+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Taming infrared divergences in the effective potential

  • Open access
  • Published: 06 August 2014
  • Volume 2014, article number 34, (2014)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Taming infrared divergences in the effective potential
Download PDF
  • J. Elias-Miró1,2,
  • J. R. Espinosa1,3 &
  • T. Konstandin4 
  • 808 Accesses

  • 101 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The Higgs effective potential in the Standard Model (SM), calculated perturbatively, generically suffers from infrared (IR) divergences when the (field-dependent) tree-level mass of the Goldstone bosons goes to zero. Such divergences can affect both the potential and its first derivative and become worse with increasing loop order. In this paper we show that these IR divergences are spurious, we perform a simple resummation of all IR-problematic terms known (up to three loops) and explain how to extend the resummation to cure all such divergences to any order. The method is of general applicability and would work in scenarios other than the SM. Our discussion has some bearing on a scenario recently proposed as a mechanism for gauge mediation of scale breaking in the ultraviolet, in which it is claimed that the low-energy Higgs potential is non-standard. We argue that all non-decoupling effects from the heavy sector can be absorbed in the renormalization of low-energy parameters leading to a SM-like effective theory.

Article PDF

Download to read the full article text

Similar content being viewed by others

Avoiding the Goldstone Boson Catastrophe in general renormalisable field theories at two loops

Article Open access 14 December 2016

Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons

Article Open access 10 November 2017

The Hierarchy Problem and the Cosmological Constant Problem Revisited

Article 17 May 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Complexity
  • Particle Physics
  • Potential Theory
  • Scale Invariance
  • Theoretical Nuclear Physics
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  2. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Elias-Miró et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  7. ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  8. ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  9. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, CERN, Geneva Switzerland (2013).

  10. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  11. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  12. C. Ford, I. Jack and D.R.T. Jones, The Standard Model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].

  13. K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S.P. Martin, Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings, Phys. Rev. D 89 (2014) 013003 [arXiv:1310.7553] [INSPIRE].

    ADS  Google Scholar 

  16. C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.B. Einhorn and D.R.T. Jones, The effective potential, the renormalisation group and vacuum stability, JHEP 04 (2007) 051 [hep-ph/0702295] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Abel and A. Mariotti, Novel Higgs potentials from gauge mediation of exact scale breaking, arXiv:1312.5335 [INSPIRE].

  19. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  20. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric Standard Model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].

  22. M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K.I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Electroweak theory. Framework of on-shell renormalization and study of higher order effects, Prog. Theor. Phys. Suppl. 73 (1982) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].

    ADS  Google Scholar 

  26. J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric Standard Model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].

    ADS  Google Scholar 

  28. J.-P. Blaizot, E. Iancu and U. Reinosa, Renormalization of Φ derivable approximations in scalar field theories, Nucl. Phys. A 736 (2004) 149 [hep-ph/0312085] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G.C. Dorsch, S.J. Huber and J.M. No, Cosmological signatures of a UV-conformal Standard Model, arXiv:1403.5583 [INSPIRE].

  30. T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  31. E. D’Hoker and E. Farhi, Decoupling a fermion whose mass is generated by a Yukawa coupling: the general case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].

    Article  ADS  Google Scholar 

  33. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].

    ADS  Google Scholar 

  35. S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].

    ADS  Google Scholar 

  36. S.P. Martin, Taming the Goldstone contributions to the effective potential, arXiv:1406.2355 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. IFAE, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

    J. Elias-Miró & J. R. Espinosa

  2. Dept. de Física, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

    J. Elias-Miró

  3. ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

    J. R. Espinosa

  4. DESY, Notkestr. 85, 22607, Hamburg, Germany

    T. Konstandin

Authors
  1. J. Elias-Miró
    View author publications

    Search author on:PubMed Google Scholar

  2. J. R. Espinosa
    View author publications

    Search author on:PubMed Google Scholar

  3. T. Konstandin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to J. Elias-Miró.

Additional information

ArXiv ePrint: 1406.2652

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias-Miró, J., Espinosa, J.R. & Konstandin, T. Taming infrared divergences in the effective potential. J. High Energ. Phys. 2014, 34 (2014). https://doi.org/10.1007/JHEP08(2014)034

Download citation

  • Received: 13 June 2014

  • Accepted: 14 July 2014

  • Published: 06 August 2014

  • DOI: https://doi.org/10.1007/JHEP08(2014)034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spontaneous Symmetry Breaking
  • Standard Model
  • Higgs Physics
  • Beyond Standard Model
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载