+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Neutrino portal to FIMP dark matter with an early matter era

  • Regular Article - Experimental Physics
  • Open access
  • Published: 02 March 2021
  • Volume 2021, article number 26, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Neutrino portal to FIMP dark matter with an early matter era
Download PDF
  • Catarina Cosme1,
  • Maíra Dutra1,
  • Teng Ma2,
  • Yongcheng Wu1 &
  • …
  • Litao Yang3 
  • 530 Accesses

  • 54 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter candidates through a neutrino portal. We consider a hidden sector comprised of a fermion and a complex scalar, with the lightest one regarded as a FIMP candidate. We implement the Type-I Seesaw mechanism for generating the masses of the Standard Model (SM) neutrinos by introducing three heavy neutrinos which are assumed to be degenerated, for simplicity, and are also responsible for mediating the interactions be- tween the hidden and the SM sectors. We assume that an early matter-dominated (EMD) era took place for some period between inflation and Big Bang Nucleosynthesis, making the Universe to expand faster than in the standard radiation-dominated era. In this case, the hidden and SM sectors are easily decoupled and larger couplings between FIMPs and SM particles are needed from the relic density constraints. In this context, we discuss the dynamics of dark matter throughout the modified cosmic history, evaluate the relevant constraints of the model and discuss the consequences of the duration of the EMD era for the dark matter production. Finally, we show that if the heavy neutrinos are not part of the thermal bath, this scenario becomes testable through indirect detection searches.

Article PDF

Download to read the full article text

Similar content being viewed by others

Heavy neutrino as dark matter in a neutrinophilic U(1) model

Article Open access 19 October 2024

Cogenesis of Visible and Dark Sector Asymmetry in Minimal Seesaw Framework [7]

Chapter © 2024

WIMP and FIMP dark matter in singlet-triplet fermionic model

Article Open access 23 November 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Dark Energy and Dark Matter
  • Early Universe
  • Nuclear astrophysics
  • Particle Physics
  • Particle Astrophysics
  • Warm and dense matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  2. G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].

  3. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].

  4. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci. 60 (2010) 27 [arXiv:1001.2600] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Berlin, D. Hooper and G. Krnjaic, PeV-Scale Dark Matter as a Thermal Relic of a Decoupled Sector, Phys. Lett. B 760 (2016) 106 [arXiv:1602.08490] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Tenkanen and V. Vaskonen, Reheating the Standard Model from a hidden sector, Phys. Rev. D 94 (2016) 083516 [arXiv:1606.00192] [INSPIRE].

  9. A. Berlin, D. Hooper and G. Krnjaic, Thermal Dark Matter From A Highly Decoupled Sector, Phys. Rev. D 94 (2016) 095019 [arXiv:1609.02555] [INSPIRE].

  10. A. Vilenkin and L.H. Ford, Gravitational Effects upon Cosmological Phase Transitions, Phys. Rev. D 26 (1982) 1231 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

  12. M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [INSPIRE].

  13. R.J. Scherrer and M.S. Turner, Decaying Particles Do Not Heat Up the Universe, Phys. Rev. D 31 (1985) 681 [INSPIRE].

    Article  ADS  Google Scholar 

  14. R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J.A. Dror, E. Kuflik and W.H. Ng, Codecaying Dark Matter, Phys. Rev. Lett. 117 (2016) 211801 [arXiv:1607.03110] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. D’Eramo, N. Fernandez and S. Profumo, When the Universe Expands Too Fast: Relentless Dark Matter, JCAP 05 (2017) 012 [arXiv:1703.04793] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Hamdan and J. Unwin, Dark Matter Freeze-out During Matter Domination, Mod. Phys. Lett. A 33 (2018) 1850181 [arXiv:1710.03758] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Visinelli, (Non-)thermal production of WIMPs during kination, Symmetry 10 (2018) 546 [arXiv:1710.11006] [INSPIRE].

  19. M. Drees and F. Hajkarim, Dark Matter Production in an Early Matter Dominated Era, JCAP 02 (2018) 057 [arXiv:1711.05007] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.A. Dror, E. Kuflik, B. Melcher and S. Watson, Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter, Phys. Rev. D 97 (2018) 063524 [arXiv:1711.04773] [INSPIRE].

  21. F. D’Eramo, N. Fernandez and S. Profumo, Dark Matter Freeze-in Production in Fast-Expanding Universes, JCAP 02 (2018) 046 [arXiv:1712.07453] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Bernal, C. Cosme and T. Tenkanen, Phenomenology of Self-Interacting Dark Matter in a Matter-Dominated Universe, Eur. Phys. J. C 79 (2019) 99 [arXiv:1803.08064] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Bernal, C. Cosme, T. Tenkanen and V. Vaskonen, Scalar singlet dark matter in non-standard cosmologies, Eur. Phys. J. C 79 (2019) 30 [arXiv:1806.11122] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Hardy, Higgs portal dark matter in non-standard cosmological histories, JHEP 06 (2018) 043 [arXiv:1804.06783] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Hambye, A. Strumia and D. Teresi, Super-cool Dark Matter, JHEP 08 (2018) 188 [arXiv:1805.01473] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Biswas, D. Borah and D. Nanda, keV Neutrino Dark Matter in a Fast Expanding Universe, Phys. Lett. B 786 (2018) 364 [arXiv:1809.03519] [INSPIRE].

  27. N. Fernandez and S. Profumo, Comment on “keV neutrino dark matter in a fast expanding universe” by Biswas et al., Phys. Lett. B 789 (2019) 603 [arXiv:1810.06795] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Chanda, S. Hamdan and J. Unwin, Reviving Z and Higgs Mediated Dark Matter Models in Matter Dominated Freeze-out, JCAP 01 (2020) 034 [arXiv:1911.02616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Gonzalez Macias and J. Wudka, Effective theories for Dark Matter interactions and the neutrino portal paradigm, JHEP 07 (2015) 161 [arXiv:1506.03825] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. V. González-Macías, J.I. Illana and J. Wudka, A realistic model for Dark Matter interactions in the neutrino portal paradigm, JHEP 05 (2016) 171 [arXiv:1601.05051] [INSPIRE].

  31. B. Batell, T. Han, D. McKeen and B. Shams Es Haghi, Thermal Dark Matter Through the Dirac Neutrino Portal, Phys. Rev. D 97 (2018) 075016 [arXiv:1709.07001] [INSPIRE].

  32. A. Berlin and N. Blinov, Thermal neutrino portal to sub-MeV dark matter, Phys. Rev. D 99 (2019) 095030 [arXiv:1807.04282] [INSPIRE].

  33. M. Blennow et al., Neutrino Portals to Dark Matter, Eur. Phys. J. C 79 (2019) 555 [arXiv:1903.00006] [INSPIRE].

  34. M. Chianese and S.F. King, The Dark Side of the Littlest Seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas, JCAP 09 (2018) 027 [arXiv:1806.10606] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Biswas and A. Gupta, Freeze-in Production of Sterile Neutrino Dark Matter in U(1)B−L Model, JCAP 09 (2016) 044 [Addendum ibid. 05 (2017) A01] [arXiv:1607.01469] [INSPIRE].

  36. A. Abada, G. Arcadi and M. Lucente, Dark Matter in the minimal Inverse Seesaw mechanism, JCAP 10 (2014) 001 [arXiv:1406.6556] [INSPIRE].

    ADS  Google Scholar 

  37. M. Becker, Dark Matter from Freeze-In via the Neutrino Portal, Eur. Phys. J. C 79 (2019) 611 [arXiv:1806.08579] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Chianese, B. Fu and S.F. King, Minimal Seesaw extension for Neutrino Mass and Mixing, Leptogenesis and Dark Matter: FIMPzillas through the Right-Handed Neutrino Portal, JCAP 03 (2020) 030 [arXiv:1910.12916] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Z. Kang and T. Li, Decaying Dark Matter in the Supersymmetric Standard Model with Freeze-in and Seesaw mechanims, JHEP 02 (2011) 035 [arXiv:1008.1621] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. L. Bian and Y.-L. Tang, Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: The Freeze-in case, JHEP 12 (2018) 006 [arXiv:1810.03172] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Drees and F. Hajkarim, Neutralino Dark Matter in Scenarios with Early Matter Domination, JHEP 12 (2018) 042 [arXiv:1808.05706] [INSPIRE].

    Article  ADS  Google Scholar 

  42. XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  43. XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  44. M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Toma, Internal Bremsstrahlung Signature of Real Scalar Dark Matter and Consistency with Thermal Relic Density, Phys. Rev. Lett. 111 (2013) 091301 [arXiv:1307.6181] [INSPIRE].

  46. F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar Dark Matter Models with Significant Internal Bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].

    Article  ADS  Google Scholar 

  47. B. Batell, T. Han and B. Shams Es Haghi, Indirect Detection of Neutrino Portal Dark Matter, Phys. Rev. D 97 (2018) 095020 [arXiv:1704.08708] [INSPIRE].

  48. V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray Lines from Dark Matter Annihilation at the keV Scale, Phys. Rev. Lett. 120 (2018) 061301 [arXiv:1710.02146] [INSPIRE].

  49. M. Heikinheimo, T. Tenkanen and K. Tuominen, Prospects for indirect detection of frozen-in dark matter, Phys. Rev. D 97 (2018) 063002 [arXiv:1801.03089] [INSPIRE].

  50. A. Biswas, S. Ganguly and S. Roy, Fermionic dark matter via UV and IR freeze-in and its possible X-ray signature, JCAP 03 (2020) 043 [arXiv:1907.07973] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, College Park U.S.A. (2017) [arXiv:1707.04591] [INSPIRE].

  52. T. Hambye, M.H.G. Tytgat, J. Vandecasteele and L. Vanderheyden, Dark matter direct detection is testing freeze-in, Phys. Rev. D 98 (2018) 075017 [arXiv:1807.05022] [INSPIRE].

  53. S. Heeba and F. Kahlhoefer, Probing the freeze-in mechanism in dark matter models with U(1)′ gauge extensions, Phys. Rev. D 101 (2020) 035043 [arXiv:1908.09834] [INSPIRE].

  54. L. Calibbi, L. Lopez-Honorez, S. Lowette and A. Mariotti, Singlet-Doublet Dark Matter Freeze-in: LHC displaced signatures versus cosmology, JHEP 09 (2018) 037 [arXiv:1805.04423] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, Rept. Prog. Phys. 82 (2019) 116201 [arXiv:1806.07396] [INSPIRE].

  56. G. Bélanger et al., LHC-friendly minimal freeze-in models, JHEP 02 (2019) 186 [arXiv:1811.05478] [INSPIRE].

  57. J.M. No, P. Tunney and B. Zaldivar, Probing Dark Matter freeze-in with long-lived particle signatures: MATHUSLA, HL-LHC and FCC-hh, JHEP 03 (2020) 022 [arXiv:1908.11387] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Coffey, L. Forestell, D.E. Morrissey and G. White, Cosmological Bounds on sub-GeV Dark Vector Bosons from Electromagnetic Energy Injection, JHEP 07 (2020) 179 [arXiv:2003.02273] [INSPIRE].

    Article  ADS  Google Scholar 

  59. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  60. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    Article  ADS  Google Scholar 

  61. S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].

    Google Scholar 

  62. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

  63. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    Article  ADS  Google Scholar 

  64. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  65. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

  66. P.B. Pal, Dirac, Majorana and Weyl fermions, Am. J. Phys. 79 (2011) 485 [arXiv:1006.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. De Bernardis, L. Pagano and A. Melchiorri, New constraints on the reheating temperature of the universe after WMAP-5, Astropart. Phys. 30 (2008) 192 [INSPIRE].

  68. S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].

  69. M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].

  70. T. Hasegawa, N. Hiroshima, K. Kohri, R.S.L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, JCAP 12 (2019) 012 [arXiv:1908.10189] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

  73. G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

  74. M. Dutra, Origins for dark matter particles: from the “WIMP miracle” to the “FIMP wonder”, Ph.D. Thesis, Physics Laboratory Théorique D’orsay – University Paris-Saclay, Orsay France (2019).

  75. T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

  76. M. Dutra, Freeze-in production of dark matter through spin-1 and spin-2 portals, PoS(LeptonPhoton2019)076 [arXiv:1911.11844] [INSPIRE].

  77. N. Bernal, F. Elahi, C. Maldonado and J. Unwin, Ultraviolet Freeze-in and Non-Standard Cosmologies, JCAP 11 (2019) 026 [arXiv:1909.07992] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. C.E. Yaguna, Inverse decays and the relic density of the sterile sneutrino, Phys. Lett. B 669 (2008) 139 [arXiv:0811.0485] [INSPIRE].

    Article  ADS  Google Scholar 

  79. T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].

  80. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  81. S. Jana, N. Okada and D. Raut, Displaced vertex signature of type-I seesaw model, Phys. Rev. D 98 (2018) 035023 [arXiv:1804.06828] [INSPIRE].

  82. A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].

  84. A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  85. F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    Article  ADS  Google Scholar 

  86. F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].

    Article  ADS  Google Scholar 

  87. F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [INSPIRE].

    Article  Google Scholar 

  88. A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [INSPIRE].

    Article  ADS  Google Scholar 

  89. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  90. DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].

  91. DarkSide-20k collaboration, DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133 (2018) 131 [arXiv:1707.08145] [INSPIRE].

  92. J.M. Gaskins, A review of indirect searches for particle dark matter, Contemp. Phys. 57 (2016) 496 [arXiv:1604.00014] [INSPIRE].

    Article  ADS  Google Scholar 

  93. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].

    Article  ADS  Google Scholar 

  94. Y.-L. Tang and S.-h. Zhu, Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess, JHEP 03 (2016) 043 [arXiv:1512.02899] [INSPIRE].

    Article  ADS  Google Scholar 

  95. M.D. Campos, F.S. Queiroz, C.E. Yaguna and C. Weniger, Search for right-handed neutrinos from dark matter annihilation with gamma-rays, JCAP 07 (2017) 016 [arXiv:1702.06145] [INSPIRE].

    Article  ADS  Google Scholar 

  96. K.-C. Yang, A potentially detectable gamma-ray line in the Fermi Galactic center excess — in light of one-step cascade annihilations of secluded (vector) dark matter via the Higgs portal, JHEP 07 (2020) 148 [arXiv:2001.04946] [INSPIRE].

    ADS  Google Scholar 

  97. P. Jean et al., Spectral analysis of the galactic e+ e− annihilation emission, Astron. Astrophys. 445 (2006) 579 [astro-ph/0509298] [INSPIRE].

  98. Fermi-LAT collaboration, The Fermi Galactic Center GeV Excess and Implications for Dark Matter, Astrophys. J. 840 (2017) 43 [arXiv:1704.03910] [INSPIRE].

  99. H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].

  100. H.E.S.S. collaboration, Latest results on dark matter searches with H.E.S.S, EPJ Web Conf. 209 (2019) 01023 [arXiv:1901.05299] [INSPIRE].

  101. H. Silverwood, C. Weniger, P. Scott and G. Bertone, A realistic assessment of the CTA sensitivity to dark matter annihilation, JCAP 03 (2015) 055 [arXiv:1408.4131] [INSPIRE].

    Article  ADS  Google Scholar 

  102. A. Galper et al., Status of the gamma-400 project, Adv. Space Res. 51 (2013) 297.

    Article  ADS  Google Scholar 

  103. T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].

    Article  Google Scholar 

  104. Fermi-LAT collaboration, Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].

  105. L. Bergstrom, G. Bertone, J. Conrad, C. Farnier and C. Weniger, Investigating Gamma-Ray Lines from Dark Matter with Future Observatories, JCAP 11 (2012) 025 [arXiv:1207.6773] [INSPIRE].

    Article  ADS  Google Scholar 

  106. M. Pierre, J.M. Siegal-Gaskins and P. Scott, Sensitivity of CTA to dark matter signals from the Galactic Center, JCAP 06 (2014) 024 [Erratum ibid. 10 (2014) E01] [arXiv:1401.7330] [INSPIRE].

  107. S.J. Clark, J.B. Dent, B. Dutta and L.E. Strigari, Indirect detection of the partial p wave via the s wave in the annihilation cross section of dark matter, Phys. Rev. D 99 (2019) 083003 [arXiv:1901.01454] [INSPIRE].

  108. D. Hooper, C. Kelso and F.S. Queiroz, Stringent and Robust Constraints on the Dark Matter Annihilation Cross Section From the Region of the Galactic Center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].

    Article  ADS  Google Scholar 

  109. R. Easther, R. Flauger and J.B. Gilmore, Delayed Reheating and the Breakdown of Coherent Oscillations, JCAP 04 (2011) 027 [arXiv:1003.3011] [INSPIRE].

    Article  ADS  Google Scholar 

  110. G. Barenboim and J. Rasero, Structure Formation during an early period of matter domination, JHEP 04 (2014) 138 [arXiv:1311.4034] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Fan, O. Özsoy and S. Watson, Nonthermal histories and implications for structure formation, Phys. Rev. D 90 (2014) 043536 [arXiv:1405.7373] [INSPIRE].

  112. Y. Zhang, Long-lived Light Mediator to Dark Matter and Primordial Small Scale Spectrum, JCAP 05 (2015) 008 [arXiv:1502.06983] [INSPIRE].

    Article  ADS  Google Scholar 

  113. C. Blanco, M.S. Delos, A.L. Erickcek and D. Hooper, Annihilation Signatures of Hidden Sector Dark Matter Within Early-Forming Microhalos, Phys. Rev. D 100 (2019) 103010 [arXiv:1906.00010] [INSPIRE].

    Article  ADS  Google Scholar 

  114. G.B. Gelmini and P. Gondolo, Ultra-cold weakly interacting massive particles: relics of non-standard pre-big-bang-nucleosynthesis cosmologies, JCAP 10 (2008) 002.

    Article  ADS  Google Scholar 

  115. A.L. Erickcek, The Dark Matter Annihilation Boost from Low-Temperature Reheating, Phys. Rev. D 92 (2015) 103505 [arXiv:1504.03335] [INSPIRE].

    Article  ADS  Google Scholar 

  116. A.L. Erickcek, K. Sinha and S. Watson, Bringing Isolated Dark Matter Out of Isolation: Late-time Reheating and Indirect Detection, Phys. Rev. D 94 (2016) 063502 [arXiv:1510.04291] [INSPIRE].

  117. H. Assadullahi and D. Wands, Gravitational waves from an early matter era, Phys. Rev. D 79 (2009) 083511 [arXiv:0901.0989] [INSPIRE].

  118. F. D’Eramo and K. Schmitz, Imprint of a scalar era on the primordial spectrum of gravitational waves, Phys. Rev. Research. 1 (2019) 013010 [arXiv:1904.07870] [INSPIRE].

  119. M. Sten Delos, T. Linden and A.L. Erickcek, Breaking a dark degeneracy: The gamma-ray signature of early matter domination, Phys. Rev. D 100 (2019) 123546 [arXiv:1910.08553] [INSPIRE].

    Article  ADS  Google Scholar 

  120. T.J. Rehagen, Dark Matter Production in Non-Standard Early Universe Cosmologies, Ph.D. Thesis, University of California, Los Angeles, Los Angeles U.S.A. (2015).

  121. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

    Catarina Cosme, Maíra Dutra & Yongcheng Wu

  2. Physics Department, Technion – Israel Institute of Technology, 3200003, Haifa, Israel

    Teng Ma

  3. Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing, 100084, China

    Litao Yang

Authors
  1. Catarina Cosme
    View author publications

    Search author on:PubMed Google Scholar

  2. Maíra Dutra
    View author publications

    Search author on:PubMed Google Scholar

  3. Teng Ma
    View author publications

    Search author on:PubMed Google Scholar

  4. Yongcheng Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Litao Yang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yongcheng Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.01723

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosme, C., Dutra, M., Ma, T. et al. Neutrino portal to FIMP dark matter with an early matter era. J. High Energ. Phys. 2021, 26 (2021). https://doi.org/10.1007/JHEP03(2021)026

Download citation

  • Received: 24 March 2020

  • Revised: 28 September 2020

  • Accepted: 14 January 2021

  • Published: 02 March 2021

  • Version of record: 02 March 2021

  • DOI: https://doi.org/10.1007/JHEP03(2021)026

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Dark matter

Profiles

  1. Yongcheng Wu View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载