+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

On the perturbative expansion at high temperature and implications for cosmological phase transitions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 June 2021
  • Volume 2021, article number 69, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
On the perturbative expansion at high temperature and implications for cosmological phase transitions
Download PDF
  • Oliver Gould  ORCID: orcid.org/0000-0002-7815-33791 &
  • Tuomas V. I. Tenkanen2,3,4 
  • 545 Accesses

  • 83 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We revisit the perturbative expansion at high temperature and investigate its convergence by inspecting the renormalisation scale dependence of the effective potential. Although at zero temperature the renormalisation group improved effective potential is scale independent at one-loop, we show how this breaks down at high temperature, due to the misalignment of loop and coupling expansions. Following this, we show how one can recover renormalisation scale independence at high temperature, and that it requires computations at two-loop order. We demonstrate how this resolves some of the huge theoretical uncertainties in the gravitational wave signal of first-order phase transitions, though uncertainties remain stemming from the computation of the bubble nucleation rate.

Article PDF

Download to read the full article text

Similar content being viewed by others

Combining thermal resummation and gauge invariance for electroweak phase transition

Article Open access 09 November 2022

Higher-order corrections to the bubble-nucleation rate at finite temperature

Article Open access 24 February 2022

Renormalization of Yukawa model with sterile scalar in curved spacetime

Article Open access 30 May 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Computational Cosmology
  • Cosmology
  • Low Temperature Physics
  • Phase Transition and Critical Phenomena
  • Phase Transitions and Multiphase Systems
  • Statistical Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  2. C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M.B. Hindmarsh, M. Lüben, J. Lumma and M. Pauly, Phase transitions in the early universe, SciPost Phys. Lect. Notes 24 (2021) 1 [arXiv:2008.09136] [INSPIRE].

    Google Scholar 

  5. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  6. S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011 [INSPIRE].

    Article  ADS  Google Scholar 

  7. G.M. Harry, P. Fritschel, D.A. Shaddock, W. Folkner and E.S. Phinney, Laser interferometry for the big bang observer, Class. Quant. Grav. 23 (2006) 4887 [Erratum ibid. 23 (2006) 7361] [INSPIRE].

  8. W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE].

    Article  ADS  Google Scholar 

  9. NANOGrav collaboration, The NANOGrav 12.5 yr data set: search for an isotropic stochastic gravitational-wave background, Astrophys. J. Lett. 905 (2020) L34 [arXiv:2009.04496] [INSPIRE].

  10. A. Addazi, Y.-F. Cai, Q. Gan, A. Marciano and K. Zeng, NANOGrav results and dark first order phase transitions, arXiv:2009.10327 [INSPIRE].

  11. Y. Nakai, M. Suzuki, F. Takahashi and M. Yamada, Gravitational waves and dark radiation from dark phase transition: connecting NANOGrav pulsar timing data and Hubble tension, Phys. Lett. B 816 (2021) 136238 [arXiv:2009.09754] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. H.-H. Li, G. Ye and Y.-S. Piao, Is the NANOGrav signal a hint of dS decay during inflation?, Phys. Lett. B 816 (2021) 136211 [arXiv:2009.14663] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. W. Ratzinger and P. Schwaller, Whispers from the dark side: confronting light new physics with NANOGrav data, SciPost Phys. 10 (2021) 047 [arXiv:2009.11875] [INSPIRE].

    Article  ADS  Google Scholar 

  14. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  15. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  16. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.J. Ramsey-Musolf, The electroweak phase transition: a collider target, JHEP 09 (2020) 179 [arXiv:1912.07189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Kozaczuk, M.J. Ramsey-Musolf and J. Shelton, Exotic Higgs boson decays and the electroweak phase transition, Phys. Rev. D 101 (2020) 115035 [arXiv:1911.10210] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Quirós, Finite temperature field theory and phase transitions, talk given at the ICTP Summer School in High-Energy Physics and Cosmology, Trieste, Italy (1999) [hep-ph/9901312] [INSPIRE].

  20. J.M. Cline, Baryogenesis, talk given at the Les Houches Summer School — Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, July 31–August 25, Les Houches, France (2006) [hep-ph/0609145] [INSPIRE].

  21. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition, and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  22. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Basler and M. Mühlleitner, BSMPT (Beyond the Standard Model Phase Transitions): a tool for the electroweak phase transition in extended Higgs sectors, Comput. Phys. Commun. 237 (2019) 62 [arXiv:1803.02846] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Athron, C. Balázs, A. Fowlie and Y. Zhang, PhaseTracer: tracing cosmological phases and calculating transition properties, Eur. Phys. J. C 80 (2020) 567 [arXiv:2003.02859] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.J. Huber and M.G. Schmidt, Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet, Nucl. Phys. B 606 (2001) 183 [hep-ph/0003122] [INSPIRE].

  26. C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

  27. S.W. Ham, Y.S. Jeong and S.K. Oh, Electroweak phase transition in an extension of the standard model with a real Higgs singlet, J. Phys. G 31 (2005) 857 [hep-ph/0411352] [INSPIRE].

  28. D. Bödeker, L. Fromme, S.J. Huber and M. Seniuch, The baryon asymmetry in the standard model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].

  29. L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].

  30. C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.R. Espinosa and M. Quirós, Novel effects in electroweak breaking from a hidden sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].

  32. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition, Phys. Rev. D 78 (2008) 063518 [arXiv:0711.3018] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.R. Espinosa, T. Konstandin, J.M. No and M. Quirós, Some cosmological implications of hidden sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Funakubo and E. Senaha, Electroweak phase transition, critical bubbles and sphaleron decoupling condition in the MSSM, Phys. Rev. D 79 (2009) 115024 [arXiv:0905.2022] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.M. Cline, G. Laporte, H. Yamashita and S. Kraml, Electroweak phase transition and LHC signatures in the singlet Majoron model, JHEP 07 (2009) 040 [arXiv:0905.2559] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Kehayias and S. Profumo, Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials, JCAP 03 (2010) 003 [arXiv:0911.0687] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  40. G. Gil, P. Chankowski and M. Krawczyk, Inert dark matter and strong electroweak phase transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].

    Article  ADS  Google Scholar 

  42. L. Leitao, A. Megevand and A.D. Sanchez, Gravitational waves from the electroweak phase transition, JCAP 10 (2012) 024 [arXiv:1205.3070] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.C. Dorsch, S.J. Huber and J.M. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Jiang, L. Bian, W. Huang and J. Shu, Impact of a complex singlet: electroweak baryogenesis and dark matter, Phys. Rev. D 93 (2016) 065032 [arXiv:1502.07574] [INSPIRE].

    Article  ADS  Google Scholar 

  47. N. Blinov, J. Kozaczuk, D.E. Morrissey and C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking, Phys. Rev. D 92 (2015) 035012 [arXiv:1504.05195] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J. Kozaczuk, Bubble expansion and the viability of singlet-driven electroweak baryogenesis, JHEP 10 (2015) 135 [arXiv:1506.04741] [INSPIRE].

    Article  ADS  Google Scholar 

  49. V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt and A. Wlotzka, Strong first order electroweak phase transition in the CP-conserving 2HDM revisited, JHEP 02 (2017) 121 [arXiv:1612.04086] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C.-W. Chiang, M.J. Ramsey-Musolf and E. Senaha, Standard model with a complex scalar singlet: cosmological implications and theoretical considerations, Phys. Rev. D 97 (2018) 015005 [arXiv:1707.09960] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Basler, M. Mühlleitner and J. Wittbrodt, The CP-violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production, JHEP 03 (2018) 061 [arXiv:1711.04097] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Chala, C. Krause and G. Nardini, Signals of the electroweak phase transition at colliders and gravitational wave observatories, JHEP 07 (2018) 062 [arXiv:1802.02168] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P.S.B. Dev, F. Ferrer, Y. Zhang and Y. Zhang, Gravitational waves from first-order phase transition in a simple axion-like particle model, JCAP 11 (2019) 006 [arXiv:1905.00891] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  56. D. Croon, O. Gould, P. Schicho, T.V.I. Tenkanen and G. White, Theoretical uncertainties for cosmological first-order phase transitions, JHEP 04 (2021) 055 [arXiv:2009.10080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Papaefstathiou and G. White, The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels, JHEP 05 (2021) 099 [arXiv:2010.00597] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. J.R. Espinosa and M. Quirós, Improved metastability bounds on the standard model Higgs mass, Phys. Lett. B 353 (1995) 257 [hep-ph/9504241] [INSPIRE].

  60. L. Delle Rose, C. Marzo and A. Urbano, On the fate of the Standard Model at finite temperature, JHEP 05 (2016) 050 [arXiv:1507.06912] [INSPIRE].

    Article  Google Scholar 

  61. S.J. Huber, T. Konstandin, G. Nardini and I. Rues, Detectable gravitational waves from very strong phase transitions in the general NMSSM, JCAP 03 (2016) 036 [arXiv:1512.06357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. R.-G. Cai, M. Sasaki and S.-J. Wang, The gravitational waves from the first-order phase transition with a dimension-six operator, JCAP 08 (2017) 004 [arXiv:1707.03001] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Braconi, M.-C. Chen, G. Gaswint and G. Gaswint, Revisiting electroweak phase transition with varying Yukawa coupling constants, Phys. Rev. D 100 (2019) 015032 [arXiv:1810.02522] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. C.-W. Chiang and B.-Q. Lu, First-order electroweak phase transition in a complex singlet model with ℤ3 symmetry, JHEP 07 (2020) 082 [arXiv:1912.12634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. M. Carena, C. Krause, Z. Liu and Y. Wang, A new approach to electroweak symmetry non-restoration, arXiv:2104.00638 [INSPIRE].

  66. https://www.cosmos.esa.int/web/lisa/lisa-documents

  67. L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    Article  ADS  Google Scholar 

  68. J.I. Kapusta, Quantum chromodynamics at high temperature, Nucl. Phys. B 148 (1979) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  69. R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].

  70. P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

  71. Z. Fodor and A. Hebecker, Finite temperature effective potential to order g4, λ2 and the electroweak phase transition, Nucl. Phys. B 432 (1994) 127 [hep-ph/9403219] [INSPIRE].

  72. W. Buchmüller, Z. Fodor and A. Hebecker, Thermodynamics of the electroweak phase transition, Nucl. Phys. B 447 (1995) 317 [hep-ph/9502321] [INSPIRE].

  73. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].

  74. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

  75. E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

  76. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].

  77. J.O. Andersen and M. Strickland, Resummation in hot field theories, Annals Phys. 317 (2005) 281 [hep-ph/0404164] [INSPIRE].

  78. M. Laine and A. Vuorinen, Basics of thermal field theory, vol. 925, Springer (2016), 10.1007/978-3-319-31933-9 [arXiv:1701.01554] [INSPIRE].

  79. J. Ghiglieri, A. Kurkela, M. Strickland and A. Vuorinen, Perturbative thermal QCD: formalism and applications, Phys. Rept. 880 (2020) 1 [arXiv:2002.10188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. P.M. Schicho, T.V.I. Tenkanen and J. Österman, Robust approach to thermal resummation: Standard Model meets a singlet, arXiv:2102.11145 [INSPIRE].

  81. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

  82. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

  83. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].

  84. J.O. Andersen, Dimensional reduction of the two Higgs doublet model at high temperature, Eur. Phys. J. C 11 (1999) 563 [hep-ph/9804280] [INSPIRE].

  85. M. Losada, The two loop finite temperature effective potential of the MSSM and baryogenesis, Nucl. Phys. B 537 (1999) 3 [hep-ph/9806519] [INSPIRE].

  86. M. Losada, Mixing effects in the finite temperature effective potential of the MSSM with a light stop, Nucl. Phys. B 569 (2000) 125 [hep-ph/9905441] [INSPIRE].

  87. M. Laine and M. Losada, Two loop dimensional reduction and effective potential without temperature expansions, Nucl. Phys. B 582 (2000) 277 [hep-ph/0003111] [INSPIRE].

  88. A. Gynther, Electroweak phase diagram at finite lepton number density, Phys. Rev. D 68 (2003) 016001 [hep-ph/0303019] [INSPIRE].

  89. A. Gynther and M. Vepsäläinen, Pressure of the standard model at high temperatures, JHEP 01 (2006) 060 [hep-ph/0510375] [INSPIRE].

  90. A. Gynther and M. Vepsäläinen, Pressure of the standard model near the electroweak phase transition, JHEP 03 (2006) 011 [hep-ph/0512177] [INSPIRE].

  91. M. Laine and M. Meyer, Standard model thermodynamics across the electroweak crossover, JCAP 07 (2015) 035 [arXiv:1503.04935] [INSPIRE].

    Article  ADS  Google Scholar 

  92. T. Gorda, A. Helset, L. Niemi, T.V.I. Tenkanen and D.J. Weir, Three-dimensional effective theories for the two Higgs doublet model at high temperature, JHEP 02 (2019) 081 [arXiv:1802.05056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. L. Niemi, H.H. Patel, M.J. Ramsey-Musolf, T.V.I. Tenkanen and D.J. Weir, Electroweak phase transition in the real triplet extension of the SM: Dimensional reduction, Phys. Rev. D 100 (2019) 035002 [arXiv:1802.10500] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T.V.I. Tenkanen and V. Vaskonen, On the validity of perturbative studies of the electroweak phase transition in the two Higgs doublet model, JHEP 06 (2019) 075 [arXiv:1904.01329] [INSPIRE].

    Article  ADS  Google Scholar 

  95. L. Niemi, M.J. Ramsey-Musolf, T.V.I. Tenkanen and D.J. Weir, Thermodynamics of a two-step electroweak phase transition, Phys. Rev. Lett. 126 (2021) 171802 [arXiv:2005.11332] [INSPIRE].

    Article  ADS  Google Scholar 

  96. O. Gould, Real scalar phase transitions: a nonperturbative analysis, JHEP 04 (2021) 057 [arXiv:2101.05528] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. L. Niemi, P. Schicho and T.V.I. Tenkanen, Singlet-assisted electroweak phase transition at two loops, arXiv:2103.07467 [INSPIRE].

  98. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    Article  ADS  Google Scholar 

  99. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    Article  ADS  Google Scholar 

  100. B.M. Kastening, Renormalization group improvement of the effective potential in massive ϕ4 theory, Phys. Lett. B 283 (1992) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  101. M. Bando, T. Kugo, N. Maekawa and H. Nakano, Improving the effective potential, Phys. Lett. B 301 (1993) 83 [hep-ph/9210228] [INSPIRE].

  102. C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

  103. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995).

    Google Scholar 

  104. J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1.

    Google Scholar 

  106. X.-p. Sun, Monte Carlo studies of three-dimensional O(1) and O(4) ϕ4 theory related to BEC phase transition temperatures, Phys. Rev. E 67 (2003) 066702 [hep-lat/0209144] [INSPIRE].

  107. J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011) [INSPIRE].

  108. P. Basler, M. Muhlleitner and J. Müller, BSMPT v2 a tool for the electroweak phase transition and the baryon asymmetry of the universe in extended Higgs sectors, arXiv:2007.01725 [INSPIRE].

  109. A. Ekstedt and J. Löfgren, A critical look at the electroweak phase transition, JHEP 12 (2020) 136 [arXiv:2006.12614] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. J.O. Andersen, The Screening mass squared in hot scalar theory to order g-5 using effective field theory, Phys. Rev. D 57 (1998) 5004 [hep-ph/9708276] [INSPIRE].

  111. J.P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045] [INSPIRE].

  112. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

  113. A.V. Manohar, Introduction to effective field theories, arXiv:1804.05863 [INSPIRE].

  114. T. Brauner, T.V.I. Tenkanen, A. Tranberg, A. Vuorinen and D.J. Weir, Dimensional reduction of the Standard Model coupled to a new singlet scalar field, JHEP 03 (2017) 007 [arXiv:1609.06230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  115. H.-K. Guo, K. Sinha, D. Vagie and G. White, The benefits of diligence: how precise are predicted gravitational wave spectra in models with phase transitions?, arXiv:2103.06933 [INSPIRE].

  116. R. Jinno, S. Lee, H. Seong and M. Takimoto, Gravitational waves from first-order phase transitions: towards model separation by bubble nucleation rate, JCAP 11 (2017) 050 [arXiv:1708.01253] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  117. D. Cutting, M. Hindmarsh and D.J. Weir, Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions, Phys. Rev. Lett. 125 (2020) 021302 [arXiv:1906.00480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  118. F. Giese, T. Konstandin and J. van de Vis, Model-independent energy budget of cosmological first-order phase transitions — A sound argument to go beyond the bag model, JCAP 07 (2020) 057 [arXiv:2004.06995] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  119. H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories, JCAP 01 (2021) 001 [arXiv:2007.08537] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  120. F. Giese, T. Konstandin, K. Schmitz and J. Van De Vis, Model-independent energy budget for LISA, JCAP 01 (2021) 072 [arXiv:2010.09744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  121. A. Azatov and M. Vanvlasselaer, Bubble wall velocity: heavy physics effects, JCAP 01 (2021) 058 [arXiv:2010.02590] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  122. J.S. Langer, Statistical theory of the decay of metastable states, Annals Phys. 54 (1969) 258 [INSPIRE].

    Article  ADS  Google Scholar 

  123. J. Langer, Metastable states, Physica 73 (1974) 61.

    Article  ADS  Google Scholar 

  124. D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  125. M. Barroso Mancha, T. Prokopec and B. Swiezewska, Field-theoretic derivation of bubble-wall force, JHEP 01 (2021) 070 [arXiv:2005.10875] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  126. Z.-G. Mou, P.M. Saffin and A. Tranberg, Simulations of a bubble wall interacting with an electroweak plasma, JHEP 02 (2021) 189 [arXiv:2006.13620] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  127. S. Höche, J. Kozaczuk, A.J. Long, J. Turner and Y. Wang, Towards an all-orders calculation of the electroweak bubble wall velocity, JCAP 03 (2021) 009 [arXiv:2007.10343] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  128. B. Laurent and J.M. Cline, Fluid equations for fast-moving electroweak bubble walls, Phys. Rev. D 102 (2020) 063516 [arXiv:2007.10935] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  129. M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].

  130. A. Papaefstathiou and G. White, The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels, JHEP 05 (2021) 099 [arXiv:2010.00597] [INSPIRE].

    Article  ADS  Google Scholar 

  131. C.-x. Zhai and B.M. Kastening, The free energy of hot gauge theories with fermions through g5, Phys. Rev. D 52 (1995) 7232 [hep-ph/9507380] [INSPIRE].

  132. E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].

  133. K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].

  134. A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N) scalar field theory, JHEP 04 (2007) 094 [hep-ph/0703307] [INSPIRE].

  135. J.O. Andersen, L. Kyllingstad and L.E. Leganger, Pressure to order g8logg of massless ϕ4 theory at weak coupling, JHEP 08 (2009) 066 [arXiv:0903.4596] [INSPIRE].

    Article  ADS  Google Scholar 

  136. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  137. K. Kajantie, M. Karjalainen, M. Laine and J. Peisa, Three-dimensional U(1) gauge + Higgs theory as an effective theory for finite temperature phase transitions, Nucl. Phys. B 520 (1998) 345 [hep-lat/9711048] [INSPIRE].

  138. M. Laine and K. Rummukainen, Two Higgs doublet dynamics at the electroweak phase transition: a nonperturbative study, Nucl. Phys. B 597 (2001) 23 [hep-lat/0009025] [INSPIRE].

  139. M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at mh ≃ 126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].

    Article  ADS  Google Scholar 

  140. D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].

    Article  ADS  Google Scholar 

  141. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  142. S.Y. Lee and A.M. Sciaccaluga, Evaluation of higher order effective potentials with dimensional regularization, Nucl. Phys. B 96 (1975) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  143. A.K. Rajantie, Feynman diagrams to three loops in three-dimensional field theory, Nucl. Phys. B 480 (1996) 729 [Erratum ibid. 513 (1998) 761] [hep-ph/9606216] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, U.K.

    Oliver Gould

  2. Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden

    Tuomas V. I. Tenkanen

  3. Tsung Dao Lee Institute/Shanghai Jiao Tong University, Shanghai, 200240, China

    Tuomas V. I. Tenkanen

  4. Shanghai Key Laboratory for Particle Physics and Cosmology, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Jiao Tong University, Shanghai, 200240, China

    Tuomas V. I. Tenkanen

Authors
  1. Oliver Gould
    View author publications

    Search author on:PubMed Google Scholar

  2. Tuomas V. I. Tenkanen
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Oliver Gould.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.04399

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gould, O., Tenkanen, T.V.I. On the perturbative expansion at high temperature and implications for cosmological phase transitions. J. High Energ. Phys. 2021, 69 (2021). https://doi.org/10.1007/JHEP06(2021)069

Download citation

  • Received: 12 April 2021

  • Accepted: 15 May 2021

  • Published: 09 June 2021

  • Version of record: 09 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)069

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Renormalization Group
  • Resummation
  • Thermal Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载