57. ATLAS collaboration, Measurement of the top quark pair cross section with ATLAS in pp collisions at \( \sqrt{s} \) = 7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton, Phys. Lett. B 717 (2012) 89 [arXiv:1205.2067] [INSPIRE].

    ADS  Google Scholar 

  58. CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].

    ADS  Google Scholar 

  59. ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].

    ADS  Google Scholar 

  60. ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector using 4.6 fb−1, Phys. Rev. D 89 (2014) 052004 [arXiv:1311.1440] [INSPIRE].

    ADS  Google Scholar 

  61. CMS collaboration, Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV, Phys. Rev. D 84 (2011) 052011 [arXiv:1108.2044] [INSPIRE].

    ADS  Google Scholar 

  62. CMS collaboration, Measurement of the isolated prompt photon production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 106 (2011) 082001 [arXiv:1012.0799] [INSPIRE].

    Article  Google Scholar 

  63. ATLAS collaboration, A study of the sensitivity to the proton parton distributions of the inclusive photon production cross section in pp collisions at 7 TeV measured by the ATLAS experiment at the LHC, ATL-PHYS-PUB-2013-018, CERN, Geneva Switzerland (2013).

  64. ATLAS collaboration, Dynamics of isolated-photon plus jet production in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector,Nucl. Phys. B 875 (2013) 483 [arXiv:1307.6795] [INSPIRE].

    ADS  Google Scholar 

  65. CMS collaboration, Rapidity distributions in exclusive Z + jet and γ + jet events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 88 (2013) 112009 [arXiv:1310.3082] [INSPIRE].

    ADS  Google Scholar 

  66. CMS collaboration, Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2014) 009 [arXiv:1311.6141] [INSPIRE].

    ADS  Google Scholar 

  67. L. Carminati et al., Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton, Europhys. Lett. 101 (2013) 61002 [arXiv:1212.5511] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  71. CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e + e − pairs in the Z mass region from \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 692 (2010) 232 [arXiv:0908.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  72. D0 collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\overline{p} \) → Z/gamma ∗ → e + e − + X events produced at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [INSPIRE].

    ADS  Google Scholar 

  73. CMS collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].

    ADS  Google Scholar 

  74. ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].

    ADS  Google Scholar 

  75. ATLAS collaboration, Measurement of the production cross section for Z/γ∗ in association with jets in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 032009 [arXiv:1111.2690] [INSPIRE].

    ADS  Google Scholar 

  76. CMS collaboration, Event shapes and azimuthal correlations in Z + jets events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 722 (2013) 238 [arXiv:1301.1646] [INSPIRE].

    ADS  Google Scholar 

  77. CMS collaboration, Jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at 7 TeV, CMS-PAS-SMP-12-017, CERN, Geneva Switzerland (2012).

  78. CMS collaboration, Measurement of Z production as a function of p T , Y , CMS-PAS-SMP-13-013, CERN, Geneva Switzerland (2013).

  79. S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].

    Article  ADS  Google Scholar 

  80. CMS collaboration, Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2014) 120 [arXiv:1402.1521] [INSPIRE].

    ADS  Google Scholar 

  81. R. Frederix et al., W and Z/γ∗ boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].

    Article  ADS  Google Scholar 

  82. U. Baur, F. Halzen, S. Keller, M.L. Mangano and K. Riesselmann, The charm content of W +1 jet events as a probe of the strange quark distribution function, Phys. Lett. B 318 (1993) 544 [hep-ph/9308370] [INSPIRE].

    Article  ADS  Google Scholar 

  83. W.J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].

    Article  ADS  Google Scholar 

  84. D.A. Mason, Measurement of the strange-antistrange asymmetry at NLO in QCD from NuTeV dimuon data, FERMILAB-THESIS-2006-01, Fermilab, Batavia U.S.A. (2006) [INSPIRE].

  85. NuTeV collaboration, D. Mason et al., Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in QCD from NuTeV dimuon data, Phys. Rev. Lett. 99 (2007) 192001 [INSPIRE].

    Article  ADS  Google Scholar 

  86. NuTeV collaboration, M. Goncharov et al., Precise measurement of dimuon production cross-sections in muon neutrino Fe and muon anti-neutrino Fe deep inelastic scattering at the Tevatron, Phys. Rev. D 64 (2001) 112006 [hep-ex/0102049] [INSPIRE].

    ADS  Google Scholar 

  87. NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].

    Article  ADS  Google Scholar 

  88. ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].

    ADS  Google Scholar 

  89. S. Alekhin et al., Determination of strange sea quark distributions from fixed-target and collider data, arXiv:1404.6469 [INSPIRE].

  90. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e − → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

  91. NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

    Valerio Bertone, Rikkert Frederix, Stefano Frixione & Juan Rojo

  2. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, U.K.

    Juan Rojo

  3. Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9RH, U.K.

    Mark Sutton

Authors
  1. Valerio Bertone
    View author publications

    Search author on:PubMed Google Scholar

  2. Rikkert Frederix
    View author publications

    Search author on:PubMed Google Scholar

  3. Stefano Frixione
    View author publications

    Search author on:PubMed Google Scholar

  4. Juan Rojo
    View author publications

    Search author on:PubMed Google Scholar

  5. Mark Sutton
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Juan Rojo.

Additional information

ArXiv ePrint: 1406.7693

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertone, V., Frederix, R., Frixione, S. et al. aMCfast: automation of fast NLO computations for PDF fits. J. High Energ. Phys. 2014, 166 (2014). https://doi.org/10.1007/JHEP08(2014)166

Download citation

  • Received: 15 July 2014

  • Accepted: 06 August 2014

  • Published: 28 August 2014

  • DOI: https://doi.org/10.1007/JHEP08(2014)166

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
  • NLO Computations

Profiles

  1. Valerio Bertone View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载