+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

From soft to hard radiation: the role of multiple scatterings in medium-induced gluon emissions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 March 2021
  • Volume 2021, article number 102, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
From soft to hard radiation: the role of multiple scatterings in medium-induced gluon emissions
Download PDF
  • Carlota Andres1,
  • Fabio Dominguez  ORCID: orcid.org/0000-0003-2477-621X2 &
  • Marcos Gonzalez Martinez2 
  • 427 Accesses

  • 22 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

A proper understanding of the physics of medium-induced gluon emissions is known to be of critical importance to describe the properties of strongly interacting matter under extreme conditions. In this regard, many theoretical efforts have been directed towards obtaining analytical calculations which might help us discerning the underlying physical picture and the dominant dynamics for different regimes. These analytical approaches rely on approximations whose validity is analyzed here by comparing their results with a recently developed numerical evaluation which includes all-order resummation of multiple scatterings. More specifically, by quantitatively comparing the energy spectrum and rates, we observe that three different regimes — each with its corresponding physical picture — emerge naturally from the equations: the high-energy regime where the emission process is dominated by a single hard scattering, the intermediate-energy regime where coherence effects among multiple scatterings become fundamental, and the low-energy regime where the dynamics is again dominated by a single scattering but where one must include the suppression factor due to the probability of not having any further scatterings (which is obtained through the resummation of virtual terms).

Article PDF

Download to read the full article text

Similar content being viewed by others

A unified picture of medium-induced radiation

Article Open access 15 February 2023

Two-gluon emission and interference in a thin QCD medium: insights into jet formation

Article Open access 29 November 2016

Medium-induced radiative kernel with the Improved Opacity Expansion

Article Open access 23 September 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystallography and Scattering Methods
  • Multiphoton ionisation
  • Nuclear Physics
  • Propagation, transmission, absorption
  • X-Ray Scattering
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Armesto and E. Scomparin, Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1, Eur. Phys. J. Plus 131 (2016) 52 [arXiv:1511.02151] [INSPIRE].

    Article  Google Scholar 

  3. G. Roland, K. Safarik and P. Steinberg, Heavy-ion collisions at the LHC, Prog. Part. Nucl. Phys. 77 (2014) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  4. B. Müller, J. Schukraft and B. Wyslouch, First Results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Müller and J. L. Nagle, Results from the relativistic heavy ion collider, Ann. Rev. Nucl. Part. Sci. 56 (2006) 93 [nucl-th/0602029] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. D. Frawley, T. Ullrich and R. Vogt, Heavy flavor in heavy-ion collisions at RHIC and RHIC II, Phys. Rept. 462 (2008) 125 [arXiv:0806.1013] [INSPIRE].

    Article  ADS  Google Scholar 

  7. PHOBOS collaboration, The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

  8. V. Dexheimer, J. Noronha, J. Noronha-Hostler, C. Ratti and N. Yunes, Future Physics Perspectives on the Equation of State from Heavy Ion Collisions to Neutron Stars, arXiv:2010.08834 [INSPIRE].

  9. N. Armesto et al., Comparison of Jet Quenching Formalisms for a Quark-Gluon Plasma ‘Brick’, Phys. Rev. C 86 (2012) 064904 [arXiv:1106.1106] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.-P. Blaizot and Y. Mehtar-Tani, Jet Structure in Heavy Ion Collisions, Int. J. Mod. Phys. E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  14. B. G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

    Article  ADS  Google Scholar 

  17. X. Feal and R. Vazquez, Intensity of gluon bremsstrahlung in a finite plasma, Phys. Rev. D 98 (2018) 074029 [arXiv:1811.01591] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Andres, L. Apolinário and F. Dominguez, Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions, JHEP 07 (2020) 114 [arXiv:2002.01517] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Mehtar-Tani, Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation, JHEP 07 (2019) 057 [arXiv:1903.00506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Mehtar-Tani and K. Tywoniuk, Improved opacity expansion for medium-induced parton splitting, JHEP 06 (2020) 187 [arXiv:1910.02032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Barata and Y. Mehtar-Tani, Improved opacity expansion at NNLO for medium induced gluon radiation, JHEP 10 (2020) 176 [arXiv:2004.02323] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. X. Feal, C. A. Salgado and R. A. Vazquez, Jet quenching tests of the QCD Equation of State, arXiv:1911.01309 [INSPIRE].

  23. C. Andrés, N. Armesto, M. Luzum, C. A. Salgado and P. Zurita, Energy versus centrality dependence of the jet quenching parameter \( \hat{q} \) at RHIC and LHC: a new puzzle?, Eur. Phys. J. C 76 (2016) 475 [arXiv:1606.04837] [INSPIRE].

    Article  ADS  Google Scholar 

  24. JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].

  25. C. Andres, N. Armesto, H. Niemi, R. Paatelainen, C. A. Salgado and P. Zurita, Extracting \( \hat{q} \) in event-by-event hydrodynamics and the centrality/energy puzzle, Nucl. Phys. A 967 (2017) 492 [arXiv:1705.01493] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. G. Zakharov, Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions, JETP Lett. 80 (2004) 617 [hep-ph/0410321] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. B. Arnold, High-energy gluon bremsstrahlung in a finite medium: harmonic oscillator versus single scattering approximation, Phys. Rev. D 80 (2009) 025004 [arXiv:0903.1081] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Baier, D. Schiff and B. G. Zakharov, Energy loss in perturbative QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37 [hep-ph/0002198] [INSPIRE].

    Article  ADS  Google Scholar 

  30. U. A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

    Article  ADS  Google Scholar 

  31. X.-N. Wang and M. Gyulassy, Gluon shadowing and jet quenching in A + A collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev. Lett. 68 (1992) 1480 [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Aurenche, F. Gelis and H. Zaraket, A Simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C. A. Salgado and U. A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

    Article  ADS  Google Scholar 

  34. P. B. Arnold, G. D. Moore and L. G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Jeon and G. D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].

    Article  ADS  Google Scholar 

  36. B. Schenke, C. Gale and S. Jeon, MARTINI: An Event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LIP, Av. Prof. Gama Pinto, 2, P-1649-003, Lisboa, Portugal

    Carlota Andres

  2. Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Galicia, Spain

    Fabio Dominguez & Marcos Gonzalez Martinez

Authors
  1. Carlota Andres
    View author publications

    Search author on:PubMed Google Scholar

  2. Fabio Dominguez
    View author publications

    Search author on:PubMed Google Scholar

  3. Marcos Gonzalez Martinez
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Fabio Dominguez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.06522

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andres, C., Dominguez, F. & Martinez, M.G. From soft to hard radiation: the role of multiple scatterings in medium-induced gluon emissions. J. High Energ. Phys. 2021, 102 (2021). https://doi.org/10.1007/JHEP03(2021)102

Download citation

  • Received: 21 November 2020

  • Revised: 31 January 2021

  • Accepted: 03 February 2021

  • Published: 09 March 2021

  • Version of record: 09 March 2021

  • DOI: https://doi.org/10.1007/JHEP03(2021)102

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy Ion Phenomenology
  • Jets
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载