+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Electroweak symmetry breaking and WIMP-FIMP dark matter

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 14 July 2022
  • Volume 2022, article number 91, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Electroweak symmetry breaking and WIMP-FIMP dark matter
Download PDF
  • Subhaditya Bhattacharya1,
  • Sreemanti Chakraborti  ORCID: orcid.org/0000-0001-6534-70972 &
  • Dipankar Pradhan  ORCID: orcid.org/0000-0002-2450-66771 
  • 563 Accesses

  • 12 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Electroweak Symmetry Breaking (EWSB) is known to produce a massive universe that we live in. However, it may also provide an important boundary for freeze-in or freeze-out of dark matter (DM) connected to Standard Model via Higgs portal as processes contributing to DM relic differ across the boundary. We explore such possibilities in a two-component DM framework, where a massive U(1)X gauge boson DM freezes-in and a scalar singlet DM freezes-out, that inherits the effect of EWSB for both the cases in a correlated way. Amongst different possibilities, we study two sample cases; first when one DM component freezes in and the other freezes out from thermal bath both necessarily before EWSB and the second, when both freeze-in and freeze-out occur after EWSB. We find some prominent distinctive features in the available parameter space of the model for these two cases, after addressing relic density and the recent most direct search constraints from XENON1T, some of which can be borrowed in a model independent way.

Article PDF

Download to read the full article text

Similar content being viewed by others

WIMP-FIMP Phenomenology Before and After EWSB

Chapter © 2024

Gravitational wave effects and phenomenology of a two-component dark matter model

Article Open access 10 May 2024

Dilution of dark matter relic density in singlet extension models

Article Open access 01 February 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cosmology
  • Dark Energy and Dark Matter
  • Elementary Particles, Quantum Field Theory
  • Particle Physics
  • Physics and Astronomy
  • Warm and dense matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

  4. T. Markkanen, A. Rajantie and S. Stopyra, Cosmological Aspects of Higgs Vacuum Metastability, Front. Astron. Space Sci. 5 (2018) 40 [arXiv:1809.06923] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Khoury and T. Steingasser, Gauge hierarchy from electroweak vacuum metastability, Phys. Rev. D 105 (2022) 055031 [arXiv:2108.09315] [INSPIRE].

  6. T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

  7. S.M. Bilenky and S.T. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [Erratum ibid. 60 (1988) 575] [INSPIRE].

  8. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

  9. M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].

  10. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

  11. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Gen. Rel. Grav. 41 (2009) 207 [Helv. Phys. Acta 6 (1933) 110] [INSPIRE].

  12. F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophys. J. 86 (1937) 217 [INSPIRE].

  13. Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39 (2001) 137 [astro-ph/0010594] [INSPIRE].

  14. J.S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, Ann. Rev. Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].

    Article  ADS  Google Scholar 

  15. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

  16. Planck collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  17. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

  18. E.W. Kolb and M.S. Turner, The Early Universe, in Frontiers in Physics 69, Addison-Wesley, Boston, MA, U.S.A. (1990) [INSPIRE].

  19. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  20. J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L. Bergstrom, Dark Matter Evidence, Particle Physics Candidates and Detection Methods, Annalen Phys. 524 (2012) 479 [arXiv:1205.4882] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Heeba, F. Kahlhoefer and P. Stöcker, Freeze-in production of decaying dark matter in five steps, JCAP 11 (2018) 048 [arXiv:1809.04849] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Biswas, S. Ganguly and S. Roy, Fermionic dark matter via UV and IR freeze-in and its possible X-ray signature, JCAP 03 (2020) 043 [arXiv:1907.07973] [INSPIRE].

    Article  ADS  Google Scholar 

  26. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].

    Article  ADS  Google Scholar 

  27. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  28. XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].

  29. PandaX-II collaboration, Results of dark matter search using the full PandaX-II exposure, Chin. Phys. C 44 (2020) 125001 [arXiv:2007.15469] [INSPIRE].

  30. LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D 101 (2020) 052002 [arXiv:1802.06039] [INSPIRE].

  31. P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. B Proc. Suppl. 200–202 (2010) 185 [arXiv:1001.2693] [INSPIRE].

  32. F. Kahlhoefer, Review of LHC Dark Matter Searches, Int. J. Mod. Phys. A 32 (2017) 1730006 [arXiv:1702.02430] [INSPIRE].

    Article  ADS  Google Scholar 

  33. L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].

  34. G. Bélanger et al., LHC-friendly minimal freeze-in models, JHEP 02 (2019) 186 [arXiv:1811.05478] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Chakraborti, V. Martin and P. Poulose, Freeze-in and freeze-out of dark matter with charged long-lived partners, JCAP 03 (2020) 057 [arXiv:1904.09945] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Aboubrahim and P. Nath, Detecting hidden sector dark matter at HL-LHC and HE-LHC via long-lived stau decays, Phys. Rev. D 99 (2019) 055037 [arXiv:1902.05538] [INSPIRE].

  37. A. Ghosh, T. Mondal and B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios, JHEP 12 (2017) 136 [arXiv:1706.06815] [INSPIRE].

    Article  ADS  Google Scholar 

  38. Q.-H. Cao, E. Ma, J. Wudka and C.P. Yuan, Multipartite dark matter, arXiv:0711.3881 [INSPIRE].

  39. K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].

  40. S. Profumo, K. Sigurdson and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016 [arXiv:0907.4374] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Biswas, D. Majumdar, A. Sil and P. Bhattacharjee, Two Component Dark Matter: A Possible Explanation of 130 GeV γ-Ray Line from the Galactic Centre, JCAP 12 (2013) 049 [arXiv:1301.3668] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Bian, R. Ding and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. S. Bhattacharya, P. Poulose and P. Ghosh, Multipartite Interacting Scalar Dark Matter in the light of updated LUX data, JCAP 04 (2017) 043 [arXiv:1607.08461] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. DiFranzo and G. Mohlabeng, Multi-component Dark Matter through a Radiative Higgs Portal, JHEP 01 (2017) 080 [arXiv:1610.07606] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Bhattacharya, P. Ghosh, T.N. Maity and T.S. Ray, Mitigating Direct Detection Bounds in Non-minimal Higgs Portal Scalar Dark Matter Models, JHEP 10 (2017) 088 [arXiv:1706.04699] [INSPIRE].

    Article  ADS  Google Scholar 

  48. B. Barman, S. Bhattacharya and M. Zakeri, Multipartite Dark Matter in SU(2)N extension of Standard Model and signatures at the LHC, JCAP 09 (2018) 023 [arXiv:1806.01129] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Chakraborti and P. Poulose, Interplay of Scalar and Fermionic Components in a Multi-component Dark Matter Scenario, Eur. Phys. J. C 79 (2019) 420 [arXiv:1808.01979] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Chakraborti, A. Dutta Banik and R. Islam, Probing Multicomponent Extension of Inert Doublet Model with a Vector Dark Matter, Eur. Phys. J. C 79 (2019) 662 [arXiv:1810.05595] [INSPIRE].

  51. S. Bhattacharya, P. Ghosh and N. Sahu, Multipartite Dark Matter with Scalars, Fermions and signatures at LHC, JHEP 02 (2019) 059 [arXiv:1809.07474] [INSPIRE].

  52. F. Elahi and S. Khatibi, Multi-Component Dark Matter in a Non-Abelian Dark Sector, Phys. Rev. D 100 (2019) 015019 [arXiv:1902.04384] [INSPIRE].

  53. S. Bhattacharya, P. Ghosh, A.K. Saha and A. Sil, Two component dark matter with inert Higgs doublet: neutrino mass, high scale validity and collider searches, JHEP 03 (2020) 090 [arXiv:1905.12583] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Biswas, D. Borah and D. Nanda, Type III seesaw for neutrino masses in U(1)B−L model with multi-component dark matter, JHEP 12 (2019) 109 [arXiv:1908.04308] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Bhattacharya, N. Chakrabarty, R. Roshan and A. Sil, Multicomponent dark matter in extended U(1)B−L: neutrino mass and high scale validity, JCAP 04 (2020) 013 [arXiv:1910.00612] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Betancur, G. Palacio and A. Rivera, Inert doublet as multicomponent dark matter, Nucl. Phys. B 962 (2021) 115276 [arXiv:2002.02036] [INSPIRE].

  57. C.H. Nam, D. Van Loi, L.X. Thuy and P. Van Dong, Multicomponent dark matter in noncommutative B − L gauge theory, JHEP 12 (2020) 029 [arXiv:2006.00845] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. G. Bélanger, A. Mjallal and A. Pukhov, Two dark matter candidates: The case of inert doublet and singlet scalars, Phys. Rev. D 105 (2022) 035018 [arXiv:2108.08061] [INSPIRE].

  59. A. Dutta Banik, M. Pandey, D. Majumdar and A. Biswas, Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar, Eur. Phys. J. C 77 (2017) 657 [arXiv:1612.08621] [INSPIRE].

  60. D. Borah, A. Dasgupta and S.K. Kang, Two-component dark matter with cogenesis of the baryon asymmetry of the Universe, Phys. Rev. D 100 (2019) 103502 [arXiv:1903.10516] [INSPIRE].

  61. S. Peyman Zakeri, S. Mohammad Moosavi Nejad, M. Zakeri and S. Yaser Ayazi, A Minimal Model For Two-Component FIMP Dark Matter: A Basic Search, Chin. Phys. C 42 (2018) 073101 [arXiv:1801.09115] [INSPIRE].

  62. M. Pandey, D. Majumdar and K.P. Modak, Two Component Feebly Interacting Massive Particle (FIMP) Dark Matter, JCAP 06 (2018) 023 [arXiv:1709.05955] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Duch, B. Grzadkowski and D. Huang, Strongly self-interacting vector dark matter via freeze-in, JHEP 01 (2018) 020 [arXiv:1710.00320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. B. Barman, S. Bhattacharya and B. Grzadkowski, Feebly coupled vector boson dark matter in effective theory, JHEP 12 (2020) 162 [arXiv:2009.07438] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. C. Delaunay, T. Ma and Y. Soreq, Stealth decaying spin-1 dark matter, JHEP 02 (2021) 010 [arXiv:2009.03060] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. G. Choi, T.T. Yanagida and N. Yokozaki, Feebly interacting U(1)B−L gauge boson warm dark matter and XENON1T anomaly, Phys. Lett. B 810 (2020) 135836 [arXiv:2007.04278] [INSPIRE].

  67. B. Barman and A. Ghoshal, Scale invariant FIMP miracle, JCAP 03 (2022) 003 [arXiv:2109.03259] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  69. W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].

  71. T.G. Steele, Z.-W. Wang, D. Contreras and R.B. Mann, Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model, Phys. Rev. Lett. 112 (2014) 171602 [arXiv:1310.1960] [INSPIRE].

  72. V. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

  73. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

  74. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

    Article  ADS  Google Scholar 

  75. T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Bhattacharya, J.L. Diaz-Cruz, E. Ma and D. Wegman, Dark Vector-Gauge-Boson Model, Phys. Rev. D 85 (2012) 055008 [arXiv:1107.2093] [INSPIRE].

  77. Y. Farzan and A.R. Akbarieh, VDM: A model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Z. Hu, C. Cai, Y.-L. Tang, Z.-H. Yu and H.-H. Zhang, Vector dark matter from split SU(2) gauge bosons, JHEP 07 (2021) 089 [arXiv:2103.00220] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].

    Article  ADS  Google Scholar 

  80. P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].

    Article  ADS  Google Scholar 

  81. M. Duch, B. Grzadkowski and M. McGarrie, A stable Higgs portal with vector dark matter, JHEP 09 (2015) 162 [arXiv:1506.08805] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. Duch and B. Grzadkowski, Resonance enhancement of dark matter interactions: the case for early kinetic decoupling and velocity dependent resonance width, JHEP 09 (2017) 159 [arXiv:1705.10777] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Yaser Ayazi and A. Mohamadnejad, Conformal vector dark matter and strongly first-order electroweak phase transition, JHEP 03 (2019) 181 [arXiv:1901.04168] [INSPIRE].

  84. G. Choi, T.T. Yanagida and N. Yokozaki, Dark photon dark matter in the minimal B − L model, JHEP 01 (2021) 057 [arXiv:2008.12180] [INSPIRE].

    Article  ADS  Google Scholar 

  85. O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  86. H. Davoudiasl and I.M. Lewis, Dark Matter from Hidden Forces, Phys. Rev. D 89 (2014) 055026 [arXiv:1309.6640] [INSPIRE].

  87. S. Bhattacharya and J. Wudka, Effective theories with dark matter applications, Int. J. Mod. Phys. D 30 (2021) 2130004 [arXiv:2104.01788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    Article  ADS  Google Scholar 

  89. F. Fortuna, P. Roig and J. Wudka, Effective field theory analysis of dark matter-standard model interactions with spin one mediators, JHEP 02 (2021) 223 [arXiv:2008.10609] [INSPIRE].

    Article  ADS  Google Scholar 

  90. S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP 10 (2014) 155 [arXiv:1407.1859] [INSPIRE].

    Article  ADS  Google Scholar 

  91. N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: Effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874] [INSPIRE].

  92. A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].

  93. Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].

  94. K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global Constraints on Effective Dark Matter Interactions: Relic Density, Direct Detection, Indirect Detection, and Collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].

  95. G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].

    Article  ADS  Google Scholar 

  96. M. Duch, B. Grzadkowski and J. Wudka, Classification of effective operators for interactions between the Standard Model and dark matter, JHEP 05 (2015) 116 [arXiv:1412.0520] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. M. Carena, A. Megevand, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].

  98. M.J. Baker and L. Mittnacht, Variations on the Vev Flip-Flop: Instantaneous Freeze-out and Decaying Dark Matter, JHEP 05 (2019) 070 [arXiv:1811.03101] [INSPIRE].

    Article  ADS  Google Scholar 

  99. V. De Romeri, D. Karamitros, O. Lebedev and T. Toma, Neutrino dark matter and the Higgs portal: improved freeze-in analysis, JHEP 10 (2020) 137 [arXiv:2003.12606] [INSPIRE].

    Article  ADS  Google Scholar 

  100. M. Chianese and S.F. King, The Dark Side of the Littlest Seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas, JCAP 09 (2018) 027 [arXiv:1806.10606] [INSPIRE].

    Article  ADS  Google Scholar 

  101. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  102. K. Kannike, Vacuum Stability of a General Scalar Potential of a Few Fields, Eur. Phys. J. C 76 (2016) 324 [Erratum ibid. 78 (2018) 355] [arXiv:1603.02680] [INSPIRE].

  103. J. Chakrabortty, P. Konar and T. Mondal, Copositive Criteria and Boundedness of the Scalar Potential, Phys. Rev. D 89 (2014) 095008 [arXiv:1311.5666] [INSPIRE].

  104. G. Bhattacharyya and D. Das, Scalar sector of two-Higgs-doublet models: A minireview, Pramana 87 (2016) 40 [arXiv:1507.06424] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].

  106. G. Chalons, D. Lopez-Val, T. Robens and T. Stefaniak, The Higgs singlet extension at LHC Run 2, PoS DIS2016 (2016) 113 [arXiv:1606.07793] [INSPIRE].

  107. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

  108. E. Fuchs, O. Matsedonskyi, I. Savoray and M. Schlaffer, Collider searches for scalar singlets across lifetimes, JHEP 04 (2021) 019 [arXiv:2008.12773] [INSPIRE].

    Article  ADS  Google Scholar 

  109. CMS collaboration, Searches for Higgs boson rare and invisible decays at CMS, PoS ICHEP2020 (2021) 070 [INSPIRE].

  110. ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, ATLAS-CONF-2020-052 (2020).

  111. S. Okawa and Y. Omura, Light mass window of lepton portal dark matter, JHEP 02 (2021) 231 [arXiv:2011.04788] [INSPIRE].

    Article  ADS  Google Scholar 

  112. B. Barman, S. Bhattacharya and M. Zakeri, Non-Abelian Vector Boson as FIMP Dark Matter, JCAP 02 (2020) 029 [arXiv:1905.07236] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. J. Buch, P. Ralegankar and V. Rentala, Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess, JCAP 10 (2017) 028 [arXiv:1609.04821] [INSPIRE].

    Article  ADS  Google Scholar 

  114. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  115. J.C. Criado, A. Djouadi, M. Pérez-Victoria and J. Santiago, A complete effective field theory for dark matter, JHEP 07 (2021) 081 [arXiv:2104.14443] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  116. A. Falkowski, G. Isabella and C.S. Machado, On-shell effective theory for higher-spin dark matter, SciPost Phys. 10 (2021) 101 [arXiv:2011.05339] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  117. Wolfram Research, Inc., Mathematica, version 12.3.1.0 (2021).

  118. J. Redondo and M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 02 (2009) 005 [arXiv:0811.0326] [INSPIRE].

    Article  ADS  Google Scholar 

  119. M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Dynamic Freeze-In: Impact of Thermal Masses and Cosmological Phase Transitions on Dark Matter Production, JHEP 03 (2018) 114 [arXiv:1712.03962] [INSPIRE].

    Article  ADS  Google Scholar 

  120. M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Improved limits for Higgs-portal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803 [arXiv:1708.02245] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Indian Institute of Technology Guwahati, Assam, 781039, India

    Subhaditya Bhattacharya & Dipankar Pradhan

  2. LAPTh, Université Grenoble Alpes, USMB, CNRS, F-74940, Annecy, France

    Sreemanti Chakraborti

Authors
  1. Subhaditya Bhattacharya
    View author publications

    Search author on:PubMed Google Scholar

  2. Sreemanti Chakraborti
    View author publications

    Search author on:PubMed Google Scholar

  3. Dipankar Pradhan
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Sreemanti Chakraborti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2110.06985

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Chakraborti, S. & Pradhan, D. Electroweak symmetry breaking and WIMP-FIMP dark matter. J. High Energ. Phys. 2022, 91 (2022). https://doi.org/10.1007/JHEP07(2022)091

Download citation

  • Received: 05 March 2022

  • Revised: 23 May 2022

  • Accepted: 09 June 2022

  • Published: 14 July 2022

  • Version of record: 14 July 2022

  • DOI: https://doi.org/10.1007/JHEP07(2022)091

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Models for Dark Matter
  • Multi-Higgs Models
  • Particle Nature of Dark Matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载