+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dispersion relation for hadronic light-by-light scattering: two-pion contributions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 April 2017
  • Volume 2017, article number 161, (2017)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Dispersion relation for hadronic light-by-light scattering: two-pion contributions
Download PDF
  • Gilberto Colangelo1,
  • Martin Hoferichter2,3,
  • Massimiliano Procura4 &
  • …
  • Peter Stoffer5,6 
  • 975 Accesses

  • 385 Citations

  • 8 Altmetric

  • 3 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g − 2) μ , including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ ∗ γ ∗ → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, a π − box μ  = − 15.9(2) × 10− 11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ ∗ γ ∗ → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f 0(500) to HLbL scattering in (g − 2) μ . We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a π ‐ box μ  + a ππ,π ‐ pole LHC μ,J = 0  = − 24(1) × 10− 11.

Article PDF

Download to read the full article text

Similar content being viewed by others

Pion light-by-light contributions to the muon g − 2

Article Open access 19 September 2016

Dispersion relation for hadronic light-by-light scattering: pion pole

Article Open access 23 October 2018

Axial-vector and scalar contributions to hadronic light-by-light scattering

Article Open access 22 April 2025

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Angular momentum of light
  • Diffraction
  • Light-Matter Interaction
  • Neutron Scattering
  • SAXS
  • X-Ray Scattering
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Muon g − 2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  2. P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys. 88 (2016) 035009 [arXiv:1507.07956] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Muon g − 2 collaboration, J. Grange et al., Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].

  4. N. Saito, A novel precision measurement of muon g − 2 and EDM at J-PARC, AIP Conf. Proc. 1467 (2012) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  5. T.P. Gorringe and D.W. Hertzog, Precision Muon Physics, Prog. Part. Nucl. Phys. 84 (2015) 73 [arXiv:1506.01465] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Jegerlehner and A. Nyffeler, The Muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Prades, E. de Rafael and A. Vainshtein, The Hadronic Light-by-Light Scattering Contribution to the Muon and Electron Anomalous Magnetic Moments, Adv. Ser. Direct. High Energy Phys. 20 (2009) 303 [arXiv:0901.0306] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Benayoun et al., Hadronic contributions to the muon anomalous magnetic moment Workshop. (g − 2) μ : Quo vadis? Workshop. Mini proceedings, arXiv:1407.4021.

  9. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2) μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

    ADS  Google Scholar 

  11. J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Higher Order Hadronic Corrections to the Anomalous Magnetic Moment of the Muon, Phys. Lett. B 61 (1976) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α(M 2 Z ) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

  13. A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Blum et al., The Muon (g − 2) Theory Value: Present and Future, arXiv:1311.2198 [INSPIRE].

  16. E. de Rafael, Hadronic contributions to the muon g − 2 and low-energy QCD, Phys. Lett. B 322 (1994) 239 [hep-ph/9311316] [INSPIRE].

  17. J. Bijnens, E. Pallante and J. Prades, Hadronic light by light contributions to the muon g−2 in the large-N c limit, Phys. Rev. Lett. 75 (1995) 1447 [Erratum ibid. 75 (1995) 3781] [hep-ph/9505251] [INSPIRE].

  18. J. Bijnens, E. Pallante and J. Prades, Analysis of the hadronic light by light contributions to the muon g − 2, Nucl. Phys. B 474 (1996) 379 [hep-ph/9511388] [INSPIRE].

  19. J. Bijnens, E. Pallante and J. Prades, Comment on the pion pole part of the light by light contribution to the muon g − 2, Nucl. Phys. B 626 (2002) 410 [hep-ph/0112255] [INSPIRE].

  20. M. Hayakawa, T. Kinoshita and A.I. Sanda, Hadronic light by light scattering effect on muon g − 2, Phys. Rev. Lett. 75 (1995) 790 [hep-ph/9503463] [INSPIRE].

  21. M. Hayakawa, T. Kinoshita and A.I. Sanda, Hadronic light by light scattering contribution to muon g − 2, Phys. Rev. D 54 (1996) 3137 [hep-ph/9601310] [INSPIRE].

  22. M. Hayakawa and T. Kinoshita, Pseudoscalar pole terms in the hadronic light by light scattering contribution to muon g − 2, Phys. Rev. D 57 (1998) 465 [Erratum ibid. D 66 (2002) 019902] [hep-ph/9708227] [INSPIRE].

  23. M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Hadronic light by light scattering contribution to the muon g − 2: An effective field theory approach, Phys. Rev. Lett. 88 (2002) 071802 [hep-ph/0111059] [INSPIRE].

  24. M. Knecht and A. Nyffeler, Hadronic light by light corrections to the muon g − 2: The Pion pole contribution, Phys. Rev. D 65 (2002) 073034 [hep-ph/0111058] [INSPIRE].

  25. M.J. Ramsey-Musolf and M.B. Wise, Hadronic light by light contribution to muon g − 2 in chiral perturbation theory, Phys. Rev. Lett. 89 (2002) 041601 [hep-ph/0201297] [INSPIRE].

  26. K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].

  27. T. Goecke, C.S. Fischer and R. Williams, Hadronic light-by-light scattering in the muon g−2: a Dyson-Schwinger equation approach, Phys. Rev. D 83 (2011) 094006 [Erratum ibid. D 86 (2012) 099901] [arXiv:1012.3886] [INSPIRE].

  28. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Stoffer, Dispersive Treatments of K ℓ4 Decays and Hadronic Light-by-Light Scattering, arXiv:1412.5171 [INSPIRE].

  31. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  32. V. Pauk and M. Vanderhaeghen, Anomalous magnetic moment of the muon in a dispersive approach, Phys. Rev. D 90 (2014) 113012 [arXiv:1409.0819] [INSPIRE].

    ADS  Google Scholar 

  33. T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 114 (2015) 012001 [arXiv:1407.2923] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Green, O. Gryniuk, G. von Hippel, H.B. Meyer and V. Pascalutsa, Lattice QCD calculation of hadronic light-by-light scattering, Phys. Rev. Lett. 115 (2015) 222003 [arXiv:1507.01577] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin and C. Lehner, Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment, Phys. Rev. D 93 (2016) 014503 [arXiv:1510.07100] [INSPIRE].

    ADS  Google Scholar 

  36. A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor π 0 → γ ∗ γ ∗, Phys. Rev. D 94 (2016) 074507 [arXiv:1607.08174] [INSPIRE].

    ADS  Google Scholar 

  37. T. Blum et al., Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass, Phys. Rev. Lett. 118 (2017) 022005 [arXiv:1610.04603] [INSPIRE].

    Article  ADS  Google Scholar 

  38. F. Stollenwerk, C. Hanhart, A. Kupsć, U.-G. Meißner and A. Wirzba, Model-independent approach to η → π + π − γ and η ′ → π + π − γ, Phys. Lett. B 707 (2012) 184 [arXiv:1108.2419] [INSPIRE].

    Article  ADS  Google Scholar 

  39. F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S.P. Schneider, B. Kubis and F. Niecknig, The ω → π 0 γ ∗ and ϕ → π 0 γ ∗ transition form factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

    ADS  Google Scholar 

  41. M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ, Phys. Rev. D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].

    ADS  Google Scholar 

  42. C. Hanhart, A. Kupsć, U.-G. Meißner, F. Stollenwerk and A. Wirzba, Dispersive analysis for η → γγ ∗, Eur. Phys. J. C 73 (2013) 2668 [Erratum ibid. C 75 (2015) 242] [arXiv:1307.5654] [INSPIRE].

  43. M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig and S.P. Schneider, Dispersive analysis of the pion transition form factor, Eur. Phys. J. C 74 (2014) 3180 [arXiv:1410.4691] [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. Kubis and J. Plenter, Anomalous decay and scattering processes of the η meson, Eur. Phys. J. C 75 (2015) 283 [arXiv:1504.02588] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner and A. Wirzba, Towards an improved understanding of η → γ ∗ γ ∗, arXiv:1509.02194 [INSPIRE].

  46. A. Nyffeler, Precision of a data-driven estimate of hadronic light-by-light scattering in the muon g − 2: Pseudoscalar-pole contribution, Phys. Rev. D 94 (2016) 053006 [arXiv:1602.03398] [INSPIRE].

    ADS  Google Scholar 

  47. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, arXiv:1701.06554 [INSPIRE].

  48. K.T. Engel, H.H. Patel and M.J. Ramsey-Musolf, Hadronic light-by-light scattering and the pion polarizability, Phys. Rev. D 86 (2012) 037502 [arXiv:1201.0809] [INSPIRE].

    ADS  Google Scholar 

  49. K.T. Engel and M.J. Ramsey-Musolf, The Muon Anomalous Magnetic Moment and the Pion Polarizability, Phys. Lett. B 738 (2014) 123 [arXiv:1309.2225] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J. Bijnens and J. Relefors, Pion light-by-light contributions to the muon g − 2, JHEP 09 (2016) 113 [arXiv:1608.01454] [INSPIRE].

    Article  ADS  Google Scholar 

  51. W.A. Bardeen and W.K. Tung, Invariant amplitudes for photon processes, Phys. Rev. 173 (1968) 1423 [Erratum ibid. D 4 (1971) 3229] [INSPIRE].

  52. R. Tarrach, Invariant Amplitudes for Virtual Compton Scattering Off Polarized Nucleons Free from Kinematical Singularities, Zeros and Constraints, Nuovo Cim. A 28 (1975) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  53. R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge (1966).

    MATH  Google Scholar 

  54. R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π + π − ,π 0 π 0 with chiral constraints, Eur. Phys. J. C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE].

  55. M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγ → ππ, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE].

    Article  ADS  Google Scholar 

  56. B. Moussallam, Unified dispersive approach to real and virtual photon-photon scattering at low energy, Eur. Phys. J. C 73 (2013) 2539 [arXiv:1305.3143] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Hoferichter, G. Colangelo, M. Procura and P. Stoffer, Virtual photon-photon scattering, Int. J. Mod. Phys. Conf. Ser. 35 (2014) 1460400 [arXiv:1309.6877] [INSPIRE].

    Article  Google Scholar 

  58. G. Eichmann, C.S. Fischer, W. Heupel and R. Williams, The muon g − 2: Dyson-Schwinger status on hadronic light-by-light scattering, AIP Conf. Proc. 1701 (2016) 040004 [arXiv:1411.7876] [INSPIRE].

    Article  Google Scholar 

  59. J.L. Rosner, Higher-order contributions to the divergent part of Z(3) in a model quantum electrodynamics, Annals Phys. 44 (1967) 11 [INSPIRE].

    Article  ADS  Google Scholar 

  60. G. Eichmann, C.S. Fischer and W. Heupel, Four-point functions and the permutation group S4, Phys. Rev. D 92 (2015) 056006 [arXiv:1505.06336] [INSPIRE].

    ADS  Google Scholar 

  61. S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev. 112 (1958) 1344 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. A.D. Martin and T.D. Spearman, Elementary Particle Theory, North-Holland Publishing Company, Amsterdam (1970).

    Google Scholar 

  63. V. Pascalutsa, V. Pauk and M. Vanderhaeghen, Light-by-light scattering sum rules constraining meson transition form factors, Phys. Rev. D 85 (2012) 116001 [arXiv:1204.0740] [INSPIRE].

    ADS  Google Scholar 

  64. A. Dobado, M.J. Herrero and T.N. Truong, Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering, Phys. Lett. B 235 (1990) 134 [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Dobado and J.R. Peláez, A global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883 [hep-ph/9301276] [INSPIRE].

  66. A. Dobado and J.R. Peláez, The Inverse amplitude method in chiral perturbation theory, Phys. Rev. D 56 (1997) 3057 [hep-ph/9604416] [INSPIRE].

  67. F. Guerrero and J.A. Oller, \( K\overline{K} \) scattering amplitude to one loop in chiral perturbation theory, its unitarization and pion form-factors, Nucl. Phys. B 537 (1999) 459 [Erratum ibid. B 602 (2001) 641] [hep-ph/9805334] [INSPIRE].

  68. A. Gómez Nicola and J.R. Peláez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev. D 65 (2002) 054009 [hep-ph/0109056] [INSPIRE].

  69. J. Nieves, M. Pavón Valderrama and E. Ruiz Arriola, The inverse amplitude method in pi pi scattering in chiral perturbation theory to two loops, Phys. Rev. D 65 (2002) 036002 [hep-ph/0109077] [INSPIRE].

  70. V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE].

    Article  ADS  Google Scholar 

  71. I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of new data, Phys. Rev. D 95 (2017) 014019 [arXiv:1611.04646] [INSPIRE].

    ADS  Google Scholar 

  72. R. Mertig, M. Böhm and A. Denner, FeynCalc: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  73. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M.N. Achasov et al., Update of the e + e − → π + π − cross-section measured by SND detector in the energy region 400 < \( \sqrt{s} \) < 1000 MeV, J. Exp. Theor. Phys. 103 (2006) 380 [hep-ex/0605013] [INSPIRE].

  75. CMD-2 collaboration, R.R. Akhmetshin et al., High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021] [INSPIRE].

  76. BaBar collaboration, B. Aubert et al., Precise measurement of the e + e − → π + π −(γ) cross section with the Initial State Radiation method at BABAR, Phys. Rev. Lett. 103 (2009) 231801 [arXiv:0908.3589] [INSPIRE].

  77. KLOE collaboration, F. Ambrosino et al., Measurement of σ(e + e − → π + π −) from threshold to 0.85 GeV 2 using Initial State Radiation with the KLOE detector, Phys. Lett. B 700 (2011) 102 [arXiv:1006.5313] [INSPIRE].

  78. KLOE collaboration, D. Babusci et al., Precision measurement of σ(e + e − → π + π − γ)/σ(e + e − → μ + μ − γ) and determination of the π + π − contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 720 (2013) 336 [arXiv:1212.4524] [INSPIRE].

  79. BESIII collaboration, M. Ablikim et al., Measurement of the e + e − → π + π − cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [arXiv:1507.08188] [INSPIRE].

  80. E.B. Dally et al., Elastic Scattering Measurement of the Negative Pion Radius, Phys. Rev. Lett. 48 (1982) 375 [INSPIRE].

    Article  ADS  Google Scholar 

  81. NA7 collaboration, S.R. Amendolia et al., A Measurement of the Space-Like Pion Electromagnetic Form-Factor, Nucl. Phys. B 277 (1986) 168 [INSPIRE].

  82. Jefferson Lab F(pi)-2 collaboration, T. Horn et al., Determination of the Charged Pion Form Factor at Q 2 = 1.60 and 2.45 (GeV /c)2, Phys. Rev. Lett. 97 (2006) 192001 [nucl-ex/0607005] [INSPIRE].

  83. Jefferson Lab F(pi) collaboration, V. Tadevosyan et al., Determination of the pion charge form-factor for Q 2 = 0.60-1.60 GeV 2, Phys. Rev. C 75 (2007) 055205 [nucl-ex/0607007] [INSPIRE].

  84. Jefferson Lab collaboration, H.P. Blok et al., Charged pion form factor between Q 2 = 0.60 and 2.45 GeV 2 . I. Measurements of the cross section for the 1 H(e, e ′ π +)n reaction, Phys. Rev. C 78 (2008) 045202 [arXiv:0809.3161] [INSPIRE].

  85. Jefferson Lab collaboration, G.M. Huber et al., Charged pion form-factor between Q 2 = 0.60 and 2.45 GeV 2 . II. Determination of and results for, the pion form-factor, Phys. Rev. C 78 (2008) 045203 [arXiv:0809.3052] [INSPIRE].

  86. H. Leutwyler, Electromagnetic form-factor of the pion, hep-ph/0212324 [INSPIRE].

  87. G. Colangelo, Hadronic contributions to a μ below one GeV, Nucl. Phys. Proc. Suppl. 131 (2004) 185 [hep-ph/0312017] [INSPIRE].

  88. J.F. De Trocóniz and F.J. Ynduráin, Precision determination of the pion form-factor and calculation of the muon g − 2, Phys. Rev. D 65 (2002) 093001 [hep-ph/0106025] [INSPIRE].

  89. J.F. de Trocóniz and F.J. Ynduráin, The hadronic contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 71 (2005) 073008 [hep-ph/0402285] [INSPIRE].

  90. B. Ananthanarayan, I. Caprini, D. Das and I. Sentitemsu Imsong, Two-pion low-energy contribution to the muon g − 2 with improved precision from analyticity and unitarity, Phys. Rev. D 89 (2014) 036007 [arXiv:1312.5849] [INSPIRE].

    ADS  Google Scholar 

  91. B. Ananthanarayan, I. Caprini, D. Das and I. Sentitemsu Imsong, Precise determination of the low-energy hadronic contribution to the muon g − 2 from analyticity and unitarity: An improved analysis, Phys. Rev. D 93 (2016) 116007 [arXiv:1605.00202] [INSPIRE].

    ADS  Google Scholar 

  92. M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.-W. Hammer and U.-G. Meißner, On the ππ continuum in the nucleon form factors and the proton radius puzzle, Eur. Phys. J. A 52 (2016) 331 [arXiv:1609.06722] [INSPIRE].

    Article  ADS  Google Scholar 

  93. C. Hanhart, S. Holz, B. Kubis, A. Kupsć, A. Wirzba and C.W. Xiao, The branching ratio ω → π + π − revisited, Eur. Phys. J. C 77 (2017) 98 [arXiv:1611.09359] [INSPIRE].

    Article  ADS  Google Scholar 

  94. I. Caprini, G. Colangelo and H. Leutwyler, Regge analysis of the ππ scattering amplitude, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160] [INSPIRE].

    Article  ADS  Google Scholar 

  95. G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons, Phys. Lett. B 87 (1979) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  96. G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  97. A.V. Efremov and A.V. Radyushkin, Factorization and Asymptotical Behavior of Pion Form-Factor in QCD, Phys. Lett. 94B (1980) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  98. A.V. Efremov and A.V. Radyushkin, Asymptotical Behavior of Pion Electromagnetic Form-Factor in QCD, Theor. Math. Phys. 42 (1980) 97 [INSPIRE].

    Article  Google Scholar 

  99. G.R. Farrar and D.R. Jackson, The Pion Form-Factor, Phys. Rev. Lett. 43 (1979) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  100. S. Eidelman and L. Lukaszuk, Pion form-factor phase, ππ elasticity and new e + e − data, Phys. Lett. B 582 (2004) 27 [hep-ph/0311366] [INSPIRE].

  101. T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

  102. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e − Annihilation Into μ + μ − in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  103. G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

  104. Crystal Ball collaboration, H. Marsiske et al., A Measurement of π 0 π 0 Production in Two Photon Collisions, Phys. Rev. D 41 (1990) 3324 [INSPIRE].

  105. J. Boyer et al., Two photon production of pion pairs, Phys. Rev. D 42 (1990) 1350 [INSPIRE].

    ADS  Google Scholar 

  106. CELLO collaboration, H.J. Behrend et al., An experimental study of the process γγ → π + π −, Z. Phys. C 56 (1992) 381 [INSPIRE].

  107. Belle collaboration, T. Mori et al., High statistics measurement of the cross-sections of γγ → π + π − production, J. Phys. Soc. Jap. 76 (2007) 074102 [arXiv:0704.3538] [INSPIRE].

  108. Belle collaboration, S. Uehara et al., High-statistics measurement of neutral pion-pair production in two-photon collisions, Phys. Rev. D 78 (2008) 052004 [arXiv:0805.3387] [INSPIRE].

  109. Belle collaboration, S. Uehara et al., High-statistics study of neutral-pion pair production in two-photon collisions, Phys. Rev. D 79 (2009) 052009 [arXiv:0903.3697] [INSPIRE].

  110. TASSO collaboration, M. Althoff et al., Production of \( K\overline{K} \) Pairs in Photon-photon Collisions and the Excitation of the Tensor Meson F-prime (1515), Phys. Lett. B 121 (1983) 216 [INSPIRE].

  111. TASSO collaboration, M. Althoff et al., Search for Two Photon Production of Resonances Decaying Into \( K\overline{K} \) and \( K\overline{K}\pi \), Z. Phys. C 29 (1985) 189 [INSPIRE].

  112. TPC/Two Gamma collaboration, H. Aihara et al., Pion and Kaon Pair Production in Photon-Photon Collisions, Phys. Rev. Lett. 57 (1986) 404 [INSPIRE].

  113. CELLO collaboration, H.J. Behrend et al., The K 0 S K 0 S Final State in γγ Interactions, Z. Phys. C 43 (1989) 91 [INSPIRE].

  114. ARGUS collaboration, H. Albrecht et al., Measurement of K + K − Production in γγ Collisions, Z. Phys. C 48 (1990) 183 [INSPIRE].

  115. Belle collaboration, K. Abe et al., Measurement of K + K − production in two photon collisions in the resonant mass region, Eur. Phys. J. C 32 (2003) 323 [hep-ex/0309077] [INSPIRE].

  116. Belle collaboration, S. Uehara et al., High-statistics study of K 0 S pair production in two-photon collisions, PTEP 2013 (2013) 123C01 [arXiv:1307.7457] [INSPIRE].

  117. L.-Y. Dai and M.R. Pennington, Comprehensive amplitude analysis of γγ → π + π − , π 0 π 0 and \( \overline{K}K \) below 1.5 GeV, Phys. Rev. D 90 (2014) 036004 [arXiv:1404.7524] [INSPIRE].

  118. B. Moussallam, Couplings of light I = 0 scalar mesons to simple operators in the complex plane, Eur. Phys. J. C 71 (2011) 1814 [arXiv:1110.6074] [INSPIRE].

    Article  ADS  Google Scholar 

  119. A. Gómez Nicola, J.R. Peláez and G. Ríos, The Inverse Amplitude Method and Adler Zeros, Phys. Rev. D 77 (2008) 056006 [arXiv:0712.2763] [INSPIRE].

    ADS  Google Scholar 

  120. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  121. S.L. Adler, Consistency Conditions on the Strong Interactions Implied by a Partially Conserved Axial-Vector Current. II, Phys. Rev. 139 (1965) B1638.

  122. C. Hanhart, J.R. Peláez and G. Ríos, Quark mass dependence of the ρ and σ from dispersion relations and Chiral Perturbation Theory, Phys. Rev. Lett. 100 (2008) 152001 [arXiv:0801.2871] [INSPIRE].

  123. J.R. Peláez and G. Ríos, Chiral extrapolation of light resonances from one and two-loop unitarized Chiral Perturbation Theory versus lattice results, Phys. Rev. D 82 (2010) 114002 [arXiv:1010.6008] [INSPIRE].

  124. G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].

  125. R. García-Martín, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira and F.J. Ynduráin, The pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83 (2011) 074004 [arXiv:1102.2183] [INSPIRE].

  126. J.R. Peláez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary f 0(500) resonance, Phys. Rept. 658 (2016) 1 [arXiv:1510.00653] [INSPIRE].

    Article  ADS  Google Scholar 

  127. I. Caprini, G. Colangelo and H. Leutwyler, Mass and width of the lowest resonance in QCD, Phys. Rev. Lett. 96 (2006) 132001 [hep-ph/0512364] [INSPIRE].

  128. R. García-Martín, R. Kaminski, J.R. Peláez and J. Ruiz de Elvira, Precise determination of the f 0(600) and f 0(980) pole parameters from a dispersive data analysis, Phys. Rev. Lett. 107 (2011) 072001 [arXiv:1107.1635] [INSPIRE].

  129. K.M. Watson, Some general relations between the photoproduction and scattering of π mesons, Phys. Rev. 95 (1954) 228 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  130. N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen (1953).

    MATH  Google Scholar 

  131. R. Omnès, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. P. Büttiker, S. Descotes-Genon and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].

  133. C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, Roy-Steiner equations for pion-nucleon scattering, JHEP 06 (2012) 043 [arXiv:1203.4758] [INSPIRE].

    Article  ADS  Google Scholar 

  134. M. Hoferichter, C. Ditsche, B. Kubis and U.-G. Meißner, Dispersive analysis of the scalar form factor of the nucleon, JHEP 06 (2012) 063 [arXiv:1204.6251] [INSPIRE].

    Article  ADS  Google Scholar 

  135. M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Roy-Steiner-equation analysis of pion-nucleon scattering, Phys. Rept. 625 (2016) 1 [arXiv:1510.06039] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  136. J. Gasser, M.A. Ivanov and M.E. Sainio, Low-energy photon-photon collisions to two loops revisited, Nucl. Phys. B 728 (2005) 31 [hep-ph/0506265] [INSPIRE].

  137. J. Gasser, M.A. Ivanov and M.E. Sainio, Revisiting γγ → π + π − at low energies, Nucl. Phys. B 745 (2006) 84 [hep-ph/0602234] [INSPIRE].

  138. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, in preparation.

  139. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  140. COMPASS collaboration, C. Adolph et al., Measurement of the charged-pion polarizability, Phys. Rev. Lett. 114 (2015) 062002 [arXiv:1405.6377] [INSPIRE].

  141. P. Ko, Vector Meson Contributions to the Processes γγ → π 0 π 0 , π + π − , K L → π 0 γγ and K + →π + γγ, Phys. Rev. D 41 (1990) 1531 [INSPIRE].

  142. G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].

    Article  ADS  Google Scholar 

  143. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  144. V.M. Budnev, V.L. Chernyak and I.F. Ginzburg, Kinematics of gamma gamma scattering, Nucl. Phys. B 34 (1971) 470 [INSPIRE].

    Article  ADS  Google Scholar 

  145. J. Sharma and R. Gupta, Special Functions, Krishna Prakashan Media, Meerut, India (2006).

    Google Scholar 

  146. J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions, Nucl. Phys. B 296 (1988) 557 [INSPIRE].

    Article  ADS  Google Scholar 

  147. J.F. Donoghue, B.R. Holstein and Y.C. Lin, The reaction γγ → π 0 π 0 and chiral loops, Phys. Rev. D 37 (1988) 2423 [INSPIRE].

    ADS  Google Scholar 

  148. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  149. J. Bijnens and P. Talavera, π → lνγ form-factors at two loop, Nucl. Phys. B 489 (1997) 387 [hep-ph/9610269] [INSPIRE].

  150. C.Q. Geng, I.-L. Ho and T.H. Wu, Axial vector form-factors for K l2γ and π l2γ at O(p 6) in chiral perturbation theory, Nucl. Phys. B 684 (2004) 281 [hep-ph/0306165] [INSPIRE].

  151. J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488] [INSPIRE].

    Article  ADS  Google Scholar 

  152. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland

    Gilberto Colangelo

  2. Institute for Nuclear Theory, University of Washington, Seattle, WA, 98195-1550, U.S.A.

    Martin Hoferichter

  3. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106, U.S.A.

    Martin Hoferichter

  4. Theoretical Physics Department, CERN, Geneva, Switzerland

    Massimiliano Procura

  5. Helmholtz-Institut für Strahlen- und Kernphysik (Theory) and Bethe Center for Theoretical Physics, University of Bonn, 53115, Bonn, Germany

    Peter Stoffer

  6. Department of Physics, University of California at San Diego, La Jolla, CA, 92093, U.S.A.

    Peter Stoffer

Authors
  1. Gilberto Colangelo
    View author publications

    Search author on:PubMed Google Scholar

  2. Martin Hoferichter
    View author publications

    Search author on:PubMed Google Scholar

  3. Massimiliano Procura
    View author publications

    Search author on:PubMed Google Scholar

  4. Peter Stoffer
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Peter Stoffer.

Additional information

ArXiv ePrint: 1702.07347

On leave from the University of Vienna (Massimiliano Procura).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GZ 122 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colangelo, G., Hoferichter, M., Procura, M. et al. Dispersion relation for hadronic light-by-light scattering: two-pion contributions. J. High Energ. Phys. 2017, 161 (2017). https://doi.org/10.1007/JHEP04(2017)161

Download citation

  • Received: 27 February 2017

  • Accepted: 05 April 2017

  • Published: 27 April 2017

  • DOI: https://doi.org/10.1007/JHEP04(2017)161

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chiral Lagrangians
  • Effective Field Theories
  • Nonperturbative Effects
  • Precision QED
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载